1
|
Chatterjee S, Jain CK, Saha T, Roychoudhury S, Majumder HK, Das S. Utilizing coordination chemistry through formation of a Cu II-quinalizarin complex to manipulate cell biology: An in vitro, in silico approach. J Inorg Biochem 2023; 249:112369. [PMID: 37776829 DOI: 10.1016/j.jinorgbio.2023.112369] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.
Collapse
Affiliation(s)
- Sayantani Chatterjee
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India; Department of Chemistry, Vijaygarh Jyotish Ray College, Kolkata 700 032, India
| | - Chetan Kumar Jain
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India; Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Tanmoy Saha
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India
| | - Susanta Roychoudhury
- Cancer Biology & Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saurabh Das
- Department of Chemistry (Inorganic Section), Jadavpur University, Kolkata 700 032, India.
| |
Collapse
|
2
|
Zhu Y, Li Z, Zhong X, Wu X, Lu Y, Khan MA, Li H. Coordination Patterns of the Diphosphate in IDP Coordination Complexes: Crystal Structure and Chirality. Inorg Chem 2022; 61:19425-19439. [DOI: 10.1021/acs.inorgchem.2c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Yanhong Zhu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Pharmacy, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Zhongkui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xuan Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yongqiu Lu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Maroof Ahmad Khan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
3
|
Sigel A, Sigel H, Sigel RKO. Coordination Chemistry of Nucleotides and Antivirally Active Acyclic Nucleoside Phosphonates, including Mechanistic Considerations. Molecules 2022; 27:2625. [PMID: 35565975 PMCID: PMC9103026 DOI: 10.3390/molecules27092625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Considering that practically all reactions that involve nucleotides also involve metal ions, it is evident that the coordination chemistry of nucleotides and their derivatives is an essential corner stone of biological inorganic chemistry. Nucleotides are either directly or indirectly involved in all processes occurring in Nature. It is therefore no surprise that the constituents of nucleotides have been chemically altered-that is, at the nucleobase residue, the sugar moiety, and also at the phosphate group, often with the aim of discovering medically useful compounds. Among such derivatives are acyclic nucleoside phosphonates (ANPs), where the sugar moiety has been replaced by an aliphatic chain (often also containing an ether oxygen atom) and the phosphate group has been replaced by a phosphonate carrying a carbon-phosphorus bond to make the compounds less hydrolysis-sensitive. Several of these ANPs show antiviral activity, and some of them are nowadays used as drugs. The antiviral activity results from the incorporation of the ANPs into the growing nucleic acid chain-i.e., polymerases accept the ANPs as substrates, leading to chain termination because of the missing 3'-hydroxyl group. We have tried in this review to describe the coordination chemistry (mainly) of the adenine nucleotides AMP and ATP and whenever possible to compare it with that of the dianion of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA2- = adenine(N9)-CH2-CH2-O-CH2-PO32) [or its diphosphate (PMEApp4-)] as a representative of the ANPs. Why is PMEApp4- a better substrate for polymerases than ATP4-? There are three reasons: (i) PMEA2- with its anti-like conformation (like AMP2-) fits well into the active site of the enzyme. (ii) The phosphonate group has an enhanced metal ion affinity because of its increased basicity. (iii) The ether oxygen forms a 5-membered chelate with the neighboring phosphonate and favors thus coordination at the Pα group. Research on ANPs containing a purine residue revealed that the kind and position of the substituent at C2 or C6 has a significant influence on the biological activity. For example, the shift of the (C6)NH2 group in PMEA to the C2 position leads to 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer with only a moderate antiviral activity. Removal of (C6)NH2 favors N7 coordination, e.g., of Cu2+, whereas the ether O atom binding of Cu2+ in PMEA facilitates N3 coordination via adjacent 5- and 7-membered chelates, giving rise to a Cu(PMEA)cl/O/N3 isomer. If the metal ions (M2+) are M(α,β)-M(γ)-coordinated at a triphosphate chain, transphosphorylation occurs (kinases, etc.), whereas metal ion binding in a M(α)-M(β,γ)-type fashion is relevant for polymerases. It may be noted that with diphosphorylated PMEA, (PMEApp4-), the M(α)-M(β,γ) binding is favored because of the formation of the 5-membered chelate involving the ether O atom (see above). The self-association tendency of purines leads to the formation of dimeric [M2(ATP)]2(OH)- stacks, which occur in low concentration and where one half of the molecule undergoes the dephosphorylation reaction and the other half stabilizes the structure-i.e., acts as the "enzyme" by bridging the two ATPs. In accord herewith, one may enhance the reaction rate by adding AMP2- to the [Cu2(ATP)]2(OH)- solution, as this leads to the formation of mixed stacked Cu3(ATP)(AMP)(OH)- species, in which AMP2- takes over the structuring role, while the other "half" of the molecule undergoes dephosphorylation. It may be added that Cu3(ATP)(PMEA) or better Cu3(ATP)(PMEA)(OH)- is even a more reactive species than Cu3(ATP)(AMP)(OH)-. - The matrix-assisted self-association and its significance for cell organelles with high ATP concentrations is summarized and discussed, as is, e.g., the effect of tryptophanate (Trp-), which leads to the formation of intramolecular stacks in M(ATP)(Trp)3- complexes (formation degree about 75%). Furthermore, it is well-known that in the active-site cavities of enzymes the dielectric constant, compared with bulk water, is reduced; therefore, we have summarized and discussed the effect of a change in solvent polarity on the stability and structure of binary and ternary complexes: Opposite effects on charged O sites and neutral N sites are observed, and this leads to interesting insights.
