1
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Gokina NI, Fairchild RI, Bishop NM, Dawson TE, Prakash K, Bonney EA. Kinetics of Postpartum Mesenteric Artery Structure and Function Relative to Pregnancy and Lactation in Mice. Reprod Sci 2021; 28:1200-1215. [PMID: 33415648 PMCID: PMC7935827 DOI: 10.1007/s43032-020-00402-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
Epidemiological evidence suggests that normal pregnancy in women is associated with decreased cardiovascular risk in later life. Clinical studies have provided evidence that alterations in vascular function and structure are detectable long after delivery. To understand these findings, we examined mesenteric artery reactivity at both early (3 days and 2–4 weeks) and late (12 weeks) postpartum (PP) time points in relation to late pregnancy (LP) and lactation. Vessels from virgin controls, LP, PP, and nursing and non-nursing mothers were tested for responses to phenylephrine (PE), high potassium solutions (high K+), and acetylcholine (ACh). Passive arterial distensibility, vessel dimensions, and collagen and elastin content were evaluated for the studied groups. We observed that (1) there was a significant inhibition of vascular reactivity to PE in LP, 3 days and 2 weeks PP vessels that returned to pre-pregnancy levels at 4 and 12 weeks PP; (2) inhibition of NO production in PP vessels restored PE-induced constriction to pre-pregnancy levels; (3) vasodilator responses to ACh were similar at all PP periods; (4) LP and early PP was associated with a persistent increase in arterial distensibility that correlates with a PP-induced reduction in wall collagen, and regressed to pre-conception levels at 12 weeks PP; (5) vessels from non-nursing PP mice demonstrated an increased PE reactivity, diminished responses to ACh, and reduced distensibility compared to breastfeeding mice. These studies provide a timeframe for mesenteric artery adaptations that occur during pregnancy and extend to the PP period, but which may be modified by PP events.
Collapse
Affiliation(s)
- Natalia I Gokina
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - Rebecca I Fairchild
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Nicole M Bishop
- Microscopy Imaging Center, University of Vermont, Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Taylor E Dawson
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Kirtika Prakash
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| | - Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Larner College of Medicine, Given Building, 89 Beaumont Avenue, Burlington, VT, 05405, USA
| |
Collapse
|
3
|
Reyes LM, Khurana R, Usselman CW, Busch SA, Skow RJ, Boulé NG, Davenport MH, Steinback CD. Sympathetic nervous system activity and reactivity in women with gestational diabetes mellitus. Physiol Rep 2020; 8:e14504. [PMID: 32633077 PMCID: PMC7338594 DOI: 10.14814/phy2.14504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is associated with vascular dysfunction. Sympathetic nervous system activity (SNA) is an important regulator of vascular function, and is influenced by glucose and insulin. The association between GDM and SNA (re)activity is unknown. We hypothesize that women with GDM would have increased SNA during baseline and during stress. METHODS Eighteen women with GDM and 18 normoglycemic pregnant women (controls) were recruited. Muscle SNA (MSNA; peroneal microneurography) was assessed at rest, during a cold pressor test (CPT) and during peripheral chemoreflex deactivation (hyperoxia). Spontaneous sympathetic baroreflex gain was quantified versus diastolic pressure at rest and during hyperoxia. RESULTS Age, gestational age (third trimester) and pre-pregnancy body mass index and baseline MSNA was not different among the groups. Women with GDM had a similar increase in MSNA, but a greater pressor response to CPT compared to controls (% change in MAP 17 ± 7% vs. 9 ± 9%; p = .004). These data are consistent with a greater neurovascular transduction in GDM (% change in total peripheral resistance/% change in burst frequency [BF]: 15.9 ± 30.2 vs. -5.2 ± 16.4, p = .03). Interestingly, women with GDM had a greater reduction in MSNA during hyperoxia (% change in BF -30 ± 19% vs. -6 ± 17%; p = .01). CONCLUSION Women diagnosed with GDM have similar basal SNA versus normoglycemic pregnant women, but greater neurovascular transduction, meaning a greater influence of the sympathetic nerve activity in these women. We also document evidence of chemoreceptor hyperactivity, which may influence SNA in women with GDM but not in controls.
Collapse
Affiliation(s)
- Laura M. Reyes
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Rshmi Khurana
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
- Departments of Medicine and Obstetrics and GynecologyFaculty of Medicine & DentistryUniversity of AlbertaEdmontonABCanada
| | - Charlotte W. Usselman
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Stephen A. Busch
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
| | - Rachel J. Skow
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| | - Normand G. Boulé
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Margie H. Davenport
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
- Alberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Craig D. Steinback
- Program for Pregnancy and Postpartum HealthUniversity of AlbertaEdmontonABCanada
- Faculty of Kinesiology, Sport, and RecreationUniversity of AlbertaEdmontonABCanada
- Women and Children's Health Research Institute (WCHRI)University of AlbertaEdmontonABCanada
| |
Collapse
|
4
|
Abstract
Maternal cardiovascular changes during pregnancy include an expansion of plasma volume, increased cardiac output, decreased peripheral resistance, and increased uteroplacental blood flow. These adaptations facilitate the progressive increase in uteroplacental perfusion that is required for normal fetal growth and development, prevent the development of hypertension, and provide a reserve of blood in anticipation of the significant blood loss associated with parturition. Each woman's genotype and phenotype determine her ability to adapt in response to molecular signals that emanate from the fetoplacental unit. Here, we provide an overview of the major hemodynamic and cardiac changes and then consider regional changes in the splanchnic, renal, cerebral, and uterine circulations in terms of endothelial and vascular smooth muscle cell plasticity. Although consideration of gestational disease is beyond the scope of this review, aberrant signaling and/or maternal responsiveness contribute to the etiology of several common gestational diseases such as preeclampsia, intrauterine growth restriction, and gestational diabetes.
Collapse
Affiliation(s)
- George Osol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Nga Ling Ko
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, USA;
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
5
|
Spradley FT. Sympathetic nervous system control of vascular function and blood pressure during pregnancy and preeclampsia. J Hypertens 2019; 37:476-487. [PMID: 30160658 PMCID: PMC6355368 DOI: 10.1097/hjh.0000000000001901] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
: Proper vascular tone and blood pressure regulation during pregnancy are important for immediate and long-term cardiovascular health of the mother and her offspring. Preeclampsia is clinically defined as new-onset maternal hypertension accompanied by cardiovascular, renal, and/or neural abnormalities presenting in the second half of pregnancy. There is strong evidence to support that preeclampsia is mediated by attenuations in uteroplacental vascular remodeling and increases in vasoconstriction with subsequent placental ischemia/reperfusion-induced release of hypertensive substances into the maternal circulation. These include antiangiogenic and pro-inflammatory factors. There is also evidence implicating increased sympathetic nervous system activity (SNA) in this maternal disorder, but this mostly includes data correlating severity of disease with catecholamine levels and elevated muscle SNA. These measurements have not confirmed a causative role for SNA in the pathogenesis of preeclampsia. Therefore, studies are needed to provide a comprehensive understanding of SNA and its control of vascular function and blood pressure regulation during normal pregnancy in order to set the stage for exploring the mechanisms mediating the exaggerated SNA and signaling during preeclampsia. This review examines the role of SNA in control of uteroplacental vascular tone and blood pressure regulation during normal pregnancy. Furthermore, it is proposed that over-activation of the SNA contributes to altered uteroplacental vascular tone and perfusion leading to placental ischemic events and modulates the systemic vasoconstriction and hypertensive responses to soluble placenta ischemic factors. Recognizing the integrative role and importance of SNA in the pathophysiology of preeclampsia will advance our understanding of this maternal disorder.
Collapse
Affiliation(s)
- Frank T Spradley
- Department of Surgery, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
6
|
Marshall SA, Leo CH, Girling JE, Tare M, Beard S, Hannan NJ, Parry LJ. Relaxin treatment reduces angiotensin II-induced vasoconstriction in pregnancy and protects against endothelial dysfunction†. Biol Reprod 2018; 96:895-906. [PMID: 28379296 DOI: 10.1093/biolre/iox023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/31/2017] [Indexed: 01/31/2023] Open
Abstract
The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 μg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.
Collapse
Affiliation(s)
- Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia.,Monash Rural Health, Monash University, Victoria, Australia
| | - Sally Beard
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Loss of Anticontractile Effect of Perivascular Adipose Tissue on Pregnant Rats: A Potential Role of Tumor Necrosis Factor-α. J Cardiovasc Pharmacol 2016; 67:145-51. [PMID: 26848638 DOI: 10.1097/fjc.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present investigation examined the effect of pregnancy on the anticontractile effect of perivascular adipose tissue (PVAT) on the rat. Ring segments of the aorta, with and without PVAT, were set up in organ baths for isometric tension recording. In both groups, concentration-response curves to 5-hydroxytryptamine (5-HT) were displaced to the right with a reduction of the maximum response in aorta segments with PVAT. The anticontractile effect of PVAT was attenuated on segments from pregnant rats. 4-Aminopyridine (4-AP), an inhibitor of voltage-gated potassium (Kv) channels, enhanced 5-HT-induced contractions of aorta segments from pregnant and nonpregnant rats only when PVAT was attached. There was no difference in the effect of 4-aminopyridine on 5-HT-induced contractions of aorta segments with PVAT from pregnant and nonpregnant rats. There was also no significant difference in the expression of Kv7.4 channels in aorta segments (with PVAT) between pregnant and nonpregnant rats. Tumor necrosis factor-α (TNF-α) was detected in PVAT from pregnant and nonpregnant rats. The level of TNF-α was significantly greater in PVAT from pregnant rats. Treatment of pregnant rats with pentoxyphyline significantly reduced the level of TNF-α in the PVAT and restored the anticontractile effect of PVAT on aorta segments from pregnant rats. Finally, TNF-α (10 ng/mL) potentiated 5-HT-induced contractions of PVAT-containing pregnant rat aorta. These results would suggest that the loss of anticontractile effect of PVAT in pregnant rat aorta could be due to enhanced production of TNF-α in the PVAT in these rats.
