1
|
Lu J, Li Y, Wang B, Zhao T, Wang M, Si H. Analysis of monomeric and competitive adsorption mechanisms of nutrient ions on biochar surfaces based on molecular dynamics simulations. BIORESOURCE TECHNOLOGY 2024; 416:131746. [PMID: 39505281 DOI: 10.1016/j.biortech.2024.131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
This study explores the mechanisms of monomeric and competitive nutrient ion adsorption on biochar surfaces using molecular dynamics simulations and experimental data. C6H12O6 offers low-energy adsorption sites for ammoniacal nitrogen, while C-SH and C-NH2 facilitate adsorption for nitrate nitrogen and available phosphorus. Available potassium is primarily adsorbed near the benzene ring. Structures like C5H10O5 and C4H7NO4 contribute through physical and chemical adsorption mechanisms. The presence of mesopores enhances adsorption stability. In competitive systems, ammoniacal nitrogen adsorption remains largely unaffected by nitrate nitrogen and available phosphorus, although available potassium negatively impacts it. Nitrate nitrogen is influenced by electrostatic and intermolecular forces, and available phosphorus inhibits its adsorption, while available potassium aids nitrate nitrogen adsorption through ion reactions. This study elucidates the competitive adsorption mechanisms of biochar, providing theoretical support for industrial-scale preparation of nutrient-rich biochar.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China
| | - Yan Li
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China.
| | - Bing Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Tong Zhao
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China
| | - Meng Wang
- Ji' Nan Ecological Environment Protection Comprehensive Law Enforcement Detachment Lixia Corps, Jinan 250014, Shandong, PR China
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, PR China.
| |
Collapse
|
2
|
Khan S, Gao H, Milham P, Eltohamy KM, Ullah H, Mu H, Gao M, Yang X, Hamid Y, Hooda PS, Shaheen SM, Wu N. Predicting the governing factors for the release of colloidal phosphorus using machine learning. CHEMOSPHERE 2024; 362:142699. [PMID: 38944354 DOI: 10.1016/j.chemosphere.2024.142699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Predicting the parameters that influence colloidal phosphorus (CP) release from soils under different land uses is critical for managing the impact on water quality. Traditional modeling approaches, such as linear regression, may fail to represent the intricate relationships that exist between soil qualities and environmental influences. Therefore, in this study, we investigated the major determinants of CP release from different land use/types such as farmland, desert, forest soils, and rivers. The study utilizes the structural equation model (SEM), multiple linear regression (MLR), and three machine learning (ML) models (Random Forest (RF), Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGBoost)) to predict the release of CP from different soils by using soil iron (Fe), aluminum (Al), calcium (Ca), pH, total organic carbon (TOC) and precipitation as independent variables. Results show that colloidal-cations (Fe, Al, Ca) and colloidal-TOC strongly influence CP release, while bioclimatic variables (precipitation) and pH have weaker effects. XGBoost outperforms the other models with an R2 of 0.94 and RMSE of 0.09. SHapley Additive Explanations described the outcomes since XGBoost is accurate. The relative relevance ranking indicated that colloidal TOC had the highest ranking in predicting CP. This was supported by the analysis of partial dependence plots, which showed that an increase in colloidal TOC increased soil CP release. According to our research, the SHAP XGBoost model provides significant information that can help determine the variables that considerably influence CP contents as compared to RF, SVM, and MLR.
Collapse
Affiliation(s)
- Sangar Khan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Huimin Gao
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Paul Milham
- Hawkesbury Institute for the Environment, University of Western Sydney, LB 1797, Penrith, New South Wales, 2751, Australia
| | - Kamel Mohamed Eltohamy
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Water Relations and Field Irrigation Department, Agricultural and Biological Research Division, National Research Centre, 12622, Cairo, Egypt
| | - Habib Ullah
- Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang, 311400, China
| | - Hongli Mu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Meixiang Gao
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Xiaodong Yang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China
| | - Yasir Hamid
- College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, UK
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Laboratory of Soil Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Environmental Sciences, Department of Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China; Donghai Institute, Ningbo University, Ningbo, 315211, China; Zhejiang Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research, Ningbo University, Ningbo, 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo, 315211, China.