Collapse
Affiliation(s)
- Astrid Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Helmut Sigel
- Department of Chemistry, University of Basel, St. Johannsring 19, CH-4056 Basel, Switzerland;
| | - Roland K. O. Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
4
|
Blindauer CA, Holý A, Sigel A, Operschall BP, Griesser R, Sigel H. Acid–base properties of an antivirally active acyclic nucleoside phosphonate: ( S)-9-[3-hydroxy-2-(phosphonomethoxy)propyl]adenine (HPMPA). NEW J CHEM 2022. [DOI: 10.1039/d2nj00543c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protonation equilibria for the parent compound of three highly potent antivirals have been studied by 1H NMR spectroscopy.
Collapse
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, 16610 Prague, Czech Republic
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
5
|
Blindauer CA, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Metal Ion‐Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (
S
)‐9‐[3‐Hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) – Quantification of Complex Isomeric Equilibria. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Department of Chemistry Inorganic Chemistry University of Warwick Coventry CV4 7AL UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry Centre of Novel Antivirals and Antineoplastics Academy of Sciences 16610 Prague Czech Republic
| | - Bert P. Operschall
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Astrid Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Bin Song
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Centre of Novel Antivirals and Antineoplastics Vertex Pharmaceuticals Inc. 02210 Boston MA USA
| | - Helmut Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
6
|
Jiang Y, Su Z, Zhang J, Cai M, Wu L. A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. Analyst 2018; 143:5271-5277. [PMID: 30280731 DOI: 10.1039/c8an01436a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A portable electrochemical immunosensing protocol was designed for the sensitive detection of a disease-related tumor biomarker (carcinoembryonic antigen, CEA, used in this case) on a pH meter using glucose oxidase (GOx)-encapsulated gold hollow microspheres (AuHMs) for signal amplification. The assay was carried out on a monoclonal anti-CEA capture antibody-coated microplate with a sandwich-type reaction mode. The GOx-entrapped AuHM was first synthesized using the reverse micelle method and then used as the signal-generation tag for the labeling of polyclonal anti-CEA detection antibody. Accompanying the formation of the sandwiched immunocomplexes, the loaded GOx molecules in the microsphere could catalyze glucose into gluconic acid and hydrogen peroxide. The as-produced gluconic acid changed the microenvironment of the detection solution, thus resulting in the shift of the pH value, which could be quantitatively determined on a portable pH meter. The use of gold hollow microspheres was expected to enhance the loaded amount of GOx for signal amplification. Two labeling protocols including GOx-labeled secondary antibody and GOx-AuHM-labeled secondary antibody were investigated for CEA detection, and improved analytical features were acquired with GOx-AuHM labeling. With the GOx-AuHM labeling strategy, the pH meter-based immunosensing device exhibited a good analytical performance for CEA detection within the dynamic linear range of 0.1-100 ng mL-1 at a detection limit of 0.062 ng mL-1. The strong attachment of anti-CEA antibodies to GOx-AuHM brought a good repeatability and intermediate precision down to 10%. Importantly, no significant differences at the 0.05 significance level were encountered in the analysis of 12 human serum specimens between the developed immunoassay and the commercialized electrochemiluminescent method for CEA determination.
Collapse
Affiliation(s)
- Yu Jiang
- Xiamen Maternal and Child Health Care Hospital, Xiamen, Fujian 361003, China.