Collapse
|
8
|
St-Louis J, Paré H, Roy B, Brochu M. Decreased Response to Vasopressin in the Mesenteric Resistance Arteries of Pregnant Rats: Effects of Nifedipine and Bay K 8644. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155769500200302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jean St-Louis
- Laboratoire de Pharmacologie Vasculaire Périnatale, Centre de Recherche, Hôpital Ste-Justine, 3175 Chemin Côte Ste-Catherine, Montréal, Québec H3T 1C5 Canada
| | | | | | - Michèle Brochu
- Laboratoire de Pharmacologie Vasculaire Périnatale, Centre de Recherche, Hôpital Ste-Justine, Montréal, Québec, Canada
| |
Collapse
|
9
|
Xia Y, Khalil RA. Pregnancy-associated adaptations in [Ca2+]i-dependent and Ca2+ sensitization mechanisms of venous contraction: implications in pregnancy-related venous disorders. Am J Physiol Heart Circ Physiol 2016; 310:H1851-65. [PMID: 27199130 DOI: 10.1152/ajpheart.00876.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/26/2016] [Indexed: 11/22/2022]
Abstract
Pregnancy is associated with significant adaptations in the maternal hemodynamics and arterial circulation, but the changes in the venous mechanisms during pregnancy are less clear. We hypothesized that pregnancy is associated with alterations in venous function, intracellular free Ca(2+) concentration ([Ca(2+)]i), and Ca(2+)-dependent mechanisms of venous contraction. Circular segments of inferior vena cava (IVC) from virgin and late pregnant (Preg, day 19) Sprague-Dawley rats were suspended between two hooks, labeled with fura-2, and placed in a cuvet inside a spectrofluorometer for simultaneous measurement of contraction and [Ca(2+)]i (fura-2 340/380 ratio). KCl (96 mM), which stimulates Ca(2+) influx, caused less contraction (35.6 ± 6.3 vs. 92.6 ± 19.9 mg/mg tissue) and smaller increases in [Ca(2+)]i (1.67 ± 0.12 vs. 2.19 ± 0.11) in Preg vs. virgin rat IVC. The α-adrenergic receptor agonist phenylephrine (Phe; 10(-5) M) caused less contraction (23.8 ± 3.4 vs. 70.9 ± 12.9 mg/mg tissue) and comparable increases in [Ca(2+)]i (1.76 ± 0.10 vs. 1.89 ± 0.08) in Preg vs. virgin rat IVC. At increasing extracellular Ca(2+) concentrations ([Ca(2+)]e) (0.1, 0.3, 0.6, 1, and 2.5 mM), KCl and Phe induced [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves that were reduced in Preg vs. virgin IVC, supporting reduced Ca(2+) entry mechanisms. The [Ca(2+)]e-contraction and [Ca(2+)]e-[Ca(2+)]i curves were used to construct the [Ca(2+)]i-contraction relationship. Despite reduced contraction and [Ca(2+)]i in Preg IVC, the Phe-induced [Ca(2+)]i-contraction relationship was greater than that of KCl and was enhanced in Preg vs. virgin IVC, suggesting parallel activation of Ca(2+)-sensitization pathways. The Ca(2+) channel blocker diltiazem, protein kinase C (PKC) inhibitor GF-109203X, and Rho-kinase (ROCK) inhibitor Y27632 inhibited KCl- and Phe-induced contraction and abolished the shift in the Phe [Ca(2+)]i-contraction relationship in Preg IVC, suggesting an interplay between the decrease in Ca(2+) influx and possible compensatory activation of PKC- and ROCK-mediated Ca(2+)-sensitization pathways. The reduced [Ca(2+)]i and [Ca(2+)]i-dependent contraction in Preg rat IVC, despite the parallel rescue activation of Ca(2+)-sensitization pathways, suggests that the observed reduction in [Ca(2+)]i-dependent contraction mechanisms is likely underestimated, and that the veins without the rescue Ca(2+)-sensitization pathways could be even more prone to dilation during pregnancy. These pregnancy-associated reductions in Ca(2+) entry-dependent mechanisms of venous contraction, if occurring in human lower extremity veins and if not adequately compensated by Ca(2+)-sensitization pathways, may play a role in pregnancy-related venous disorders.
Collapse
Affiliation(s)
- Yin Xia
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and Department of General Surgery, Fuzhou General Hospital, Fuzhou, Fujian, P. R. China
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
10
|
Marshall SA, Leo CH, Senadheera SN, Girling JE, Tare M, Parry LJ. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R847-57. [DOI: 10.1152/ajpregu.00506.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient ( Rln−/−) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant ( day 17.5) wild-type ( Rln+/+) and Rln−/− mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln+/+ mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln−/− mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 ( Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln+/+ mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia; and
- School of Rural Health, Monash University, Victoria, Australia
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Mazzuca MQ, Dang Y, Khalil RA. Enhanced endothelin receptor type B-mediated vasodilation and underlying [Ca²⁺]i in mesenteric microvessels of pregnant rats. Br J Pharmacol 2014; 169:1335-51. [PMID: 23646960 DOI: 10.1111/bph.12225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/18/2013] [Accepted: 04/05/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Normal pregnancy is associated with decreased vascular resistance and increased release of vasodilators. Endothelin-1 (ET-1) causes vasoconstriction via endothelin receptor type A (ET(A)R), but could activate ET(B)R in the endothelium and release vasodilator substances. However, the roles of ET(B)R in the regulation of vascular function during pregnancy and the vascular mediators involved are unclear. EXPERIMENTAL APPROACH Pressurized mesenteric microvessels from pregnant and virgin Sprague-Dawley rats were loaded with fura-2/AM for simultaneous measurement of diameter and [Ca²⁺]i. KEY RESULTS High KCl (51 mM) and phenylephrine (PHE) caused increases in vasoconstriction and [Ca²⁺]i that were similar in pregnant and virgin rats. ET-1 caused vasoconstriction that was less in pregnant than virgin rats, with small increases in [Ca²⁺]i. Pretreatment with the ET(B)R antagonist BQ-788 caused greater enhancement of ET-1-induced vasoconstriction in pregnant rats. ACh caused endothelium-dependent relaxation and decreased [Ca²⁺]i, and was more potent in pregnant than in virgin rats. ET-1 + ET(A)R antagonist BQ-123, and the ET(B)R agonists sarafotoxin 6c (S6c) and IRL-1620 caused greater vasodilation in pregnant than in virgin rats with no changes in [Ca²⁺]i, suggesting up-regulated ET(B)R-mediated relaxation pathways. ACh-, S6c- and IRL-1620-induced relaxation was reduced by the NO synthase inhibitor Nω-nitro-L-arginine methyl ester, and abolished by tetraethylammonium or endothelium removal. Western blots revealed greater amount of ET(B)R in intact microvessels of pregnant than virgin rats, but reduced levels in endothelium-denuded microvessels, supporting a role of endothelial ET(B)R. CONCLUSIONS AND IMPLICATIONS The enhanced ET(B)R-mediated microvascular relaxation may contribute to the decreased vasoconstriction and vascular resistance during pregnancy.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | |
Collapse
|
12
|
Ou M, Dang Y, Mazzuca MQ, Basile R, Khalil RA. Adaptive regulation of endothelin receptor type-A and type-B in vascular smooth muscle cells during pregnancy in rats. J Cell Physiol 2014; 229:489-501. [PMID: 24105843 DOI: 10.1002/jcp.24469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022]
Abstract
Normal pregnancy is associated with systemic vasodilation and decreased vascular contraction, partly due to increased release of endothelium-derived vasodilator substances. Endothelin-1 (ET-1) is an endothelium-derived vasoconstrictor acting via endothelin receptor type A (ETA R) and possibly type B (ETB R) in vascular smooth muscle cells (VSMCs), with additional vasodilator effects via endothelial ETB R. However, the role of ET-1 receptor subtypes in the regulation of vascular function during pregnancy is unclear. We investigated whether the decreased vascular contraction during pregnancy reflects changes in the expression/activity of ETAR and ETBR. Contraction was measured in single aortic VSMCs isolated from virgin, mid-pregnant (mid-Preg, day 12), and late-Preg (day 19) Sprague-Dawley rats, and the mRNA expression, protein amount, tissue and cellular distribution of ETAR and ETBR were examined using RT-PCR, Western blots, immunohistochemistry, and immunofluorescence. Phenylephrine (Phe, 10(-5) M), KCl (51 mM), and ET-1 (10(-6) M) caused VSMC contraction that was in late-Preg < mid-Preg and virgin rats. In VSMCs treated with ETB R antagonist BQ788, ET-1 caused significant contraction that was still in late-Preg < mid-Preg and virgin rats. In VSMCs treated with the ETAR antagonist BQ123, ET-1 caused a small contraction; and the ETBR agonists IRL-1620 and sarafotoxin 6c (S6c) caused similar contraction that was in late-Preg < mid-Preg and virgin rats. RT-PCR revealed similar ETAR, but greater ETBR mRNA expression in pregnant versus virgin rats. Western blots revealed similar ETAR, and greater protein amount of ETBR in endothelium-intact vessels, but reduced ETBR in endothelium-denuded vessels of pregnant versus virgin rats. Immunohistochemistry revealed prominent ETBR staining in the intima, but reduced ETAR and ETBR in the aortic media of pregnant rats. Immunofluorescence signal for ETAR and ETBR was less in VSMCs of pregnant versus virgin rats. The pregnancy-associated decrease in ETAR- and ETBR-mediated VSMC contraction appears to involve downregulation of ETAR and ETBR expression/activity in VSM, and may play a role in the adaptive vasodilation during pregnancy.
Collapse
Affiliation(s)
- Minghui Ou
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | | | |
Collapse
|
13
|
van Drongelen J, Hooijmans CR, Lotgering FK, Smits P, Spaanderman MEA. Adaptive changes of mesenteric arteries in pregnancy: a meta-analysis. Am J Physiol Heart Circ Physiol 2012; 303:H639-57. [PMID: 22821990 DOI: 10.1152/ajpheart.00617.2011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The vascular response to pregnancy has been frequently studied in mesenteric artery models by investigating endothelial cell (EC)- and smooth muscle cell (SMC)-dependent responses to mechanical (flow-mediated vasodilation, myogenic reactivity, and vascular compliance) and pharmacological stimuli (G protein-coupled receptor responses: Gq(EC), Gs(SMC), Gq(SMC)). It is unclear to what extent these pathways contribute to normal pregnancy-induced vasodilation across species, strains, and/or gestational age and at which receptor level pregnancy affects the pathways. We performed a meta-analysis on responses to mechanical and pharmacological stimuli associated with pregnancy-induced vasodilation of mesenteric arteries and included 55 (188 responses) out of 398 studies. Most included studies (84%) were performed in Wistar and Sprague-Dawley rats (SDRs) and compared late gestation versus nonpregnant controls (80%). Pregnancy promotes flow-mediated vasodilation in all investigated species. Only in SDRs, pregnancy additionally stimulates both vasodilator Gq(EC) sensitivity (EC(50) reduced by -0.76 [-0.92, -0.60] log[M]) and Gs(SMC) sensitivity (EC(50) reduced by -0.51 [-0.82, -0.20] log[M]), depresses vasopressor Gq(SMC) sensitivity (EC(50) increase in SDRs by 0.23 [0.16, 0.31] log[M]), and enhances arterial compliance. We conclude that 1) pregnancy facilitates flow-mediated vasodilation at term among all investigated species, and the contribution of additional vascular responses is species and strain specific, and 2) late pregnancy mediates vasodilation through changes at the receptor level for the substances tested. The initial steps of vasodilation in early pregnancy remain to be elucidated.
Collapse
Affiliation(s)
- Joris van Drongelen
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Mazzuca MQ, Tare M, Parkington HC, Dragomir NM, Parry LJ, Wlodek ME. Uteroplacental insufficiency programmes vascular dysfunction in non-pregnant rats: compensatory adaptations in pregnancy. J Physiol 2012; 590:3375-88. [PMID: 22586217 DOI: 10.1113/jphysiol.2012.230011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intrauterine growth restriction is a risk factor for cardiovascular disease in adulthood. We have previously shown that intrauterine growth restriction caused by uteroplacental insufficiency programmes uterine vascular dysfunction and increased arterial stiffness in adult female rat offspring. The aim of this study was to investigate vascular adaptations in growth restricted female offspring when they in turn become pregnant. Uteroplacental insufficiency was induced in WKY rats by bilateral uterine vessel ligation (Restricted) or sham surgery (Control) on day 18 of pregnancy. F0 pregnant females delivered naturally at term. F1 Control and Restricted offspring were mated at 4 months of age and studied on day 20 of pregnancy. Age-matched non-pregnant F1 Control and Restricted females were also studied. Wire and pressure myography were used to test endothelial and smooth muscle function, and passive mechanical wall properties, respectively, in uterine, mesenteric, renal and femoral arteries of all four groups. Collagen and elastin fibres were quantified using polarized light microscopy and qRT-PCR. F1 Restricted females were born 10–15% lighter than Controls (P <0.05). Non-pregnant Restricted females had increased uterine and renal artery stiffness compared with Controls (P <0.05), but this difference was abolished at day 20 of pregnancy. Vascular smooth muscle and endothelial function were preserved in all arteries of non-pregnant and pregnant Restricted rats. Collagen and elastin content were unaltered in uterine arteries of Restricted females. Growth restricted females develop compensatory vascular changes during late pregnancy, such that region-specific vascular deficits observed in the non-pregnant state did not persist in late pregnancy.