| |
Collapse
|
3
|
Yang J, Lu Y, Liu B, Eltohamy KM, Liang X. Performance of an integrated sediment interceptor in removing phosphorus from agricultural drainage water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172458. [PMID: 38641117 DOI: 10.1016/j.scitotenv.2024.172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Reducing phosphorus (P) loss from agricultural drainage water is challenging. In this study, we aimed to remove P from agricultural drainage water by developing an integrated sediment interceptor with adsorbent modules filled with Zr/Zn nanocomposite-modified ceramsite (ZMC-interceptor). The results of sequential chemical extraction and 31P NMR showed that the contents of H2O-P (1.15 % of total P), NaHCO3-Pi (10.48 % of total P), and ortho-P (orthophosphate, 90.6 % of total P) in the sediments of the ZMC-interceptors were higher than those in nearby field soils. The average enrichment ratios of particulate P (PP, >450 nm), medium-colloidal P (MCP, 220-450 nm), fine-colloidal P (FCP, 1-220 nm), and truly dissolved P (Truly DP, <1 nm) in the sediment over the field soil were 1.37, 1.21, 1.70, and 3.01, respectively. No significant differences were found in the sediment P-trapping function with and without ZMC integrated sediment interceptors. However, the ZMC-interceptors remarkably reduced total P (39.7 % for influent concentrations of 0.19-0.68 mg L-1) from agricultural drainage water compared to those unmodified ceramsite-interceptors (21.7 % for influent concentrations of 0.17-0.66 mg L-1) during the drainage 'window period' (June-August 2022). This was mainly due to the higher removal efficacies of MCP (19.7 %), FCP (23.3 %), and Truly DP (34.8 %) of the ZMC-interceptors. This study highlighted that the ZMC-interceptor not only trapped P in the sediment but also facilitated the removal of different-sized P fractionated from agricultural drainage water.
Collapse
Affiliation(s)
- Jiao Yang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-point Source Pollution Control and Water Eco-security of Ministry of Water Resources, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Eltohamy KM, Menezes-Blackburn D, Klumpp E, Liu C, Jin J, Xing C, Lu Y, Liang X. Microbially Induced Soil Colloidal Phosphorus Mobilization Under Anoxic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7554-7566. [PMID: 38647007 DOI: 10.1021/acs.est.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Understanding the behavior of colloidal phosphorus (Pcoll) under anoxic conditions is pivotal for addressing soil phosphorus (P) mobilization and transport and its impact on nutrient cycling. Our study investigated Pcoll dynamics in acidic floodplain soil during a 30-day flooding event. The sudden oxic-to-anoxic shift led to a significant rise in pore-water Pcoll levels, which exceeded soluble P levels by more than 2.7-fold. Colloidal fractions transitioned from dispersed forms (<220 nm) to colloid-associated microaggregates (>220 nm), as confirmed by electron microscopy. The observed increase in colloidal sizes was paralleled by their heightened ability to form aggregates. Compared to sterile control conditions, anoxia prompted the transformation of initially dispersed colloids into larger particles through microbial activity. Curiously, the 16S rRNA and ITS microbial diversity analysis indicated that fungi were more strongly associated with anoxia-induced colloidal release than bacteria. These microbially induced shifts in Pcoll lead to its higher mobility and transport, with direct implications for P release from soil into floodwaters.
Collapse
Affiliation(s)
- Kamel M Eltohamy
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Daniel Menezes-Blackburn
- Department of Soils, Water and Agricultural Engineering, Sultan Qaboos University, P.O. Box 34, Al-Khoud 123, Sultanate of Oman
| | - Erwin Klumpp
- Institute of Bio- and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Chunlong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junwei Jin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaogang Xing
- Analysis Center of Agrobiology and Environmental Sciences of Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
5
|
Luo X, Chen W, Liu Q, Wang X, Miao J, Liu L, Zheng H, Liu R, Li F. Corn straw biochar addition elevated phosphorus availability in a coastal salt-affected soil under the conditions of different halophyte litter input and moisture contents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168355. [PMID: 37952652 DOI: 10.1016/j.scitotenv.2023.168355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Improving salt-affected soil health using different strategies is of great significance for Sustainable Development Goals. The effects of biochar as a sustainable carbon negative soil amendment on phosphorous (P) pools in the degraded salt-affected soils of the of coastal wetlands (as one of the primary blue carbon ecosystems) with halophyte litter input under different water conditions (the two intrinsic characteristics of coastal wetlands) are poorly understood. Thus, a corn straw derived biochar (CBC) was added into a coastal salt-affected soil collected from the Yellow River Delta to investigate its effect on P fractions and availability under the input of three different local halophyte litters (i.e., Suaeda salsa, Imperata cylindrica and Phragmites australis) and under the unflooded and flooded water conditions. The results showed that the individual input of Suaeda salsa increased soil P availability by 28.2-40.9 %, but Imperata cylindrica and Phragmites australis had little effect on P availability. CBC individual amendment more efficiently enhanced P availability in the unflooded soil than the flooded soil. However, the co-amendment of CBC with litters showed little synergistic effect on P availability. CBC sharply increased the proportion of Ca-bound labile P fraction, but moderately lifted the proportion of Al/Fe-bound mediumly labile P fraction. CBC-enhanced P availability and altered inorganic P fractions were mainly resulted from the provision of labile inherent P by biochar, improved soil properties (i.e., increased CEC), and altered bacterial community composition (i.e., elevated abundance of P-solubilizing and phosphate-accumulating bacteria). These findings give new insights into understanding P biogeochemical cycling in the coastal salt-affected soils amended with biochars, and will be helpful to develop biochar-based technologies for enhancing P pools and improving soil health of the blue carbon ecosystems.