| | | | | | | | | |
Collapse
|
7
|
Blindauer CA, Griesser R, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue ‡. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, Prague, Czech Republic
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Bin Song
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Chen WL, Ho TY, Huang JW, Chen CH. Continuous monitoring of pH level in flow aqueous system by using liquid crystal-based sensor device. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Metal-ion binding properties of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (HPMPC, Cidofovir). A nucleotide analogue with activity against DNA viruses. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Wallace M, Adams DJ, Iggo JA. Titrations without the Additions: The Efficient Determination of pKa Values Using NMR Imaging Techniques. Anal Chem 2018; 90:4160-4166. [DOI: 10.1021/acs.analchem.8b00181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew Wallace
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Dave J. Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Jonathan A. Iggo
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
11
|
Comparing the acidities of aqueous, frozen, and freeze-dried phosphate buffers: Is there a “pH memory” effect? Int J Pharm 2017; 530:316-325. [DOI: 10.1016/j.ijpharm.2017.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 07/25/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022]
|
12
|
Matyuska F, Szorcsik A, May NV, Dancs Á, Kováts É, Bényei A, Gajda T. Tailoring the local environment around metal ions: a solution chemical and structural study of some multidentate tripodal ligands. Dalton Trans 2017. [PMID: 28650056 DOI: 10.1039/c7dt00104e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Manganese(ii), copper(ii) and zinc(ii) complexes of four polydentate tripodal ligands (tachpyr (N,N',N''-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane), trenpyr (tris[2-(2-pyridylmethyl)aminoethyl]amine, tach3pyr (N,N',N''-tris(3-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane) and tren3pyr (tris[2-(2-pyridylmethyl)aminoethyl]amine)) were characterized in both solution and solid states. A combined evaluation of potentiometric, UV-VIS, NMR and EPR data allowed the conclusion of both thermodynamic and structural information about the complexes formed in solution. The four tailored polydentate tripodal ligands studied here exhibit a high thermodynamic stability, and a variety of coordination environments/geometries for the studied transition metal ions. Our data indicate that tachpyr is a more efficient zinc(ii) chelator and a similar copper(ii) chelator compared to trenpyr. Considering the higher number of N-donors and conformational flexibility of trenpyr, as well as the energy demanding switch to the triaxial conformation required for metal ion binding of tachpyr, the above observation is surprising and is very likely due to the encapsulating effect of the more rigid tachpyr skeleton. This relative binding preference of tachpyr for zinc(ii) may be related to the observation that zinc(ii) is one of the principal metals targeted by tachpyr in cells. In contrast, trenpyr is a considerably more efficient manganese(ii) chelator, since it acts as a heptadentate ligand in the aqueous Mn(trenpyr) complex. The crystal structures of copper(ii) and zinc(ii) complexes of tachpyr indicated important differences in the ligand conformation, induced by the position of counter ions, as compared to earlier reports. The closely related new ligands, tach3pyr and tren3pyr, have been designed to form oligonuclear complexes. Indeed, we obtained a three dimensional polymer with a copper(ii)/tren3pyr ratio of 11/6. Within this metal-organic framework, three distinctly different copper geometries can be identified: square pyramidal, trigonal bipyramidal and tetrahedral. Two square pyramidal and four trigonal bipyramidal copper centres create a hexanuclear subunit with a large inside cavity. These moieties are linked by tetrahedral copper(ii) centres, constructing the three-dimensional polymer structure. The formation of such polynuclear complexes was not detected in solution. Both tach3pyr and tren3pyr form only mononuclear complexes with square pyramidal and trigonal bipyramidal geometries, respectively.
Collapse
Affiliation(s)
- Ferenc Matyuska
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Attila Szorcsik
- MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary
| | - Nóra V May
- Research Centre for Natural Sciences HAS, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Ágnes Dancs
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| | - Éva Kováts
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics HAS, Konkoly Thege Miklós u. 29-33, H-1121 Budapest, Hungary
| | - Attila Bényei
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen H-4032, Hungary
| | - Tamás Gajda
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
13
|
Sigel A, Operschall BP, Griesser R, Song B, Okruszek A, Odani A, Katsuta T, Lippert B, Sigel H. (N7)-Platination and its effect on (N1)H-acidification in nucleoside phosphate derivatives. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Guo H, Kurokawa T, Takahata M, Hong W, Katsuyama Y, Luo F, Ahmed J, Nakajima T, Nonoyama T, Gong JP. Quantitative Observation of Electric Potential Distribution of Brittle Polyelectrolyte Hydrogels Using Microelectrode Technique. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Honglei Guo
- Graduate
School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Takayuki Kurokawa
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | | | - Wei Hong
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
- Department
of Aerospace Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Yoshinori Katsuyama
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Feng Luo
