1
|
Sasano R, Sekizawa J, Saito I, Harano M, Katsumoto K, Ito R, Iwasaki Y, Taguchi T, Tsutsumi T, Akiyama H. Simultaneous determination of glyphosate, glufosinate and their metabolites in soybeans using solid-phase analytical derivatization and LC-MS/MS determination. Food Chem X 2024; 24:101806. [PMID: 39296482 PMCID: PMC11408379 DOI: 10.1016/j.fochx.2024.101806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/10/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Glyphosate and glufosinate are the most widely used herbicides worldwide. We developed a simple and rapid analytical method for detecting glyphosate, glufosinate, and their metabolites (N-acetyl glyphosate: Gly-A, N-acetyl glufosinate: Glu-A, and 3-(hydroxymethylphosphinyl)propanoic acid: MPPA) in soybeans. The method involved extraction with water, trapping in a mini-column containing polymer-based resin with strong anion exchange groups, dehydration with acetonitrile, and solid-phase analytical derivatization at ambient temperature for 1 min using N-(tert-butyldimethylsilyl)-N-methyl trifluoroacetamide (MTBSTFA), followed by Liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination. This method offers a straightforward and rapid analysis, using on-solid phase dehydration and rapid derivatization at an ambient temperature with MTBSTFA, yielding reliable results for glyphosate, glufosinate, and their metabolites. The method was applied to both domestic and imported soybean samples. Glyphosate, glufosinate, and Glu-A were detected in imported feed soybeans and processed soybean meal for feed use, reflecting the current conditions of GM soybean cultivation.
Collapse
Affiliation(s)
- Ryoichi Sasano
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- AiSTI SCIENCE CO., Ltd., 18-3 Arimoto, Wakayama-City, Wakayama 640-8390, Japan
| | - Junpei Sekizawa
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Isao Saito
- AiSTI SCIENCE CO., Ltd., 18-3 Arimoto, Wakayama-City, Wakayama 640-8390, Japan
| | - Mikihisa Harano
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kyoka Katsumoto
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rie Ito
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yusuke Iwasaki
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takaaki Taguchi
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Tomoaki Tsutsumi
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| | - Hiroshi Akiyama
- Hoshi University, School of Pharmacy and Pharmaceutical Sciences, Department of Analytical Chemistry, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-City, Kanagawa 210-9501, Japan
| |
Collapse
|
2
|
Tanaka M. Analytical evaluation of food quality. ANAL SCI 2024; 40:225-226. [PMID: 38311663 DOI: 10.1007/s44211-023-00494-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Affiliation(s)
- Mitsuru Tanaka
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Kotani A, Watanabe R, Hayashi Y, Machida K, Hakamata H. Statistical reliability of a relative standard deviation of chromatographic peak area estimated by a chemometric tool based on the FUMI theory. J Pharm Biomed Anal 2024; 237:115777. [PMID: 37844361 DOI: 10.1016/j.jpba.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
In pharmaceutical analysis using a high-performance liquid chromatography (HPLC) system, repeatability assessment is significant to obtain reliable and precise quantitative results. The purpose of the present study is to experimentally show the statistical reliability of a relative standard deviation (RSD) of peak area estimated by a chemometric tool based on probability theory, called the function of mutual information (FUMI) theory, which stochastically provided an RSD of peak area and SD of baseline areas with width k (s(k)) from noises and a signal on a single chromatogram. An ultra-high-performance liquid chromatography with ultraviolet detection (UHPLC-UV) for determining ergosterol was applied as an example of the repeatability assessment. In addition, the statistical reliability of an RSD of peak area in the UHPLC-UV system was certified according to a chi-square (χ2) distribution. The 712 values of s(k) were experimentally obtained from a data series of 1001 points in the noise regions of 712 chromatograms. The histogram of χ2 of s(k) was well-fitted to the χ2 distribution curve (freedom degree, ν = 50), indicating that the statistical reliability of an RSD of the peak area in the UHPLC-UV estimated by the FUMI theory (n = 1) was equivalent to that estimated by 50 runs of chromatographic measurements.