Collapse
Affiliation(s)
- Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Wenjie Chen
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Qiang Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; National Center of Technological Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying 257300, China.
| | - Jing Miao
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Liuingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Ruhai Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Sanya Oceanographic Institution, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China; Marine Ecology and Environmental Science Laboratory, Qingdao National Laboratory of Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
6
|
Wang Z, Eltohamy KM, Liu B, Jin J, Liang X. Effects of drying-rewetting cycles on colloidal phosphorus composition in paddy and vegetable soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168016. [PMID: 37875203 DOI: 10.1016/j.scitotenv.2023.168016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
The impact of drying-rewetting (DRW) cycles on soil phosphorus (P) behavior is well-established; however, its impact on the different-sized colloidal P (CP) in agricultural soils is still unclear. To investigate the effect of DRW events on the mobilization of CP in agricultural soils, and to understand how this impact varies with different DRW cycles and drought intensities, the study explored the role of soil type, CP fractions, and compositions. The concentration of CP was measured in paddy soil and vegetable soil after 3, 6, and 9 DRW cycles of varying intensities. The CP was then fractionated into fine-sized colloids (FC-P; 1-220 nm), medium-sized colloids (MC-P; 220-450 nm), and coarse-sized colloids (CC-P; 450-1000 nm) through soil supernatant filtration. CP accounted for 71.1 % and 55.6 % of water-dispersible colloidal P (<1000 nm) in paddy and vegetable soils, with FC-P constituting the greatest proportion at 50 % and 44 % of CP respectively. The colloidal fraction correlated with organic carbon, aluminum, and iron. DRW cycles did not change the overall distribution of the three CP size fractions. However, they affected the concentration and composition of CP. This study concluded that DRW can have significant implications for nutrient release and water quality in agricultural soils and that maintaining soil moisture at 50 % to 70 % of water-holding capacity could alleviate CP accumulation resulting from DRW cycles.
Collapse
Affiliation(s)
- Ziwan Wang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junwei Jin
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ly NH, Khoa NLM, Nguyen NB, Huong VT, Van Duc B, Aminabhavi TM, Vasseghian Y, Joo SW. Microalgae-enhanced bioremediation of Cr(VI) ions using spent coffee ground-derived magnetic biochar MoS 2-Ag composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119259. [PMID: 37827077 DOI: 10.1016/j.jenvman.2023.119259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Composites of magnetic biochar derived from spent coffee grounds were prepared using MoS2 decorated by plasmonic silver nanoparticles (MoS2-Ag), which were used for the bioremediation Cr6+ ions. The composites were characterized by electron microscopy, X-ray diffraction, Raman, and UV-VIS spectroscopy. The bioremediation of Cr6+ ions was enhanced almost two times compared to microalgae, Spirulina maxima. Such an increased activity is attributed to heterojunction formation of Biochar@MoS2-Ag composite due to the synergetic effects of surface plasmon resonance of AgNPs inducing amplified local electric field, thus simultaneously increasing the absorption of MoS2 under visible or near-infrared light. The combination of Biochar@MoS2-Ag and Spirulina maxima powder was effective for the separation (microalga-based absorption and accumulation of Cr6+ ions) of photo-induced carriers (composite-assisted to breakdown Cr6+ ions). This study offers efficient eco-friendly treatment of Cr6+ ions by reporting the first enhanced bioremediation of Cr(VI) ions by microalgae using MoS2-Ag-modified biochar obtained from consumed coffee grounds.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, South Korea
| | | | | | - Vu Thi Huong
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Bui Van Duc
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea.
| |
Collapse
|