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Jamil Ahmed
- Graduate
School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tasuku Nakajima
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Faculty
of Advanced Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Blindauer CA, Sigel A, Operschall BP, Griesser R, Holý A, Sigel H. Extent of intramolecular π stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the anticancer and antivirally active 9-[2-(phosphonomethoxy)ethyl]guanine (PMEG). A comparison with related acyclic nucleotide analogues. Polyhedron 2016. [DOI: 10.1016/j.poly.2015.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhou P, Shi R, Yao JF, Sheng CF, Li H. Supramolecular self-assembly of nucleotide–metal coordination complexes: From simple molecules to nanomaterials. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Lüth MS, Freisinger E, Kampf G, Garijo Anorbe M, Griesser R, Operschall BP, Sigel H, Lippert B. Connectivity patterns and rotamer states of nucleobases determine acid-base properties of metalated purine quartets. J Inorg Biochem 2015; 148:93-104. [PMID: 25773716 DOI: 10.1016/j.jinorgbio.2015.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/04/2015] [Accepted: 02/05/2015] [Indexed: 10/24/2022]
Abstract
Potentiometric pH titrations and pD dependent (1)H NMR spectroscopy have been applied to study the acidification of the exocyclic amino group of adenine (A) model nucleobases (N9 position blocked by alkyl groups) when carrying trans-a2Pt(II) (with a=NH3 or CH3NH2) entities both at N1 and N7 positions. As demonstrated, in trinuclear complexes containing central A-Pt-A units, it depends on the connectivity pattern of the adenine bases (N7/N7 or N1/N1) and their rotamer states (head-head or head-tail), how large the acidifying effect is. Specifically, a series of trinuclear complexes with (A-N7)-Pt-(N7-A) and (A-N1)-Pt-(N1-A) cross-linking patterns and terminal 9-alkylguanine ligands (9MeGH, 9EtGH) have been analyzed in this respect, and it is shown that, for example, the 9MeA ligands in trans-,trans-,trans-[Pt(NH3)2(N7-9MeA-N1)2{Pt(NH3)2(9EtGH-N7)}2](ClO4)6·6H2O (4a) and trans-,trans-,trans-[Pt(NH3)2(N7-9EtA-N1)2{Pt(CH3NH2)2(9-MeGH-N7)}2](ClO4)6·3H2O (4b) are more acidic, by ca. 1.3 units (first pKa), than the linkage isomer trans-,trans-,trans-[Pt(CH3NH2)2(N1-9MeA-N7)2{Pt(NH3)2(9MeGH-N7)}2](NO3)6·6.25H2O (1b). Overall, acidifications in these types of complexes amount to 7-9 units, bringing the pKa values of such adenine ligands in the best case close to the physiological pH range. Comparison with pKa values of related trinuclear Pt(II) complexes having different co-ligands at the Pt ions, confirms this picture and supports our earlier proposal that the close proximity of the exocyclic amino groups in a head-head arrangement of (A-N7)-Pt-(N7-A), and the stabilization of the resulting N6H(-)⋯H2N6 unit, is key to this difference.
Collapse
Affiliation(s)
- Marc Sven Lüth
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany; Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Eva Freisinger
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Gunnar Kampf
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany; Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Marta Garijo Anorbe
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Bert P Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | - Bernhard Lippert
- Fakultät Chemie und Chemische Biologie (CCB), Technische Universität, Dortmund 44221 Dortmund, Germany.
| |
Collapse
|
18
|
Pávai M, Mihály J, Paszternák A. pH and CO2 Sensing by Curcumin-Coloured Cellophane Test Strip. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0102-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Gómez-Coca RB, Sigel A, Operschall BP, Holý A, Sigel H. Solution properties of metal ion complexes formed with the antiviral and cytostatic nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (PME2A6DMAP). CAN J CHEM 2014. [DOI: 10.1139/cjc-2014-0041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The acidity constants of protonated 9-[2-(phosphonomethoxy)ethyl]-2-amino-6-dimethylaminopurine (H3(PME2A6DMAP)+) are considered, and the stability constants of the M(H;PME2A6DMAP)+ and M(PME2A6DMAP) complexes (M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+) were measured by potentiometric pH titrations in aqueous solution (25 °C; I = 0.1 mol/L, NaNO3). In the M(H;PME2A6DMAP)+ species, H+ and M2+ (mainly outersphere) are at the phosphonate group; this is relevant for phosphoryl-diester bridges in nucleic acids because, in the present system, there is no indication for a M2+–purine binding. This contrasts, for example, with the complexes formed by 9-[2-(phosphonomethoxy)ethyl]adenine, M(H;PMEA)+, where M2+ is mainly situated at the adenine residue. Application of log [Formula: see text] vs. [Formula: see text] plots for simple phosph(on)ate ligands, R–PO32− (R being a residue that does not affect M2+ binding), proves that all M(PME2A6DMAP) complexes have larger stabilities than what would be expected for a M2+–phosphonate coordination. Comparisons with M(PME–R) complexes, where R is a noncoordinating residue of the (phosphonomethoxy)ethane chain, allow one to conclude that the increased stability is due to the formation of five-membered chelates involving the ether–oxygen of the –CH2–O–CH2–PO32− residue: the percentages of formation of these M(PME2A6DMAP)cl/O chelates, which occur in intramolecular equilibria, vary between 20% (Sr2+, Ba2+) and 50% (Zn2+, Cd2+), up to a maximum of 67% (Cu2+). Any M2+ interaction with N3 or N7 of the purine moiety, as in the parent M(PMEA) complexes, is suppressed by the (C2)NH2 and (C6)N(CH3)2 substituents. This observation, together with the previously determined stacking properties, offers an explanation why PME2A6DMAP2– has remarkable therapeutic effects.