Collapse
Affiliation(s)
- Marc Q Mazzuca
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Jacobs BE, Liu Y, Pulina MV, Golovina VA, Hamlyn JM. Normal pregnancy: mechanisms underlying the paradox of a ouabain-resistant state with elevated endogenous ouabain, suppressed arterial sodium calcium exchange, and low blood pressure. Am J Physiol Heart Circ Physiol 2012; 302:H1317-29. [PMID: 22245773 DOI: 10.1152/ajpheart.00532.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous cardiotonic steroids (CTS) raise blood pressure (BP) via vascular sodium calcium exchange (NCX1.3) and transient receptor-operated channels (TRPCs). Circulating CTS are superelevated in pregnancy-induced hypertension and preeclampsia. However, their significance in normal pregnancy, where BP is low, is paradoxical. Here we test the hypothesis that vascular resistance to endogenous ouabain (EO) develops in normal pregnancy and is mediated by reduced expression of NCX1.3 and TRPCs. We determined plasma and adrenal levels of EO and the impact of exogenous ouabain in pregnancy on arterial expression of Na(+) pumps, NCX1.3, TRPC3, and TRPC6 and BP. Pregnant (embryonic day 4) and nonpregnant rats received infusions of ouabain or vehicle. At 14-16 days, tissues and plasma were collected for blotting and EO assay by radioimmunoassay (RIA), liquid chromatography (LC)-RIA, and LC-multidimensional mass spectrometry (MS3). BP (-8 mmHg; P < 0.05) and NCX1.3 expression fell (aorta -60% and mesenteric artery -30%; P < 0.001) in pregnancy while TRPC expression was unchanged. Circulating EO increased (1.14 ± 0.13 nM) vs. nonpregnant (0.6 ± 0.08 nM; P < 0.05) and was confirmed by LC-MS3 and LC-RIA. LC-MS3 revealed two previously unknown isomers of EO; one increased ∼90-fold in pregnancy. Adrenal EO but not isomers were increased in pregnancy. In nonpregnant rats, similar infusions of ouabain raised BP (+24 ± 3 mmHg; P < 0.001). In ouabain-infused rats, impaired fetal and placental growth occurred with no BP increase. In summary, normal pregnancy is an ouabain-resistant state associated with low BP, elevated circulating levels of EO, two novel steroidal EO isomers, and increased adrenal mass and EO content. Ouabain raises BP only in nonpregnant animals. Vascular resistance to the chronic pressor activity of endogenous and exogenous ouabain is mediated by suppressed NCX1.3 and reduced sensitivity of events downstream of Ca(2+) entry. The mechanisms of EO resistance and the impaired fetal and placental growth due to elevated ouabain may be important in pregnancy-induced hypertension (PIH) and preeclampsia (PE).
Collapse
Affiliation(s)
- Brandiese E Jacobs
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, USA
| | | | | | | | | |
Collapse
|
16
|
Brooks VL, Dampney RAL, Heesch CM. Pregnancy and the endocrine regulation of the baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol 2010; 299:R439-51. [PMID: 20504907 PMCID: PMC2928618 DOI: 10.1152/ajpregu.00059.2010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to delineate the general features of endocrine regulation of the baroreceptor reflex, as well as specific contributions during pregnancy. In contrast to the programmed changes in baroreflex function that occur in situations initiated by central command (e.g., exercise or stress), the complex endocrine milieu often associated with physiological and pathophysiological states can influence the central baroreflex neuronal circuitry via multiple sites and mechanisms, thereby producing varied changes in baroreflex function. During pregnancy, baroreflex gain is markedly attenuated, and at least two hormonal mechanisms contribute, each at different brain sites: increased levels of the neurosteroid 3alpha-hydroxy-dihydroprogesterone (3alpha-OH-DHP), acting in the rostral ventrolateral medulla (RVLM), and reduced actions of insulin in the forebrain. 3alpha-OH-DHP appears to potentiate baroreflex-independent GABAergic inhibition of premotor neurons in the RVLM, which decreases the range of sympathetic nerve activity that can be elicited by changes in arterial pressure. In contrast, reductions in the levels or actions of insulin in the brain blunt baroreflex efferent responses to increments or decrements in arterial pressure. Although plasma levels of angiotensin II are increased in pregnancy, this is not responsible for the reduction in baroreflex gain, although it may contribute to the increased level of sympathetic nerve activity in this condition. How these different hormonal effects are integrated within the brain, as well as possible interactions with additional potential neuromodulators that influence baroreflex function during pregnancy and other physiological and pathophysiological states, remains to be clearly delineated.
Collapse
Affiliation(s)
- Virginia L Brooks
- Dept. of Physiology and Pharmacology, L-334, Oregon Health & Science Univ., 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
17
|
Xia Y, Khalil RA. Sex-related decrease in [Ca2+]i signaling and Ca2+-dependent contraction in inferior vena cava of female rat. Am J Physiol Regul Integr Comp Physiol 2009; 298:R15-24. [PMID: 19864336 DOI: 10.1152/ajpregu.00465.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sex differences in the incidence of varicose veins have been suggested; however, the venous mechanisms involved are unclear. We hypothesized sex-related differences in venous function and underlying distinctions in intracellular free calcium, [Ca(2+)](i), signaling and Ca(2+)-dependent mechanisms of venous contraction. Circular segments of inferior vena cava (IVC) from male and female Sprague-Dawley rats were suspended between two hooks, labeled with fura-2, and placed in a cuvet inside a spectrofluorometer for simultaneous measurement of isometric contraction and the 340/380 fluorescence ratio (indicative of [Ca(2+)](i)). In male IVC, phenylephrine (PHE; 10(-5) M) caused significant increase in contraction and [Ca(2+)](i). In female IVC, PHE-induced contraction was significantly reduced, but [Ca(2+)](i) did not differ significantly from males. Membrane depolarization by KCl (96 mM), which stimulates Ca(2+) influx, caused parallel increases in contraction and [Ca(2+)](i) in male IVC, and the KCl-induced contraction was significantly reduced in parallel with [Ca(2+)](i) in female IVC. In male IVC stimulated with 0 Ca(2+) KCl solution, the addition of increasing concentrations of extracellular Ca(2+) ([Ca(2+)](e)) (0.1, 0.3, 0.6, 1, and 2.5 mM) caused stepwise increases in contraction and [Ca(2+)](i), and both the KCl-induced [Ca(2+)](e)-contraction curve and the [Ca(2+)](e)-[Ca(2+)](i) curve were reduced in female IVC, suggesting reduced Ca(2+) entry via voltage-gated channels. The PHE-induced [Ca(2+)](e)-contraction curve was significantly reduced in females, but the [Ca(2+)](e)-[Ca(2+)](i) curve was similar in female and male IVC, suggesting the involvement of other mechanisms in addition to Ca(2+) entry. The [Ca(2+)](e)-contraction and [Ca(2+)](e)-[Ca(2+)](i) curves were used to construct the [Ca(2+)](i)-contraction relationship. The KCl-induced [Ca(2+)](i)-contraction relationship was superimposed in male and female IVC. In contrast, the PHE-induced [Ca(2+)](i)-contraction relationship was reduced and located to the right in female compared with male IVC, suggesting reduced [Ca(2+)](i) sensitivity of the venous contractile myofilaments. The reduced contraction, [Ca(2+)](i), and [Ca(2+)](i) sensitivity in female veins render them more prone to dilation. These sex-specific reductions in venous function, if they also occur in human veins, may play a role in the greater incidence of varicose veins in females.
Collapse
Affiliation(s)
- Yin Xia
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
18
|
Bracho-Valdés I, Godínez-Hernández D, Arroyo-Vicelis B, Bobadilla-Lugo RA, López-Sánchez P. Increased alpha-1 adrenoceptor expression in pregnant rats with subrenal aortic coarctation. Hypertens Pregnancy 2009; 28:402-16. [PMID: 19843003 DOI: 10.3109/10641950802629659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED The progression of pregnancy is associated with attenuation in vasopressor response to adrenergic agonists. In pregnancy-induced hypertension this attenuation is reverted. It is not known if this reversion involves alpha-1 adrenoceptor expression. OBJECTIVE In this work we propose that in pregnant rats with subrenal aortic coarctation there are changes in the expression of alpha-1 adrenergic receptors in the thoracic and abdominal aorta during pregnancy. METHODS We used non-pregnant, normal pregnant and pregnant with subrenal aortic coarctation female Wistar rats. Pregnancy-induced hypertension indicators, systolic blood pressure, 24 hours proteinuria, pup weight and maternal weight were measured. Dose response curves to phenylephrine were carried out to determine vascular reactivity along pregnancy. Alpha 1-adrenoceptors were detected from thoracic and abdominal aorta using immunoblot. RESULTS Results show significant increases in arterial pressure and proteinuria in pregnant rats with SRAC at the end of the third week. Pregnancy reduces alpha-(1-A, -B) and (-D) adrenoceptor expression and this event is reverted by subrenal aortic coarctation. This phenomenon is more apparent in the abdominal segment of the aorta. CONCLUSIONS These findings suggest that subrenal aortic coarctation is a good animal model of pregnancy-induced hypertension and that alpha1-adrenoceptors participate in its physiopathology increasing their expression in a segment-dependent manner.
Collapse
Affiliation(s)
- Ismael Bracho-Valdés
- Departamento de Fisiología y Farmacología, Escuela Superior de Medicina del IPN, Casco de Santo Tomás, México
| | | | | | | | | |
Collapse
|
19
|
Adamova Z, Ozkan S, Khalil RA. Vascular and cellular calcium in normal and hypertensive pregnancy. ACTA ACUST UNITED AC 2009; 4:172-90. [PMID: 19500073 DOI: 10.2174/157488409789375320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/16/2009] [Indexed: 01/23/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes in the cardiovascular system in order to meet the metabolic demands of mother and fetus. These changes include increased cardiac output, decreased vascular resistance, and vascular remodeling in the uterine and systemic circulation. Preeclampsia (PE) is a major complication of pregnancy characterized by proteinuria and hypertension. Several risk factors have been implicated in the pathogenesis of PE including genetic and dietary factors. Ca2+ is an essential dietary element and an important regulator of many cellular processes including vascular function. The importance of adequate dietary Ca2+ intake during pregnancy is supported by many studies. Pregnancy-associated changes in Ca2+ metabolism and plasma Ca2+ have been observed. During pregnancy, changes in intracellular free Ca2+ concentration ([Ca2+](i)) have been described in red blood cells, platelets and immune cells. Also, during pregnancy, an increase in [Ca2+](i) in endothelial cells (EC) stimulates the production of vasodilator substances such as nitric oxide and prostacyclin. Normal pregnancy is also associated with decreased vascular smooth muscle (VSM) [Ca2+](i) and possibly the Ca2+-sensitization pathways of VSM contraction including protein kinase C, Rho-kinase, and mitogen-activated protein kinase. Ca2+-dependent matrix metalloproteinases could also promote extracellular matrix degradation and vascular remodeling during pregnancy. Disruption in the balance between dietary, plasma and vascular cell Ca2+ may be responsible for some of the manifestation of PE including procoagulation, decreased vasodilation, and increased vasoconstriction and vascular resistance. The potential benefits of Ca2+ supplements during pregnancy, and the use of modulators of vascular Ca2+ to reduce the manifestations of PE in susceptible women remain an important area for experimental and clinical research.