Collapse
Affiliation(s)
- Akira Kotani
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | - Ryo Watanabe
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuzuru Hayashi
- Institute for FUMI Theory, 3-3-15 Inaridai, Sakura, Chiba 285-0864, Japan
| | - Koichi Machida
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideki Hakamata
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
4
|
Sun M, Zhao L, Liu T, Lu Z, Su G, Wu C, Song C, Deng R, He M, Rao H, Wang Y. Construction of CuO/Fe 2O 3 Nanozymes for Intelligent Detection of Glufosinate and Chlortetracycline Hydrochloride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54466-54477. [PMID: 37971298 DOI: 10.1021/acsami.3c12157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
In this work, CuO/Fe2O3 nanozymes with high peroxidase-like activity were synthesized by using hydrothermal and calcination methods. The high-resolution transmission electron microscopy (HRTEM) proved that the heterogeneous interface of CuO/Fe2O3 was the main reason for the high enzyme-like activity. Strong interactions of CuO and Fe2O3 were successfully verified by X-ray absorption near-edge structure (XANES) characterization. Experiments and density functional theory (DFT) calculations were also used to explain the increased enzyme activity. The heterogeneous interface acted as the main active center, facilitating the electron transfer from CuO to Fe2O3. A colorimetric and intelligent sensing system was constructed based on deep learning. Using the peroxidase-like activity of CuO/Fe2O3, a platform for glufosinate pesticides and chlortetracycline hydrochloride (CTC) with the signal "on-off-on" changes were established. The limit of detection (LOD) of glufosinate and CTC was 28 and 0.69 μM, respectively. It was successfully applied in the detection of environmental water and soil. This study can provide an intelligent detection method for environmental monitoring.
Collapse
Affiliation(s)
- Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Liying Zhao
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Chang Song
- School of Arts and Media, Sichuan Agricultural University, Ya'an 625014, P. R. China
| | - Rui Deng
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Mingxia He
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road,Yucheng District, Ya'an 625014, P. R. China
| |
Collapse
|
5
|
Zheng S, Wang YW, Lai JL, Zhang Y, Luo XG. Effects of long-term herbaceous plant restoration on microbial communities and metabolic profiles in coal gangue-contaminated soil. ENVIRONMENTAL RESEARCH 2023; 234:116491. [PMID: 37394168 DOI: 10.1016/j.envres.2023.116491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
The soil microbial diversity in the gangue accumulation area is severely stressed by a variety of heavy metals, while the influence of long-term recovery of herbaceous plants on the ecological structure of gangue-contaminated soil is to be explored. Therefore, we analysed the differences in physicochemical properties, elemental changes, microbial community structure, metabolites and expression of related pathways in soils in the 10- and 20-year herbaceous remediation areas of coal gangue. Our results showed that phosphatase, soil urease, and sucrase activities of gangue soils significantly increased in the shallow layer after herbaceous remediation. However, in zone T1 (10-year remediation zone), the contents of harmful elements, such as Thorium (Th; 1.08-fold), Arsenic (As; 0.78-fold), lead (Pb; 0.99-fold), and uranium (U; 0.77-fold), increased significantly, whereas the soil microbial abundance and diversity also showed a significant decreasing trend. Conversely, in zone T2 (20-year restoration zone), the soil pH significantly increased by 1.03- to 1.06-fold and soil acidity significantly improved. Moreover, the abundance and diversity of soil microorganisms increased significantly, the expression of carbohydrates in soil was significantly downregulated, and sucrose content was significantly negatively correlated with the abundance of microorganisms, such as Streptomyces. A significant decrease in heavy metals was observed in the soil, such as U (1.01- to 1.09-fold) and Pb (1.13- to 1.25-fold). Additionally, the thiamin synthesis pathway was inhibited in the soil of the T1 zone; the expression level of sulfur (S)-containing histidine derivatives (Ergothioneine) was significantly up-regulated by 0.56-fold in the shallow soil of the T2 zone; and the S content in the soil significantly reduced. Aromatic compounds were significantly up-regulated in the soil after 20 years of herbaceous plant remediation in coal gangue soil, and microorganisms (Sphingomonas) with significant positive correlations with benzene ring-containing metabolites, such as Sulfaphenazole, were identified.
Collapse
Affiliation(s)
- Sheng Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi-Wang Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yu Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|