Collapse
Affiliation(s)
- Raquel B. Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
- Department of Food Characterization and Analysis, Instituto de la Grasa, Spanish National Research Council (CSIC), Avda. Padre García Tejero 4, E-41012 Seville, Spain
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, CZ-16610 Prague, Czech Republic
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
20
|
Reijenga J, van Hoof A, van Loon A, Teunissen B. Development of Methods for the Determination of pKa Values. ANALYTICAL CHEMISTRY INSIGHTS 2013; 8:53-71. [PMID: 23997574 PMCID: PMC3747999 DOI: 10.4137/aci.s12304] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The acid dissociation constant (pKa) is among the most frequently used physicochemical parameters, and its determination is of interest to a wide range of research fields. We present a brief introduction on the conceptual development of pKa as a physical parameter and its relationship to the concept of the pH of a solution. This is followed by a general summary of the historical development and current state of the techniques of pKa determination and an attempt to develop insight into future developments. Fourteen methods of determining the acid dissociation constant are placed in context and are critically evaluated to make a fair comparison and to determine their applications in modern chemistry. Additionally, we have studied these techniques in light of present trends in science and technology and attempt to determine how these trends might affect future developments in the field.
Collapse
Affiliation(s)
- Jetse Reijenga
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Arno van Hoof
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Antonie van Loon
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bram Teunissen
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
21
|
Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of Intramolecular π Stacks in Aqueous Solution in Mixed-Ligand Copper(II) Complexes Formed by Heteroaromatic Amines and 1-[2-(Phosphonomethoxy)ethyl]cytosine (PMEC), a Relative of Antivirally Active Acyclic Nucleotide Analogues (Part 72) [1, 2]. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Domínguez-Martín A, Johannsen S, Sigel A, Operschall BP, Song B, Sigel H, Okruszek A, González-Pérez JM, Niclós-Gutiérrez J, Sigel RKO. Intrinsic acid-base properties of a hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT): neighboring effects and isomeric equilibria. Chemistry 2013; 19:8163-81. [PMID: 23595830 DOI: 10.1002/chem.201203330] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/09/2012] [Indexed: 02/02/2023]
Abstract
The intrinsic acid-base properties of the hexa-2'-deoxynucleoside pentaphosphate, d(ApGpGpCpCpT) [=(A1∙G2∙G3∙C4∙C5∙T6)=(HNPP)⁵⁻] have been determined by ¹H NMR shift experiments. The pKa values of the individual sites of the adenosine (A), guanosine (G), cytidine (C), and thymidine (T) residues were measured in water under single-strand conditions (i.e., 10% D₂O, 47 °C, I=0.1 M, NaClO₄). These results quantify the release of H⁺ from the two (N7)H⁺ (G∙G), the two (N3)H⁺ (C∙C), and the (N1)H⁺ (A) units, as well as from the two (N1)H (G∙G) and the (N3)H (T) sites. Based on measurements with 2'-deoxynucleosides at 25 °C and 47 °C, they were transferred to pKa values valid in water at 25 °C and I=0.1 M. Intramolecular stacks between the nucleobases A1 and G2 as well as most likely also between G2 and G3 are formed. For HNPP three pKa clusters occur, that is those encompassing the pKa values of 2.44, 2.97, and 3.71 of G2(N7)H⁺, G3(N7)H⁺, and A1(N1)H⁺, respectively, with overlapping buffer regions. The tautomer populations were estimated, giving for the release of a single proton from five-fold protonated H₅(HNPP)(±) , the tautomers (G2)N7, (G3)N7, and (A1)N1 with formation degrees of about 74, 22, and 4%, respectively. Tautomer distributions reveal pathways for proton-donating as well as for proton-accepting reactions both being expected to be fast and to occur practically at no "cost". The eight pKa values for H₅(HNPP)(±) are compared with data for nucleosides and nucleotides, revealing that the nucleoside residues are in part affected very differently by their neighbors. In addition, the intrinsic acidity constants for the RNA derivative r(A1∙G2∙G3∙C4∙C5∙U6), where U=uridine, were calculated. Finally, the effect of metal ions on the pKa values of nucleobase sites is briefly discussed because in this way deprotonation reactions can easily be shifted to the physiological pH range.