Collapse
Affiliation(s)
- Zuzana Adamova
- Division of Vascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
20
|
Whittemore SL, McLaughlin MK, Davidge ST, Conrad KP. Effect of Pregnancy on Vascular Cgmp Production and Vasorelaxation in the Rat. Hypertens Pregnancy 2009. [DOI: 10.3109/10641959409072225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Gombos RB, Wolan V, McDonald K, Hemmings DG. Impaired vascular function in mice with an active cytomegalovirus infection. Am J Physiol Heart Circ Physiol 2009; 296:H937-45. [DOI: 10.1152/ajpheart.01027.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human cytomegalovirus (CMV) is implicated in vascular complications through endothelial dysfunction. However, the effect of in vivo infections on vascular function in isolated arteries has not been examined. In pregnancy, systemic and uterine vascular adaptations accommodate increased blood volume through several mechanisms, including decreased sensitivity to vasoconstrictors and increased production of endothelial-dependent vasodilators. We hypothesized that an active in vivo CMV infection would reduce vasodilation of isolated arteries to the endothelial-dependent vasodilator methacholine and increase vasoconstriction to the α1-adrenergic receptor agonist phenylephrine and that these CMV-induced changes would be accentuated in late pregnancy. A mouse CMV infection model was used to study vascular responses in isolated mesenteric and uterine arteries from nonpregnant and late pregnant mice. In the mouse, CMV is not transmitted to the fetus. Accordingly, there was no evidence of active infection in any fetus examined, even though an active infection was found in salivary glands, uterine and mesenteric arteries, and placentas. Contrary to our hypothesis, increased endothelial-dependent vasodilation was found in mesenteric arteries from infected compared with uninfected nonpregnant and pregnant mice These data implicate active CMV infections in hypotensive disorders. Similarly, increased vasodilation was found in uterine arteries from infected vs. uninfected nonpregnant mice. However, this was completely reversed in infected compared with uninfected late pregnant mice in which vasodilation in uterine arteries was significantly reduced. Uterine arteries from infected pregnant mice also showed increased vasoconstriction to phenylephrine. Maternal infection led to decreased placental weights but had no effect on fetal weights in late pregnancy. These novel data demonstrate abnormal systemic and uterine vascular responses during an active CMV infection in both nonpregnant and late pregnant mice. Importantly, despite reduced placental weights, fetal weights were maintained, suggesting effective intrauterine compensation in the mouse model.
Collapse
|
22
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
The cardiovascular system undergoes profound changes during pregnancy. Maternal intravascular volume begins to increase in the first trimester rising an average of 45% by term.1Cardiac output increases similarly2and is redistributed to organs whose functions are crucial for a successful pregnancy. In the guinea pig, uterine artery (UA) blood flow increases 3500%, while mesenteric and renal artery blood flows increase only 90% and 10% respectively.3Blood flow to the trunk actually diminishes. The mechanism underlying this redistribution is unknown. Coupled with the rise in cardiac output is a decrease in the systemic pressor response to angiotensin II (AII), norepinephrine(NE), and epinephrine.4–8There is also a decrease in the contraction response among some but not all vascular beds. For example, contraction of UA to NE and thromboxane is characteristically reduced by pregnancy, whereas the response of the carotid artery is unaltered8–10Since pregnancy does not alter neuroeffector mechanisms of NE such as release, receptor sensitivity, and accumulation11, changes in sympathetic control during pregnancy must be dependent on alterations at sites other than the neuroeffector junction. We have hypothesized that the mechanisms which alter vascular reactivity during pregnancy also mediate the redistribution of maternal cardiac output.9We have further hypothesized that many of these mechanisms involve endothelium-dependent factors which are modulated by sex hormones.
Collapse
|
24
|
Ramirez RJJ, Hubel CA, Novak J, DiCianno JR, Kagan VE, Gandley RE. Moderate Ascorbate Deficiency Increases Myogenic Tone of Arteries From Pregnant but Not Virgin Ascorbate–Dependent Rats. Hypertension 2006; 47:454-60. [PMID: 16432038 DOI: 10.1161/01.hyp.0000201444.80784.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plasma ascorbic acid is decreased in women with the pregnancy disorder preeclampsia. We used a mutant strain of rats (Osteogenic Disorder Shionogi), dependent on dietary sources of vitamin C, to investigate whether reduced intake of the vitamin would differentially affect vascular function in late-pregnant (day 19) and age-matched virgin rats. The animals were given either 1 mg/mL of ascorbic acid ad libitum in drinking water [fully supplemented (FS)] or 0.25 mg/mL [marginally supplemented (MS)]. Fetal weights were 21% lower in MS than FS rats, whereas mean maternal weights and pup numbers did not differ. Small mesenteric arteries (diameter, 268±7 μm) were mounted in a pressurized arteriograph. Myogenic reactivity (contractile response to step increases in intraluminal pressure) was increased in arteries from MS pregnant compared with FS pregnant rats to levels observed in virgin rats. Ascorbic acid intake did not affect myogenic responses of arteries from virgin rats. Hence, the normal pregnancy-induced reduction in myogenic reactivity was abrogated in MS pregnant animals. Inhibition of nitric oxide synthase had no effect on the myogenicity of arteries from virgin or MS pregnant rats but increased myogenicity of FS pregnant rats to the level of MS pregnant rats. Free radical scavengers reversed the accentuated myogenicity of MS pregnant rats without affecting FS pregnant or virgin rat arteries. These data indicate that moderate ascorbate deprivation increases mesenteric artery myogenic responsiveness during pregnancy. This increase may result from a decrease in nitric oxide–mediated modulation of the myogenic contractile response.
Collapse
Affiliation(s)
- Rolando J J Ramirez
- Magee-Women Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
25
|
Hemmings DG, Veerareddy S, Baker PN, Davidge ST. Increased myogenic responses in uterine but not mesenteric arteries from pregnant offspring of diet-restricted rat dams. Biol Reprod 2004; 72:997-1003. [PMID: 15601918 DOI: 10.1095/biolreprod.104.035675] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Results of epidemiological and animal studies suggest a link between poor in utero growth and cardiovascular disease in adult offspring. Few studies, however, have examined the effects of maternal undernutrition on the vasculature of pregnant female offspring, and to our knowledge, no studies have examined myogenic responses, which are essential to vascular tone development, in these animal models. Thus, myogenic responses were assessed in radial uterine arteries of pregnant female offspring to determine if diet restriction during pregnancy could contribute to transgenerational effects. These results were compared to those in mesenteric arteries, which greatly contribute to peripheral vascular resistance. Myogenic responses in the presence and absence of inhibitors for nitric oxide synthase (NOS) and prostaglandin H synthase (PGHS) were measured in arteries isolated from pregnant, 3-mo-old female offspring of control-fed (C(off)) and globally diet-restricted (DR(off)) rat dams. Although no differences were found in pregnancy weight gain, litter size, or fetal weights, placental size was significantly reduced in DR(off) compared to C(off). Enhanced myogenic reactivity was observed at the highest pressure tested (110 mm Hg) in uterine, but not in mesenteric, arteries from DR(off) compared to C(off). Inhibition of NOS, but not of PGHS, significantly increased myogenic responses in uterine arteries at pressures greater than 80 mm Hg in C(off) but, interestingly, not in DR(off) compared to untreated uterine arteries. Thus, impaired uterine vascular function in diet-restricted pregnant rat dams, which leads to similar impairment in their pregnant offspring, may be a mechanism through which transgenerational effects of unhealthy pregnancies occur.
Collapse
Affiliation(s)
- Denise G Hemmings
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta Canada
| | | | | | | |
Collapse
|
26
|
Auger K, Beauséjour A, Brochu M, St-Louis J. Increased Na+ intake during gestation in rats is associated with enhanced vascular reactivity and alterations of K+ and Ca2+ function. Am J Physiol Heart Circ Physiol 2004; 287:H1848-56. [PMID: 15205166 DOI: 10.1152/ajpheart.00055.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gestation is associated with decreased blood pressure and resistance to the effects of vasoconstrictor agents. A recent study showed that pregnant rats, on increased sodium intake, present physiological changes that resemble those observed in preeclampsia. We investigated the effects of sodium supplementation on reactivity and on potassium and Ca2+ channel activity in blood vessels during gestation. Sodium supplements, 0.9% or 1.8% NaCl as drinking water, were given to nonpregnant and pregnant rats for 7 days (last week of gestation). Reactivity to phenylephrine (PE), KCl, arginine vasopressin (AVP), and tetraethylammonium (TEA) was measured in aortic rings under modulation of potassium and calcium channels. TEA, a nonselective K+ channel inhibitor, induced concentration-dependent responses in aortic rings from nonpregnant but not in those from pregnant rats. The response to TEA was restored in rings from pregnant rats after preincubation with 10 mmol/l KCl. Sodium supplementation did not affect the response to TEA in the aortas of pregnant animals. After sodium supplementation, maximum responses to PE and AVP were decreased and increased in aortic rings from nonpregnant and pregnant rats, respectively. Cromakalim (an ATP-sensitive K+ channel activator)-induced inhibition of the responses to the three vasoconstrictors was more striking in aorta from nonpregnant than pregnant rats on regular diet, whereas it produced similar inhibition in tissues from both groups of animals on 0.9% and 1.8% NaCl. NS-1619 (a Ca2+-sensitive K+ activator) elicited heightened effects in the aortas of pregnant animals receiving 0.9% NaCl supplementation. Nifedipine (a Ca2+ channel blocker) caused greater inhibition of the contractile responses in tissues from nonpregnant rats on regular diet, and its action was increased in pregnant rats on sodium-supplemented diets. These data demonstrate that augmented sodium intake during gestation in the rat is linked with the reversal of gestational-associated resistance to vasopressors and indicate that this is an experimental model showing some features of gestational hypertension.
Collapse
Affiliation(s)
- Karine Auger
- Centre de Recherche, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | |
Collapse
|
27
|
Gangula PRR, Lanlua P, Bukoski RD, Wimalawansa SJ, Yallampalli C. Mesenteric arterial relaxation to calcitonin gene-related peptide is increased during pregnancy and by sex steroid hormones. Biol Reprod 2004; 71:1739-45. [PMID: 15286037 DOI: 10.1095/biolreprod.104.031369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The present study investigated whether pregnancy and circulatory ovarian hormones increase the sensitivity of the mesenteric artery to calcitonin gene-related peptide (CGRP)-induced relaxation and possible mechanisms involved in this process. Mesenteric arteries from young adult male rats or female rats (during estrous cycle, after ovariectomy, at Day 20 of gestation, or Postpartum Day 2) were isolated, and the responsiveness of the vessels to CGRP was examined with a small vessel myograph. The CGRP (10(-10) to 10(-7) M) produced a concentration-dependent relaxation of norepinephrine-induced contractions in mesenteric arteries of all groups. Arterial relaxation sensitivity to CGRP was significantly (P < 0.05) greater in female rats compared with male rats. Pregnancy increased the sensitivity to CGRP significantly (P < 0.05) compared to ovariectomized and Postpartum Day 2 rats. In pregnant rats, CGRP-receptor antagonist, CGRP(8-37), inhibited the relaxation responses produced by CGRP. The CGRP-induced relaxation was not affected by N(G)-nitro-l-arginine methyl ester (nitric oxide inhibitor, 10(-4) M) but was significantly (P < 0.05) attenuated by an inhibitor of guanylate cyclase (1H-[1 , 2 , 4 ]oxadizaolo[4 , 3 -a]quinoxalin-1-one, 10(-5) M). Relaxation responses of CGRP on mesenteric arteries were blocked (P < 0.05) by a cAMP-dependent protein kinase A inhibitor, Rp-cAMPs (10(-5) M). The CGRP-induced vasorelaxation was significantly (P < 0.05) attenuated by calcium-dependent (tetraethylammonium, 10(-3) M), but not ATP-sensitive (glybenclamide, 10(-5) M), potassium channel blocker. Therefore, the results of the present study suggest that mesenteric vascular sensitivity to CGRP is higher during pregnancy and that cAMP, cGMP, and calcium-dependent potassium channels appear to be involved. Therefore, we propose that CGRP-mediated vasodilation may be important to maintain vascular adaptations during pregnancy.
Collapse
Affiliation(s)
- P R R Gangula
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, Texas 77555, USA
| | | | | | | | | |
Collapse
|
28
|
Katayama T, Tanaka-Shiraishi A, Kiyomura M, Matsumoto T, Kusanagi Y, Ito M. Effects of oxidized low-density lipoprotein on leukocyte-endothelial interactions in the rat mesenteric microcirculation during pregnancy. Am J Obstet Gynecol 2004; 191:322-7. [PMID: 15295386 DOI: 10.1016/j.ajog.2003.12.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The accumulation of evidence implicates oxidized lipoproteins in atherosclerosis. Treatment of endothelial cells with these lipoproteins stimulates monocyte binding and the production of chemotactic factors that contribute to inflammation and endothelial injury and dysfunction. In preeclampsia, circulating low-density lipoprotein particles, which are susceptible to oxidation, are increased. We studied leukocyte-endothelial interactions that were related to oxidized lipoproteins in pregnant rats. STUDY DESIGN We examined oxidized low-density lipoprotein-induced leukocyte behavior and uptake of fluorescent-labeled oxidized low-density lipoprotein in rat mesenteric venules during pregnancy, with the use of intravital microscopy with a video imager. RESULTS The administration of oxidized low-density lipoprotein significantly reduced rolling velocities of leukocytes in venules and increased the numbers of leukocytes that adhered to endothelium in both nonpregnant and pregnant rats. These interactions were attenuated in pregnancy, when uptake of labeled oxidized low-density lipoprotein into leukocytes and endothelial cells also was decreased. CONCLUSION Pregnancy may be associated with antioxidant effects.