Collapse
Affiliation(s)
- Alicia Domínguez-Martín
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gómez-Coca RB, Blindauer CA, Sigel A, Operschall BP, Holý A, Sigel H. Extent of intramolecular π-stacks in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and several 2-aminopurine derivatives of the antivirally active nucleotide analog 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Chem Biodivers 2013; 9:2008-34. [PMID: 22976988 DOI: 10.1002/cbdv.201200022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The acidity constants of twofold protonated, antivirally active, acyclic nucleoside phosphonates (ANPs), H(2)(PE)(±), where PE(2-)=9-[2-(phosphonomethoxy)ethyl]adenine (PMEA(2-)), 2-amino-9-[2-(phosphonomethoxy)ethyl]purine (PME2AP(2-)), 2,6-diamino-9-[2-(phosphonomethoxy)ethyl]purine (PMEDAP(2-)), or 2-amino-6-(dimethylamino)-9-[2-(phosphonomethoxy)ethyl]purine (PME(2A6DMAP)(2-)), as well as the stability constants of the corresponding ternary Cu(Arm)(H;PE)(+) and Cu(Arm)(PE) complexes, where Arm=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen), are compared. The constants for the systems containing PE(2-)=PMEDAP(2-) and PME(2A6DMAP)(2-) have been determined now by potentiometric pH titrations in aqueous solution at I=0.1M (NaNO(3)) and 25°; the corresponding results for the other ANPs were taken from our earlier work. The basicity of the terminal phosphonate group is very similar for all the ANP(2-) species, whereas the addition of a second amino substituent at the pyrimidine ring of the purine moiety significantly increases the basicity of the N(1) site. Detailed stability-constant comparisons reveal that, in the monoprotonated ternary Cu(Arm)(H;PE)(+) complexes, the proton is at the phosphonate group, that the ether O-atom of the -CH(2)-O-CH(2)-P(O)(2)(-)(OH) residue participates, next to the P(O)(2)(-)(OH) group, to some extent in Cu(Arm)(2+) coordination, and that π-π stacking between the aromatic rings of Cu(Arm)(2+) and the purine moiety is rather important, especially for the H·PMEDAP(-) and H·PME(2A6DMAP)(-) ligands. There are indications that ternary Cu(Arm)(2+)-bridged stacks as well as unbridged (binary) stacks are formed. The ternary Cu(Arm)(PE) complexes are considerably more stable than the corresponding Cu(Arm)(R-PO(3)) species, where R-PO(3)(2-) represents a phosph(on)ate ligand with a group R that is unable to participate in any kind of intramolecular interaction within the complexes. The observed stability enhancements are mainly attributed to intramolecular-stack formation in the Cu(Arm)(PE) complexes and also, to a smaller extent, to the formation of five-membered chelates involving the ether O-atom present in the -CH(2)-O-CH(2)-PO(3)(2-) residue of the PE(2-) species. The quantitative analysis of the intramolecular equilibria involving three structurally different Cu(Arm)(PE) isomers shows that, e.g., ca. 1.5% of the Cu(phen)(PMEDAP) system exist with Cu(phen)(2+) solely coordinated to the phosphonate group, 4.5% as a five-membered chelate involving the ether O-atom of the -CH(2)-O-CH(2)-PO(3)(2-) residue, and 94% with an intramolecular π-π stack between the purine moiety of PMEDAP(2-) and the aromatic rings of phen. Comparison of the various formation degrees of the species formed reveals that, in the Cu(phen)(PE) complexes, intramolecular-stack formation is more pronounced than in the Cu(bpy)(PE) species. Within a given Cu(Arm)(2+) series the stacking intensity increases in the order PME2AP(2-) <PMEA(2-) <PMEDAP(2-) <PME(2A6DMAP)(2-). One could speculate that the reduced stacking intensity of PME2AP(2-), together with a different H-bonding pattern, could well lead to a different orientation of the 2-aminopurine moiety (compared to the adenine residue) in the active site of nucleic acid polymerases and thus be responsible for the reduced antiviral activity of PME2AP compared with that of PMEA and the other ANPs containing a 6-amino substituent.
Collapse
Affiliation(s)
- Raquel B Gómez-Coca
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel
| | | | | | | | | | | |
Collapse
|
24
|
Megger N, Johannsen S, Müller J, Sigel RKO. Synthesis and acid-base properties of an imidazole-containing nucleotide analog, 1-(2'-deoxy-β-D-ribofuranosyl)imidazole 5'-monophosphate (dImMP(2-)). Chem Biodivers 2013; 9:2050-63. [PMID: 22976990 DOI: 10.1002/cbdv.201100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Deletion of the substituted pyrimidine ring in purine-2'-deoxynucleoside 5'-monophosphates leads to the artificial nucleotide analog dImMP(2-). This analog can be incorporated into DNA to yield, upon addition of Ag(+) ions, a molecular wire. Here, we measured the acidity constants of H(2)(dImMP)(±) having one proton at N(3) and one at the PO(3)(2-) group by potentiometric pH titrations in aqueous solution. The micro acidity constants show that N(3) is somewhat more basic than PO(3)(2-) and, consequently, the (H·dImMP)(-) tautomer with the proton at N(3) dominates to ca. 75%. The calculated micro acidity constants are confirmed by (31)P- and (1)H-NMR chemical shifts. The assembled data allow many quantitative comparisons, e.g., the N(3)-protonated and thus positively charged imidazole residue facilitates deprotonation of the P(O)(2)(OH)(-) group by 0.3 pK units. Information on the intrinsic site basicities also allows predictions about metal-ion binding; e.g., Mg(2+) and Mn(2+) will primarily coordinate to the phosphate group, whereas Ni(2+) and Cu(2+) will preferably bind to N(3). Macrochelate formation for these metal ions is also predicted. The micro acidity constant for N(3)H(+) deprotonation in the (H·dImMP·H)(±) species (pk(a) 6.46) and the M(n+)-binding properties are of relevance for understanding the behavior of dImMP units present in DNA hairpins and metalated duplexes.
Collapse
Affiliation(s)
- Nicole Megger
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, D-48149 Münster
| | | | | | | |
Collapse
|
25
|
Donghi D, Pechlaner M, Finazzo C, Knobloch B, Sigel RKO. The structural stabilization of the κ three-way junction by Mg(II) represents the first step in the folding of a group II intron. Nucleic Acids Res 2012; 41:2489-504. [PMID: 23275550 PMCID: PMC3575829 DOI: 10.1093/nar/gks1179] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Folding of group II introns is characterized by a first slow compaction of domain 1 (D1) followed by the rapid docking of other domains to this scaffold. D1 compaction initiates in a small subregion encompassing the κ and ζ elements. These two tertiary elements are also the major interaction sites with domain 5 to form the catalytic core. Here, we provide the first characterization of the structure adopted at an early folding step and show that the folding control element can be narrowed down to the three-way junction with the κ motif. In our nuclear magnetic resonance studies of this substructure derived from the yeast mitochondrial group II intron Sc.ai5γ, we show that a high affinity Mg(II) ion stabilizes the κ element and enables coaxial stacking between helices d′ and d′′, favoring a rigid duplex across the three-way junction. The κ-element folds into a stable GAAA-tetraloop motif and engages in A-minor interactions with helix d′. The addition of cobalt(III)hexammine reveals three distinct binding sites. The Mg(II)-promoted structural rearrangement and rigidification of the D1 core can be identified as the first micro-step of D1 folding.
Collapse
Affiliation(s)
- Daniela Donghi
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Enyedy ÉA, Zsigó É, Nagy NV, Kowol CR, Roller A, Keppler BK, Kiss T. Complex-Formation Ability of Salicylaldehyde Thiosemicarbazone towards ZnII, CuII, FeII, FeIIIand GaIIIIons. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200360] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Abstract
Metal ions are indispensable for ribonucleic acids (RNAs) folding and activity. First they act as charge neutralization agents, allowing the RNA molecule to attain the complex active three dimensional structure. Second, metal ions are eventually directly involved in function. Nuclear magnetic resonance (NMR) spectroscopy offers several ways to study the RNA-metal ion interactions at an atomic level. Here, we first focus on special requirements for NMR sample preparation for this kind of experiments: the practical aspects of in vitro transcription and purification of small (<50 nt) RNA fragments are described, as well as the precautions that must be taken into account when a sample for metal ion titration experiments is prepared. Subsequently, we discuss the NMR techniques to accurately locate and characterize metal ion binding sites in a large RNA. For example, (2) J-[(1)H,(15)N]-HSQC (heteronuclear single quantum coherence) experiments are described to qualitatively distinguish between different modes of interaction. Finally, part of the last section is devoted to data analysis; this is how to calculate intrinsic affinity constants.
Collapse
|
28
|
Sigel A, Operschall BP, Sigel H. Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Enyedy ÉA, Primik MF, Kowol CR, Arion VB, Kiss T, Keppler BK. Interaction of Triapine and related thiosemicarbazones with iron(III)/(II) and gallium(III): a comparative solution equilibrium study. Dalton Trans 2011; 40:5895-905. [PMID: 21523301 DOI: 10.1039/c0dt01835j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stoichiometry and stability of Ga(III), Fe(III), Fe(II) complexes of Triapine and five related α-N heterocyclic thiosemicarbazones with potential antitumor activity have been determined by pH-potentiometry, UV-vis spectrophotometry, (1)H NMR spectroscopy, and spectrofluorimetry in aqueous solution (with 30% DMSO), together with the characterization of the proton dissociation processes. Additionally, the redox properties of the iron complexes were studied by cyclic voltammetry at various pH values. Formation of high stability bis-ligand complexes was found in all cases, which are predominant at physiological pH with Fe(III)/Fe(II), whilst only at the acidic pH range with Ga(III). The results show that among the thiosemicarbazones with various substituents the N-terminal dimethylation does not exert a measurable effect on the redox potential, but has the highest impact on the stability of the complexes as well as the cytotoxicity, especially in the absence of a pyridine-NH(2) group in the molecule. In addition the fluorescence properties of the ligands in aqueous solution and their changes caused by Ga(III) were studied.