Collapse
Affiliation(s)
- Tomihiro Katayama
- Department of Obstetrics and Gynecology, Ehime University School of Medicine, Shigenobu, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Orshal JM, Khalil RA. Interleukin-6 impairs endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1013-23. [PMID: 15142856 DOI: 10.1152/ajpregu.00729.2003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
IL-6 is elevated in plasma of preeclamptic women, and twofold elevation of plasma IL-6 increases vascular resistance and arterial pressure in pregnant rats, suggesting a role of the cytokine in hypertension of pregnancy. However, whether the hemodynamic effects of IL-6 reflect direct effects of the cytokine on the mechanisms of vascular contraction/relaxation is unclear. The purpose of this study was to test the hypothesis that IL-6 directly impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. Active stress was measured in aortic strips isolated from virgin and late pregnant Sprague-Dawley rats and then nontreated or treated for 1 h with IL-6 (10 pg/ml to 10 ng/ml). In endothelium-intact vascular strips, phenylephrine (Phe, 10(-5) M) caused an increase in active stress that was smaller in pregnant (4.2 +/- 0.3) than virgin rats (5.1 +/- 0.3 x 10(4) N/m(2)). IL-6 (1,000 pg/ml) caused enhancement of Phe contraction that was greater in pregnant (10.6 +/- 0.7) than virgin rats (7.5 +/- 0.4 x 10(4) N/m(2)). ACh and bradykinin caused relaxation of Phe contraction and increases in vascular nitrite production that were greater in pregnant than virgin rats. IL-6 caused reductions in ACh- and bradykinin-induced vascular relaxation and nitrite production that were more prominent in pregnant than virgin rats. Incubation of endothelium-intact strips in the presence of N(omega)-nitro-L-arginine methyl ester (10(-4) M) to inhibit nitric oxide (NO) synthase, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-5) M) to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in nontreated but to a lesser extent in IL-6-treated vessels, particularly those of pregnant rats. Removal of the endothelium enhanced Phe-induced stress in nontreated but not IL-6-treated vessels, particularly those of pregnant rats. In endothelium-denuded strips, relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was not different between nontreated and IL-6-treated vessels of virgin or pregnant rats. Thus IL-6 inhibits endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of virgin and pregnant rats. The greater IL-6-induced inhibition of vascular relaxation and enhancement of contraction in systemic vessels of pregnant rats supports a direct role for IL-6 as one possible mediator of the increased vascular resistance associated with hypertension of pregnancy.
Collapse
Affiliation(s)
- Julia M Orshal
- Department of Medicine, Veterans Affairs Medical Center, West Roxbury, and Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
30
|
Orshal JM, Khalil RA. Reduced endothelial NO-cGMP-mediated vascular relaxation and hypertension in IL-6-infused pregnant rats. Hypertension 2004; 43:434-44. [PMID: 14707155 DOI: 10.1161/01.hyp.0000113044.46326.98] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Placental ischemia during pregnancy is associated with increased plasma cytokines such as interleukin-6 (IL-6), which may contribute to increased vascular resistance and hypertension of pregnancy. We tested the hypothesis that an increase in plasma IL-6 during pregnancy is associated with impaired endothelium-dependent relaxation, enhanced vascular contraction, and hypertension. Systolic blood pressure was measured in virgin and pregnant Sprague-Dawley rats non-treated or infused with IL-6 (200 ng/kg per day for 5 days). Isometric contraction was measured in isolated aortic strips, and endothelial nitric oxide (NO) synthase (eNOS) was measured in aortic homogenate using Western blots. Blood pressure was greater in IL-6-infused (146+/-3) than in control pregnant rats (117+/-2 mm Hg). In endothelium-intact vascular strips, phenylephrine (Phe) caused greater increase in active stress in IL-6-infused (maximum: 10.6+/-0.6) than in control pregnant rats (maximum: 4.1+/-0.3x10(4) N/m2). Acetylcholine (ACh)-induced relaxation of Phe contraction and vascular eNOS protein and nitrite/nitrate production were less in IL-6-infused than in control pregnant rats. N(omega)-nitro-L-arginine methyl ester (10(-4) mol/L), inhibitor of NOS, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (10(-5) mol/L), inhibitor of cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in control but not IL-6-infused pregnant rats. Endothelium removal enhanced Phe-induced stress in control but not in IL-6-infused pregnant rats. The blood pressure and vascular Phe-induced contraction, ACh relaxation, and eNOS protein were not different between control and IL-6-infused virgin rats. Thus, an endothelium-dependent NO-cGMP-mediated relaxation pathway is inhibited in systemic vessels of pregnant rats infused with IL-6. The results support a role for IL-6 as a possible mediator of the increased vascular resistance during hypertension of pregnancy.
Collapse
Affiliation(s)
- Julia M Orshal
- Department of Medicine, Veterans Affairs Medical Center, West Roxbury, Mass, USA
| | | |
Collapse
|
31
|
McKee AP, Van Riper DA, Davison CA, Singer HA. Gender-dependent modulation of alpha 1-adrenergic responses in rat mesenteric arteries. Am J Physiol Heart Circ Physiol 2003; 284:H1737-43. [PMID: 12679329 DOI: 10.1152/ajpheart.00779.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to test the hypothesis that pathways modulating vasoconstriction in rat mesenteric resistance arteries are gender dependent. Net contractile responses to phenylephrine were significantly increased by endothelium disruption in arteries from males but not females. This gender-dependent effect was stimulus specific, because disruption of endothelium increased reactivity to serotonin comparably in arteries from both genders. Ovariectomy unmasked an increase in net alpha(1)-adrenergic contractile responsiveness after endothelium disruption, suggesting alpha(1)-adrenergic-stimulated production of endothelial vasodilators is suppressed in control females by gonadal sex steroids. Production of modulatory endothelium-derived vasodilators in males is balanced by production of vasoconstricting arachidonic acid metabolites. This was revealed by decreased alpha(1)-adrenergic contractile responses in arteries from males after pretreatment with indomethacin or the cyclooxygenase-1 selective inhibitor SC-560. The indomethacin-induced effect persisted after endothelium disruption, indicating smooth muscle as the source of cyclooxygenase-1-derived vasoconstrictors and was attenuated after orchiectomy. This study indicates gender differences in the expression of two pathways modulating alpha(1)-adrenergic sensitivity in mesenteric arteries: an endothelium-dependent vasodilator pathway and a balancing smooth muscle cyclooxygenase-1-dependent vasoconstrictor pathway. One consequence of these differences is that endothelial damage produces a selective increase in alpha(1)-adrenergic agonist reactivity in arteries from males.
Collapse
Affiliation(s)
- Alyson P McKee
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
32
|
Cooke CLM, Davidge ST. Pregnancy-induced alterations of vascular function in mouse mesenteric and uterine arteries. Biol Reprod 2003; 68:1072-7. [PMID: 12604662 DOI: 10.1095/biolreprod.102.009886] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Normal pregnancy involves dramatic changes to maternal vascular function, while abnormal vascular adaptations may contribute to pregnancy-associated diseases such as preeclampsia. Many genetic mouse models have recently emerged to study vascular pathologies of pregnancy. However, vascular adaptations to pregnancy in normal mice are not fully understood. Thus, we studied changes in vascular reactivity during normal mouse pregnancy. We hypothesized that pregnant mice will have enhanced endothelial-dependent vasodilation compared with nonpregnant mice, via an enhancement of the nitric oxide synthase (NOS) prostaglandin H synthase (PGHS), and other endothelial-derived hyperpolarizing pathways. Late pregnant (Day 17-18) C57BL/6J mice (n = 10) were compared with nonpregnant mice (n = 7). Uterine and mesenteric arteries were mounted on a wire myograph system and assessed for endothelium-dependent (methacholine) and -independent (sodium nitroprusside; SNP) relaxation responses. Endothelial-dependent relaxation was enhanced in pregnant uterine and mesenteric arteries, which was blunted after the addition of inhibitors of the PGHS or NOS pathways. In nonpregnant mice, these pathways had no effect in modulating relaxation in uterine arteries, whereas vasodilation in mesenteric arteries was reduced only by NOS inhibition. Both uterine and mesenteric vessels had nonnitric oxide- and nonprostaglandin-mediated relaxation, but this relaxation was not enhanced during pregnancy. Endothelial-independent relaxation was also enhanced in pregnant uterine but not mesenteric arteries. Our data indicate that uterine and mesenteric arteries from pregnant mice have enhanced vasodilation. Understanding vascular adaptations to normal mouse pregnancy is crucial for interpreting changes that may occur in genetic mouse models.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Perinatal Research Centre, Department of Obstetrics/Gynecology, University of Alberta, Edmonton, Alberta, Canada T6G 252
| | | |
Collapse
|
33
|
Veerareddy S, Cooke CLM, Baker PN, Davidge ST. Vascular adaptations to pregnancy in mice: effects on myogenic tone. Am J Physiol Heart Circ Physiol 2002; 283:H2226-33. [PMID: 12388224 DOI: 10.1152/ajpheart.00593.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms underlying vascular adaptations in pregnancy remain to be fully elucidated. One of the contributory mechanisms for reduced vascular tone may be a reduction of myogenic tone. Myogenic tone was assessed as the difference between internal diameter in the presence and absence of external calcium at different intramural pressure steps (60-100 mmHg). Myogenic responses were reduced in resistance-sized mesenteric and main uterine arteries in late pregnant compared with nonpregnant C57BL/6J mice. In vessels from pregnant, but not nonpregnant mice, the myogenic response was enhanced by preincubation with nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester, was further elevated by the gap junction inhibitor 18-alpha glycyrrhetinic acid, but was unaltered by the prostaglandin H synthase inhibitor meclofenamate. Endothelium removal enhanced myogenic tone only in the vessels from pregnant animals, thus confirming the role of the endothelium in modulating myogenic tone in pregnancy. These results suggest that endothelium-derived NO as well as gap junction communications modulate myogenic tone in mouse pregnancy.
Collapse
|
34
|
Khalil RA, Granger JP. Vascular mechanisms of increased arterial pressure in preeclampsia: lessons from animal models. Am J Physiol Regul Integr Comp Physiol 2002; 283:R29-45. [PMID: 12069928 DOI: 10.1152/ajpregu.00762.2001] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reductions in total vascular resistance and arterial pressure possibly due to enhanced endothelium-dependent vascular relaxation and decreased vascular reactivity to vasoconstrictor agonists. These beneficial hemodynamic and vascular changes do not occur in women who develop preeclampsia; instead, severe increases in vascular resistance and arterial pressure are observed. Although preeclampsia represents a major cause of maternal and fetal morbidity and mortality, the vascular and cellular mechanisms underlying this disorder have not been clearly identified. Studies in hypertensive pregnant women and experimental animal models suggested that reduction in uteroplacental perfusion pressure and the ensuing placental ischemia/hypoxia during late pregnancy may trigger the release of placental factors that initiate a cascade of cellular and molecular events leading to endothelial and vascular smooth muscle cell dysfunction and thereby increased vascular resistance and arterial pressure. The reduction in uterine perfusion pressure and the ensuing placental ischemia are possibly caused by inadequate cytotrophoblast invasion of the uterine spiral arteries. Placental ischemia may promote the release of a variety of biologically active factors, including cytokines such as tumor necrosis factor-alpha and reactive oxygen species. Threshold increases in the plasma levels of placental factors may lead to endothelial cell dysfunction, alterations in the release of vasodilator substances such as nitric oxide (NO), prostacyclin (PGI(2)), and endothelium-derived hyperpolarizing factor, and thereby reductions of the NO-cGMP, PGI(2)-cAMP, and hyperpolarizing factor vascular relaxation pathways. The placental factors may also increase the release of or the vascular reactivity to endothelium-derived contracting factors such as endothelin, thromboxane, and ANG II. These contracting factors could increase intracellular Ca(2+) concentrations ([Ca(2+)](i)) and stimulate Ca(2+)-dependent contraction pathways in vascular smooth muscle. The contracting factors could also increase the activity of vascular protein kinases such as protein kinase C, leading to increased myofilament force sensitivity to [Ca(2+)](i) and enhancement of smooth muscle contraction. The decreased endothelium-dependent mechanisms of vascular relaxation and the enhanced mechanisms of vascular smooth muscle contraction represent plausible causes of the increased vascular resistance and arterial pressure associated with preeclampsia.
Collapse
Affiliation(s)
- Raouf A Khalil
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
35
|
Giardina JB, Green GM, Cockrell KL, Granger JP, Khalil RA. TNF-alpha enhances contraction and inhibits endothelial NO-cGMP relaxation in systemic vessels of pregnant rats. Am J Physiol Regul Integr Comp Physiol 2002; 283:R130-43. [PMID: 12069938 DOI: 10.1152/ajpregu.00704.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor necrosis factor-alpha (TNF-alpha) is elevated in the plasma of preeclamptic women and may have a role in pregnancy-induced hypertension. However, whether the hemodynamic effects of TNF-alpha reflect the direct effects on vascular reactivity is unclear. We tested the hypothesis that TNF-alpha impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. We measured isometric contraction in aortic strips isolated from virgin and pregnant Sprague-Dawley rats (nontreated vs. treated for 2 h with 10-1,000 pg/ml TNF-alpha). In endothelium-intact vascular strips, TNF-alpha caused greater enhancement of phenylephrine (Phe) contraction in pregnant than virgin rats. TNF-alpha caused significant inhibition of ACh- and bradykinin-induced vascular relaxation and nitrite/nitrate production that were more prominent in pregnant than virgin rats. N(G)-nitro-L-arginine methyl ester [L-NAME, 100 microM, an inhibitor of nitric oxide (NO) synthase] or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 1 microM, an inhibitor of cGMP production in smooth muscle) inhibited ACh relaxation and enhanced Phe contraction in nontreated but to a lesser extent in TNF-alpha-treated vessels, particularly those of pregnant rats. Endothelium removal enhanced Phe contraction in nontreated but not TNF-alpha-treated vessels, especially those of pregnant rats. Relaxation of Phe contraction with the NO donor sodium nitroprusside was not different between nontreated and TNF-alpha-treated vessels. Thus TNF-alpha enhances vascular contraction and inhibits endothelium-dependent NO-cGMP-mediated vascular relaxation in systemic vessels, particularly those of pregnant rats. The results support a direct role for TNF-alpha as a possible mediator of increased vascular resistance associated with pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Jena B Giardina
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | | | | | | | | |
Collapse
|
36
|
Ballejo G, Barbosa TA, Coelho EB, Antoniali C, Salgado MCO. Pregnancy-associated increase in rat systemic arteries endothelial nitric oxide production diminishes vasoconstrictor but does not enhance vasodilator responses. Life Sci 2002; 70:3131-42. [PMID: 12008096 DOI: 10.1016/s0024-3205(02)01576-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Late pregnancy in rats is characterized by a decrease in arterial pressure and in isolated arterial vessels response to vasoconstrictors. In uterine arteries the pregnancy-associated attenuation of the response to vasoconstrictors has been attributed to an increase in basal and agonist-induced endothelial NO production. However, the role of NO in pregnancy-associated changes of systemic arteries reactivity to vasoactive agents remains to be fully elucidated. We examined whether pregnancy influences the reactivity of systemic arteries to vasodilator or vasoconstrictor agents through NO-dependent mechanisms. Thoracic aortic rings and mesenteric arterial bed of late pregnant rats showed refractoriness to phenylephrine-induced vasoconstriction that was abolished by NO synthase inhibition. The potency of L-NNA to enhance tension of aortic rings preconstricted with phenylephrine (10-20% of their maximal response) was significantly lower in preparations from pregnant animals. In phenylephrine-contracted aortas and mesenteric bed, the effects of the endothelium-dependent vasodilators acetylcholine, A23187 and bradykinin, were not influenced by pregnancy. Similarly, pregnancy did not affect the vasodilator responses of adenosine, isoproterenol, capsaicin, nitroprusside, forskolin, and Hoe234 in the mesenteric bed. NO synthase activity measured by determining the conversion of L-[(3)H]-arginine to L-[(3)H]-citrulline in aorta and mesenteric arteries homogenates was not altered by pregnancy. These findings show that endothelial-dependent and -independent vasodilators action as well as NO synthase activity in systemic arteries is uninfluenced by pregnancy, whereas pregnancy-associated hyporeactivity of systemic arteries to vasoconstrictors is related to an enhanced endothelial NO production either spontaneous or elicited directly or indirectly by vasoconstrictor agents. This interpretation implies that the enhanced NO production observed in systemic arteries during late pregnancy involves cellular pathways other than the ones involved in the response to endothelium-dependent vasodilators such as acetylcholine.
Collapse
Affiliation(s)
- Gustavo Ballejo
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
37
|
Miller ME, Davidge ST, Mitchell BF. Oxytocin does not directly affect vascular tone in vessels from nonpregnant and pregnant rats. Am J Physiol Heart Circ Physiol 2002; 282:H1223-8. [PMID: 11893555 DOI: 10.1152/ajpheart.00774.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests oxytocin (OT) may regulate vascular tone. OT and its receptor (OTR) have been identified in the rat heart and great vessels. Expression of OT and OTR is increased in some tissues during pregnancy. We hypothesized that the OT/OTR system may be a physiological regulator of vascular tone and mediate the decreased vascular resistance noted during pregnancy. Using a wire myograph system, we measured changes in vascular tone in response to OT in small mesenteric arteries, uterine arcuate arteries, and thoracic aorta from nonpregnant and pregnant rats. Additionally, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure mRNA for OTR in these vascular tissues. Although OTR mRNA was identified by RT-PCR, OT did not elicit a vasodilatory effect in any of the vessels studied. High concentrations of OT (>10(-8) M) caused vasoconstriction that was eliminated by a specific vasopressin V(1a) receptor antagonist. Although it may have an indirect effect in regulation of peripheral resistance, we conclude that OT is unlikely to play a direct role in the physiological regulation of vascular tone.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/physiology
- Arteries/drug effects
- Arteries/physiology
- Female
- Gene Expression Regulation/drug effects
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiology
- Methacholine Chloride/pharmacology
- Muscle Tonus/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Oxytocin/genetics
- Oxytocin/pharmacology
- Phenylephrine/pharmacology
- Pregnancy
- Pregnancy, Animal/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Uterus/blood supply
- Uterus/drug effects
- Uterus/physiology
- Vasoconstriction/drug effects
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- M E Miller
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada T6G 2S2
| | | | | |
Collapse
|
38
|
Davis JR, Giardina JB, Green GM, Alexander BT, Granger JP, Khalil RA. Reduced endothelial NO-cGMP vascular relaxation pathway during TNF-alpha-induced hypertension in pregnant rats. Am J Physiol Regul Integr Comp Physiol 2002; 282:R390-9. [PMID: 11792648 DOI: 10.1152/ajpregu.00270.2001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Placental ischemia during pregnancy is thought to release cytokines such as tumor necrosis factor-alpha (TNF-alpha), which may contribute to the increased vascular resistance associated with pregnancy-induced hypertension. We have reported that a chronic twofold elevation in plasma TNF-alpha increases blood pressure in pregnant but not in virgin rats; however, the vascular mechanisms are unclear. We tested the hypothesis that increasing plasma TNF-alpha during pregnancy impairs endothelium-dependent vascular relaxation and enhances vascular reactivity. Active stress was measured in aortic strips of virgin and late-pregnant Sprague-Dawley rats untreated or infused with TNF-alpha (200 ng x kg(-1) x day(-1) for 5 days) to increase plasma level twofold. Phenylephrine (Phe) increased active stress to a maximum of 4.2 +/- 0.4 x 10(3) and 9.9 +/- 0.7 x 10(3) N/m2 in control pregnant and TNF-alpha-infused pregnant rats, respectively. Removal of the endothelium enhanced Phe-induced stress in control but not in TNF-alpha-infused pregnant rats. In endothelium-intact strips, ACh caused greater relaxation of Phe contraction in control than in TNF-alpha-infused pregnant rats. Basal and ACh-induced nitrite/nitrate production was less in TNF-alpha-infused than in control pregnant rats. Pretreatment of vascular strips with 100 microM N(G)-nitro-L-arginine methyl ester, to inhibit nitric oxide (NO) synthase, or 1 microM 1H-[1,2,4]oxadiazolo[4,3-]quinoxalin-1-one, to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in control but not in TNF-alpha-infused pregnant rats. Phe contraction and ACh relaxation were not significantly different between control and TNF-alpha-infused virgin rats. Thus an endothelium-dependent NO-cGMP-mediated vascular relaxation pathway is inhibited in late-pregnant rats infused with TNF-alpha. The results support a role for TNF-alpha as one possible mediator of the increased vascular resistance associated with pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Justin R Davis
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hermsteiner M, Zoltan DR, Künzel W. The vasoconstrictor response of uterine and mesenteric resistance arteries is differentially altered in the course of pregnancy. Eur J Obstet Gynecol Reprod Biol 2001; 100:29-35. [PMID: 11728653 DOI: 10.1016/s0301-2115(01)00428-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The purpose of the present study was to test the hypothesis that pregnancy is associated with an attenuation of the vasoconstrictor response not only in the uterine, but also in the systemic circulation. Decreased vascular reactivity should be characterized by an early onset to account for the rapid fall in peripheral resistance which was observed during the first third of gestation. STUDY DESIGN Dose-response curves for phenylephrine hydrochloride (PE), angiotensin II (ANG II), and endothelin 1 (ET 1) were recorded from isolated pressurized uterine and mesenteric arterioles. Vessels were obtained from virgin, early (day 7-9) pregnant (EP) and late (day 19-21) pregnant (LP) rats. RESULTS (1) In uterine resistance arteries, the response to PE and ANG II decreased early, but for ANG II the reduction did not persist. ET 1 sensitivity was unchanged in early, and diminished in late gestation; (2) in mesenteric vessels, sensitivity to ET 1 was enhanced in early pregnancy and did not differ from the non-pregnant level in late gestation. Sensitivity to PE and ANG II was unchanged in early, and reduced in late pregnancy. CONCLUSIONS The vasoconstrictor response is not uniformly blunted during pregnancy. Changes in vascular reactivity are differentially regulated with respect to the agonist, to their time course, and. to the origin of the vessel. The relative increase of vasoconstrictor sensitivity in the splanchnic circulation during early pregnancy may prevent hypotensive dysregulation, while concentrations of endogenous vasodilators rise and the vascular filling state normalizes only gradually.
Collapse
Affiliation(s)
- M Hermsteiner
- Department of Obstetrics and Gynecology, Justus Liebig University, Klinikstrasse 32, D-35392 Giessen, Germany.
| | | | | |
Collapse
|
40
|
Cook JL, Zhang Y, Davidge ST. Vascular function in alcohol-treated pregnant and nonpregnant mice. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1449-55. [PMID: 11641115 DOI: 10.1152/ajpregu.2001.281.5.r1449] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of alcohol on maternal vascular adaptations to pregnancy is unknown. This study was designed to determine the effect of alcohol consumption on nitric oxide-mediated vascular function in mice during pregnancy. Female pregnant or nonpregnant C57BL/6J mice were fed a control diet or a liquid diet of 25% ethanol-derived calories for 13 days (from gestational days 6-18). Phenylephrine vasoconstriction was blunted in pregnancy compared with the nonpregnant state due to enhanced nitric oxide modulation, which was impaired by ethanol exposure. Although the EC50 and maximal responses to methacholine were not different in nonpregnant vs. pregnant mice, the nitric oxide component to methacholine-induced vasorelaxation was greater in the pregnant mice. Interestingly, alcohol affected only the pregnant animals in their response to methacholine. These data indicate that alcohol reduced the nitric oxide modulation of vascular response, which was more pronounced during pregnancy. These studies provide novel information regarding the effects of alcohol on the maternal vascular system during pregnancy and thereby contribute to further understanding of the adverse effects associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- J L Cook
- Department of Obstetrics and Gynecology, Perinatal Research Centre, University of Alberta, Edmonton, Alberta, Canada T6G-2S2
| | | | | |
Collapse
|
41
|
Heesch CM, Foley CM. CNS effects of ovarian hormones and metabolites on neural control of circulation. Ann N Y Acad Sci 2001; 940:348-60. [PMID: 11458692 DOI: 10.1111/j.1749-6632.2001.tb03690.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pregnant women often experience orthostatic hypotension, and pregnancy is associated with increased susceptibility to hemorrhagic hypotension. Experiments evaluating arterial baroreflex control of efferent sympathetic nerve activity in virgin and term-pregnant rats revealed that arterial baroreflex sympathoexcitation is attenuated, while sympathoinhibitory responses are well-maintained or potentiated. Following a hypotensive challenge, pregnant animals exhibit attenuated Fos expression in the rostral ventrolateral medulla (RVLM), suggesting that unloading of arterial baroreceptors results in less excitation of presympathetic neurons in the brain stem. Other experiments, in which afferent baroreceptor discharge was recorded, suggest that this was not due to differences in afferent baoreceptor function. GABAergic mechanisms are responsible for tonic inhibition of sympathoexcitatory neurons in the RVLM and the major metabolite of progesterone, 3 alpha-OH-dihydro-progesterone (3 alpha-OH-DHP), which is elevated in pregnancy, is the most potent endogenous positive modulator of CNS GABAA receptor function. Additional experiments revealed that acutely administered 3 alpha-OH-DHP, either intravenously or directly into the RVLM, mimicked the effects of pregnancy on baroreflex control of efferent sympathetic nerve activity and potentiated pressure sensitivity of spinally projecting RVLM neurons. Preliminary experiments using semiquantitative RT-PCR, evaluated the relative expression of three subunits (alpha 1-3) of the GABAA receptor, and suggest that chronic exposure to elevated levels of ovarian hormones can result to changes in GABAA receptor subunit composition. It is likely that changes in control of sympathetic outflow in pregnancy are related to complex interactions between genomic and nongenomic actions of ovarian hormones and metabolites.
Collapse
Affiliation(s)
- C M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Research Park, Columbia, MO 65211-3300, USA.
| | | |
Collapse
|
42
|
Murphy JG, Fleming JB, Cockrell KL, Granger JP, Khalil RA. [Ca(2+)](i) signaling in renal arterial smooth muscle cells of pregnant rat is enhanced during inhibition of NOS. Am J Physiol Regul Integr Comp Physiol 2001; 280:R87-99. [PMID: 11124138 DOI: 10.1152/ajpregu.2001.280.1.r87] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular resistance and arterial pressure are reduced during normal pregnancy, but dangerously elevated during pregnancy-induced hypertension (PIH), and changes in nitric oxide (NO) synthesis have been hypothesized as one potential cause. In support of this hypothesis, chronic inhibition of NO synthesis in pregnant rats has been shown to cause significant increases in renal vascular resistance and hypertension; however, the cellular mechanisms involved are unclear. We tested the hypothesis that the pregnancy-associated changes in renal vascular resistance reflect changes in contractility and intracellular Ca(2+) concentration ([Ca(2+)](i)) of renal arterial smooth muscle. Smooth muscle cells were isolated from renal interlobular arteries of virgin and pregnant Sprague-Dawley rats untreated or treated with the NO synthase inhibitor nitro-L-arginine methyl ester (L-NAME; 4 mg. kg(-1). day(-1) for 5 days), then loaded with fura 2. In cells of virgin rats incubated in Hanks' solution (1 mM Ca(2+)), the basal [Ca(2+)](i) was 86 +/- 6 nM. Phenylephrine (Phe, 10(-5) M) caused a transient increase in [Ca(2+)](i) to 417 +/- 11 nM and maintained an increase to 183 +/- 8 nM and 32 +/- 3% cell contraction. Membrane depolarization by 51 mM KCl, which stimulates Ca(2+) entry from the extracellular space, caused maintained increase in [Ca(2+)](i) to 292 +/- 12 nM and 31 +/- 2% contraction. The maintained Phe- and KCl-induced [Ca(2+)](i) and contractions were reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. Phe- and KCl-induced contraction and [Ca(2+)](i) were not significantly different between untreated and L-NAME-treated virgin rats or between untreated and L-NAME + L-arginine treated pregnant rats. In Ca(2+)-free Hanks', application of Phe or caffeine (10 mM), to stimulate Ca(2+) release from the intracellular stores, caused a transient increase in [Ca(2+)](i) and a small cell contraction that were not significantly different among the different groups. Thus renal interlobular smooth muscle of normal pregnant rats exhibits reduction in [Ca(2+)](i) signaling that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The reduced renal smooth muscle cell contraction and [Ca(2+)](i) in pregnant rats may explain the decreased renal vascular resistance associated with normal pregnancy, whereas the enhanced cell contraction and [Ca(2+)](i) during inhibition of NO synthesis in pregnant rats may, in part, explain the increased renal vascular resistance associated with PIH.
Collapse
Affiliation(s)
- J G Murphy
- Department of Physiology and Biophysics and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216 - 4505, USA
| | | | | | | | | |
Collapse
|
43
|
Fulep EE, Vedernikov YP, Saade GR, Garfield RE. Responses of isolated perfused uterine vascular beds of nonpregnant and pregnant rats to endogenous and exogenous nitric oxide. GENERAL PHARMACOLOGY 2000; 35:297-301. [PMID: 11922959 DOI: 10.1016/s0306-3623(02)00114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The responses to endothelial vasodilators and exogenous nitric oxide (NO) were characterized in intact isolated uterine vascular beds of nonpregnant, midpregnant and late-pregnant rats perfused with Kreb's buffer (37 degrees C, 5% CO(2) in air, pH approximately 7.4) containing 2% dextran and indomethacin. Phenylephrine increased perfusion pressure in the vascular beds equally in all three groups. In the presence of phenylephrine, N(omega)-nitro-L-arginine methyl ester (L-NAME) significantly augmented perfusion pressure in the order: nonpregnant<midpregnant<late-pregnant uterine vascular bed. Acetylcholine and bradykinin-induced attenuation of perfusion pressure did not depend on gestational age. The decrease in perfusion pressure induced by acetylcholine was nonsignificantly attenuated by L-NAME in vascular beds from pregnant rats. The attenuation induced by bradykinin reached significant level in the vascular beds from midpregnant rats. The diethylamine (DEA)/NO-induced decrease in perfusion pressure was not influenced by L-NAME in any group. These data demonstrate the augmentation of basal release of NO associated with progression of pregnancy, while the responses to endothelial vasodilators do not depend on gestational age and are not abolished by inhibition of NO synthase, suggesting involvement of nonprostanoid non-NO factor in the control of uterine circulation.
Collapse
Affiliation(s)
- E E Fulep
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, TX 77555-1062, USA.
| | | | | | | |
Collapse
|
44
|
Kanashiro CA, Cockrell KL, Alexander BT, Granger JP, Khalil RA. Pregnancy-associated reduction in vascular protein kinase C activity rebounds during inhibition of NO synthesis. Am J Physiol Regul Integr Comp Physiol 2000; 278:R295-303. [PMID: 10666128 DOI: 10.1152/ajpregu.2000.278.2.r295] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vascular reactivity has been shown to be reduced during pregnancy and to be enhanced during chronic inhibition of nitric oxide (NO) synthesis in pregnant rats; however, the cellular mechanisms involved are unclear. The purpose of this study was to investigate whether the pregnancy-induced changes in vascular reactivity are associated with changes in the amount and/or activity of vascular protein kinase C (PKC). Active stress as well as the amount and activity of PKC was measured in deendothelialized thoracic aortic strips from virgin and pregnant rats untreated or treated with the NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). In virgin rats, the PKC activator phorbol 12,13-dibutyrate (PDBu, 10(-6) M) and the alpha-adrenergic agonist phenylephrine (Phe, 10(-5) M) caused significant increases in active stress and PKC activity that were inhibited by the PKC inhibitors staurosporine and calphostin C. Western blot analysis in aortic strips of virgin rats showed significant amount of the alpha-PKC isoform. Both PDBu and Phe caused significant translocation of alpha-PKC from the cytosolic to the particulate fraction. Compared with virgin rats, the PDBu- and Phe-stimulated active stress and PKC activity as well as the amount and the PDBu- and Phe-induced translocation of alpha-PKC were significantly reduced in late pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. The PDBu- and Phe-induced changes in active stress and the amount, distribution, and activity of alpha-PKC in virgin rats treated with L-NAME were not significantly different from that in virgin rats, whereas the changes in pregnant rats treated with L-NAME + the NO synthase substrate L-arginine were not significantly different from that in pregnant rats. These results provide evidence that a PKC-mediated contractile pathway in vascular smooth muscle is reduced during pregnancy and significantly enhanced during chronic inhibition of NO synthesis. The results suggest that one possible mechanism of the pregnancy-associated changes in vascular reactivity may involve changes in the amount and activity of the alpha-PKC isoform.
Collapse
Affiliation(s)
- C A Kanashiro
- Department of Physiology and Biophysics and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216-4505, USA
| | | | | | | | | |
Collapse
|
45
|
Cadorette C, Sicotte B, Brochu M, St-Louis J. Effects of potassium channel modulators on myotropic responses of aortic rings of pregnant rats. Am J Physiol Heart Circ Physiol 2000; 278:H567-76. [PMID: 10666089 DOI: 10.1152/ajpheart.2000.278.2.h567] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of potassium channels [ATP-sensitive potassium (K(ATP)) and high-conductance calcium-activated potassium (BK(Ca)) channels] in the resistance of aortic rings of term pregnant rats to phenylephrine (Phe), arginine vasopressin (AVP), and KCl was investigated. Concentration-response curves to tetraethylammonium (TEA), a nonselective K(+) channel inhibitor, were obtained in the absence or presence of KCl. TEA induced by itself concentration-dependent responses only in aortic rings of nonpregnant rats. These responses to TEA could be modulated in both groups of rings by preincubation with different concentrations of KCl. Concentration-response curves to Phe, AVP, and KCl were obtained in the absence or presence of cromakalim or NS-1619 (K(ATP) and BK(Ca) openers, respectively) and glibenclamide or iberiotoxin (K(ATP) and BK(Ca) inhibitors, respectively). Cromakalim significantly inhibited the responses to the three agonists in a concentration-dependent manner in both groups of rats. Alternatively, in the pregnant group of rats, glibenclamide increased the sensitivity to all three agonists. NS-1619 also inhibited the response to all agonists. With AVP and KCl, its effect was greater in aortic rings of pregnant than nonpregnant rats. Finally, iberiotoxin increased the sensitivity to all three agents. This effect was more important in aortic rings of nonpregnant rats and was accompanied by an increase of the maximal response to Phe and AVP. These results suggest that potassium channels are implicated in the control of basal membrane potential and in the blunted responses to these agents during pregnancy.
Collapse
Affiliation(s)
- C Cadorette
- Laboratoire de Pharmacologie Vasculaire Périnatale, Centre de Recherche, Hôpital Sainte-Justine, Montréal, Québec, Canada H3T 1C5
| | | | | | | |
Collapse
|
46
|
Crews JK, Herrington JN, Granger JP, Khalil RA. Decreased endothelium-dependent vascular relaxation during reduction of uterine perfusion pressure in pregnant rat. Hypertension 2000; 35:367-72. [PMID: 10642326 DOI: 10.1161/01.hyp.35.1.367] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reduction in uterine perfusion and the ensuing placental ischemia during late pregnancy have been proposed to trigger increases in systemic vascular resistance and pregnancy-induced hypertension; however, the intermediary mechanisms involved are unclear. The purpose of the present study was to test the hypothesis that reduced uterine perfusion pressure during late pregnancy is associated with impaired endothelium-dependent vascular relaxation and, consequently, enhanced systemic vascular reactivity. Active stress was measured in aortic strips isolated from late pregnant Sprague-Dawley rats and a hypertensive pregnant rat model produced through the long-term reduction in uterine perfusion pressure (RUPP). Phenylephrine (Phe, 10(-5) mol/L) caused an increase in active stress to 4.5+/-0.4x10(3) N/m(2) in normal pregnant rats and a larger increase to 9.4+/-0. 7x10(3) N/m(2) in RUPP rats. Removal of the endothelium significantly enhanced Phe-induced stress in pregnant (6.4+/-0. 6x10(3) N/m(2)) but not RUPP (9.95+/-0.95x10(3) N/m(2)) rats. In endothelium-intact strips, acetylcholine (ACh) was more potent in inducing relaxation of Phe contraction in pregnant (ED(50) 0. 1x10(-6) mol/L) than in RUPP (ED(50) 1.2x10(-6) mol/L) rats. Pretreatment of endothelium-intact strips with N(G)-nitro-L-arginine methyl ester(100 micromol/L), to inhibit nitric oxide (NO) synthase, significantly inhibited ACh-induced relaxation and enhanced Phe-induced stress in pregnant (6.2+/-0.5x10(3) N/m(2)) but not RUPP (9.5+/-0.85x10(3) N/m(2)) rats. Pretreatment of endothelium-intact strips with methylene blue (10 micromol/L), to inhibit cGMP production in smooth muscle, also inhibited ACh-induced relaxation and enhanced Phe-induced stress in pregnant (6.9+/-0.65x10(3) N/m(2)) but not RUPP (9.3+/-0.7x10(3) N/m(2)) rats. In endothelium-denuded strips, relaxation of Phe contraction with the exogenous NO donor sodium nitroprusside was not significantly different between pregnant and RUPP rats. These results suggest that an endothelium-dependent relaxation pathway involving the release of NO from endothelial cells and increased cGMP production in smooth muscle is inhibited in systemic vessels of late pregnant rats with reduced uterine perfusion pressure and may in part explain the increased vascular resistance in pregnancy-induced hypertension.
Collapse
Affiliation(s)
- J K Crews
- Department of Physiology and Biophysics and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | | | |
Collapse
|
47
|
Kanashiro CA, Alexander BT, Granger JP, Khalil RA. Ca(2+)-insensitive vascular protein kinase C during pregnancy and NOS inhibition. Hypertension 1999; 34:924-30. [PMID: 10523386 DOI: 10.1161/01.hyp.34.4.924] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pregnancy-induced hypertension is associated with increased vascular resistance; however, the cellular mechanisms involved are unclear. We have previously found that the relation between Ca(2+) entry and the developed force in vascular smooth muscle is altered during normal pregnancy and in a rat model of pregnancy-induced hypertension produced by long-term treatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). The purpose of this study was to investigate whether the pregnancy-associated changes in the vascular Ca(2+) entry-force relation reflect changes in the amount and/or activity of Ca(2+)-insensitive protein kinase C (PKC) isoforms. Active stress and the amount and activity of PKC were measured in deendothelialized aortic strips from nonpregnant and pregnant rats untreated or treated with L-NAME and incubated in Ca(2+)-free (2 mmol/L EGTA) Krebs solution. In nonpregnant rats, the PKC activator phorbol 12,13-dibutyrate (PDBu, 10(-6) mol/L) and the alpha-adrenergic agonist phenylephrine (Phe, 10(-5) mol/L) caused significant, maintained increases in active stress and PKC activity that were inhibited by the PKC inhibitors staurosporine and calphostin C. Western blots in aortic strips of nonpregnant rats revealed the Ca(2+)-insensitive delta-PKC and zeta-PKC isoforms. Both PDBu and Phe caused translocation of delta-PKC from the cytosolic to the particulate fraction. Compared with nonpregnant rats, the amount of delta-PKC and zeta-PKC and the PDBu-stimulated and Phe-stimulated stress, PKC activity and translocation of delta-PKC were significantly reduced in late pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. The PDBu-induced and Phe-induced responses in nonpregnant rats treated with L-NAME were not significantly different from nonpregnant rats, whereas the responses in pregnant rats treated with L-NAME+L-arginine were not significantly different from pregnant rats. These results provide evidence that a signaling pathway in vascular smooth muscle possibly involving the Ca(2+)-insensitive delta-PKC and zeta-PKC isoforms is reduced in late pregnancy and enhanced during long-term inhibition of nitric oxide synthesis. The changes in the amount and activity of vascular PKC isoforms may, in part, explain the changes in vascular resistance during normal pregnancy and pregnancy-induced hypertension.
Collapse
Affiliation(s)
- C A Kanashiro
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson 39216-4505, USA
| | | | | | | |
Collapse
|
48
|
Roy B, Sicotte B, Brochu M, St-Louis J. Modulation of calcium mobilization in aortic rings of pregnant rats: Contribution of extracellular calcium and of voltage-operated calcium channels. Biol Reprod 1999; 60:979-88. [PMID: 10084975 DOI: 10.1095/biolreprod60.4.979] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Pregnancy is associated with decreased vascular responsiveness to vasopressor stimuli. We have tested the involvement of Ca2+ mobilization in myotropic responses of aortic rings obtained from pregnant and virgin rats. Contractions of the rings to phenylephrine, in the absence of calcium in the bathing medium, were lower in tissues from virgin than from pregnant rats. Concentration-response curves to CaCl2 that were measured after stimulation by phenylephrine in the absence of Ca2+ were shifted to higher levels of contraction. This was not observed when KCl was used to prestimulate the aorta. D-600, a phenylalkylamine calcium channel blocker, similarly inhibited these responses to CaCl2 in tissues from both pregnant and virgin animals. D-600 exerted a concentration-dependent inhibition of responses to phenylephrine and KCl. However, the calcium antagonist was less effective in aortic rings of pregnant than of virgin rats. Basal 45Ca2+ uptake was lower in aortic rings from pregnant than from virgin rats, and Bay K 8644 was unable to reverse this difference. The time course of basal and stimulated (KCl) 45Ca2+ influx was lower in aorta of pregnant rats at all times studied. Moreover, when the intracellular calcium pools were emptied with phenylephrine, the refilling of these pools was delayed in aortic rings of pregnant rats. These results indicate an altered extracellular calcium mobilization of aortic rings from pregnant rats. These changes may be due to a functional alteration of the voltage-operated calcium channels during pregnancy.
Collapse
Affiliation(s)
- B Roy
- Laboratoire de Recherche en Pharmacologie Périnatale, Hôpital Ste-Justine, Montréal, Québec, Canada H3T 1C5
| | | | | | | |
Collapse
|
49
|
Crews JK, Novak J, Granger JP, Khalil RA. Stimulated mechanisms of Ca2+ entry into vascular smooth muscle during NO synthesis inhibition in pregnant rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R530-8. [PMID: 9950934 DOI: 10.1152/ajpregu.1999.276.2.r530] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously found that the vascular responsiveness to alpha1-adrenergic agonists is reduced in pregnant rats and enhanced in a rat model of pregnancy-induced hypertension produced by chronic treatment of pregnant rats with the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME). The purpose of this study was to investigate whether the observed changes in vascular reactivity during normal pregnancy and during pregnancy-induced hypertension reflect changes in the mechanisms of Ca2+ entry into vascular smooth muscle. 45Ca2+ influx and active stress during alpha1-adrenergic stimulation by phenylephrine and membrane depolarization by 96 mM KCl were measured in deendothelialized aortic strips isolated from virgin and pregnant Sprague-Dawley rats untreated or treated with 1 mg/day L-NAME for 4-6 days and incubated in Krebs solution containing increasing concentrations of extracellular Ca2+ ([Ca2+]e). In all groups of rats, both phenylephrine and 96 mM KCl caused [Ca2+]e-dependent increases in active stress and 45Ca2+ influx. The phenylephrine- and 96 mM KCl-induced active stress and Ca2+ influx were significantly reduced in pregnant rats but significantly enhanced in pregnant rats treated with L-NAME. The phenylephrine-induced Ca2+ influx-stress relationship was significantly greater than that induced by 96 mM KCl in pregnant rats treated with L-NAME. The phenylephrine-induced Ca2+ influx-stress relationship was reduced in pregnant rats but enhanced in pregnant rats treated with L-NAME. Chronic treatment with L-NAME had minimal effect on active stress, Ca2+ influx, and the Ca2+ influx-stress relationship in virgin rats. These results provide evidence that the mechanisms of Ca2+ entry into vascular smooth muscle are inhibited during pregnancy but enhanced during inhibition of NO synthesis in late pregnancy. The enhancement of the phenylephrine-induced Ca2+ influx-stress relationship in pregnant rats treated with L-NAME suggests activation of other contractile mechanisms in addition to stimulation of Ca2+ entry. These mechanisms appear to be inhibited during normal pregnancy.
Collapse
Affiliation(s)
- J K Crews
- Department of Physiology and Biophysics and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | |
Collapse
|
50
|
White MM, McCullough RE, Dyckes R, Robertson AD, Moore LG. Effects of pregnancy and chronic hypoxia on contractile responsiveness to alpha1-adrenergic stimulation. J Appl Physiol (1985) 1998; 85:2322-9. [PMID: 9843559 DOI: 10.1152/jappl.1998.85.6.2322] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Decreased contractile response to vasoconstrictors in uterine and nonuterine vessels contributes to increased blood flow to the uterine circulation during normal pregnancy. Pregnancies complicated by preeclampsia and/or chronic hypoxia show a reversal or diminution of these pregnancy-associated changes. We sought to determine whether chronic hypoxia opposes the reduction in contractile response in uterine and nonuterine vessels during normal pregnancy and, if so, whether decreased basal nitric oxide (NO) activity was involved. We examined the contractile response to phenylephrine (PE) in guinea pig uterine artery (UA), mesenteric artery (MA), and thoracic aorta (TA) rings isolated from nonpregnant or pregnant guinea pigs that had been exposed throughout gestation to either low (1,600 m, n = 47) or high (3,962 m, n = 43) altitude. In the UA, pregnancy reduced contractile sensitivity to PE and did so similarly at low and high altitude (EC50: 4.0 x 10(-8) nonpregnant, 9.3 x 10(-8) pregnant at low altitude; 4.8 x 10(-8) nonpregnant, 1.0 x10(-8) pregnant at high altitude; both P < 0.05). Addition of the NO synthase inhibitor nitro-L-arginine (NLA; 200 mM) to the vessel bath increased contractile sensitivity in the pregnant UA (P < 0.05) and eliminated the effect of pregnancy at both altitutes. NLA also raised contractile sensitivity in the nonpregnant high-altitude UA, but contractile response without NLA did not differ in the high- and low-altitude animals. In the MA, pregnancy decreased contractile sensitivity to PE at high altitude only, and this shift was reversed by NO inhibition. In the TA, neither pregnancy nor altitude affected contractile response, but NO inhibition raised contractile response in nonpregnant and pregnant TA at both altitudes. We concluded that pregnancy diminished contractile response to PE in the UA, likely as a result of increased NO activity, and that these changes were similar at low and high altitude. Counter to our hypothesis, chronic hypoxia did not diminish the pregnancy-associated reduction in contractile sensitivity to PE or inhibit basal NO activity in the UA; rather it enhanced, not diminished, basal NO activity in the nonpregnant UA and the pregnant MA.
Collapse
Affiliation(s)
- M M White
- Women's Health Research Center, Colorado 80217-3364, USA.
| | | | | | | | | |
Collapse
|