Collapse
Affiliation(s)
- Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, P.O. Box 440, H-6701, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
30
|
Development of Inorganic Membranes for Hydrogen Separation. Inorg Chem 2011. [DOI: 10.1201/b12873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Knobloch B, Mucha A, Operschall BP, Sigel H, Jeżowska-Bojczuk M, Kozłowski H, Sigel RKO. Stability and structure of mixed-ligand metal ion complexes that contain Ni2+, Cu2+, or Zn2+, and Histamine, as well as adenosine 5'-triphosphate (ATP4-) or uridine 5'-triphosphate (UTP(4-): an intricate network of equilibria. Chemistry 2011; 17:5393-403. [PMID: 21465580 DOI: 10.1002/chem.201001931] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Indexed: 01/22/2023]
Abstract
With a view on protein-nucleic acid interactions in the presence of metal ions we studied the "simple" mixed-ligand model systems containing histamine (Ha), the metal ions Ni(2+), Cu(2+), or Zn(2+) (M(2+)), and the nucleotides adenosine 5'-triphosphate (ATP(4-)) or uridine 5'-triphosphate (UTP(4-)), which will both be referred to as nucleoside 5'-triphosphate (NTP(4-)). The stability constants of the ternary M(NTP)(Ha)(2-) complexes were determined in aqueous solution by potentiometric pH titrations. We show for both ternary-complex types, M(ATP)(Ha)(2-) and M(UTP)(Ha)(2-), that intramolecular stacking between the nucleobase and the imidazole residue occurs and that the stacking intensity is approximately the same for a given M(2+) in both types of complexes: The formation degree of the intramolecular stacks is estimated to be 20 to 50%. Consequently, in protein-nucleic acid interactions imidazole-nucleobase stacks may well be of relevance. Furthermore, the well-known formation of macrochelates in binary M(2+) complexes of purine nucleotides, that is, the phosphate-coordinated M(2+) interacts with N7, is confirmed for the M(ATP)(2-) complexes. It is concluded that upon formation of the mixed-ligand complexes the M(2+)-N7 bond is broken and the energy needed for this process corresponds to the stability differences determined for the M(UTP)(Ha)(2-) and M(ATP)(Ha)(2-) complexes. It is, therefore, possible to calculate from these stability differences of the ternary complexes the formation degrees of the binary macrochelates: The closed forms amount to (65±10)%, (75±8)%, and (31±14) % for Ni(ATP)(2-), Cu(ATP)(2-), and Zn(ATP)(2-), respectively, and these percentages agree excellently with previous results obtained by different methods, confirming thus the internal validity of the data and the arguments used in the evaluation processes. Based on the overall results it is suggested that M(ATP)(2-) species, when bound to an enzyme, may exist in a closed macrochelated form only, if no enzyme groups coordinate directly to the metal ion.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
32
|
Orgován G, Noszál B. Electrodeless, accurate pH determination in highly basic media using a new set of 1H NMR pH indicators. J Pharm Biomed Anal 2011; 54:958-64. [DOI: 10.1016/j.jpba.2010.11.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
|
33
|
Xue-Yi L, Fu-Hai W, Xiao-Feng H, Fen-Yun S, Liang-Nian J. Intramolecular stacking interaction in mixed-ligand complexes containing ATP4− and aromatic N-heterocyclic ligands. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.19980160410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Torma V, Gyenes T, Szakács Z, Zrínyi M. A novel potentiometric method for the determination of real crosslinking ratio of poly(aspartic acid) gels. Acta Biomater 2010; 6:1186-90. [PMID: 19761876 DOI: 10.1016/j.actbio.2009.08.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/21/2009] [Accepted: 08/26/2009] [Indexed: 11/19/2022]
Abstract
In order to obtain nontoxic functional polymer gels for biomedical applications, chemically crosslinked poly(aspartic acid) gels have been prepared using 1,4-diaminobutane as crosslinker. The presence of COOH and amino groups on the network chains renders these gels pH sensitive. Due to the specific hydrophobic-hydrophilic balance, these gels show a significant volume transition at a well-defined pH close to the pK value of uncrosslinked poly(aspartic acid). Since the magnitude of volume change critically depends on the degree of crosslinking, it is an important task to determine the topological characteristics of these networks. A novel method based on potentiometric acid-base titration has been developed to assess the crosslinking ratio, excluding physical crosslinks and entanglements. It turned out that only 25% of all crosslinker molecules forms real crosslinks between the poly(aspartic acid) chains; the rest react with one of its functional groups and forms short pendant side chains. At a nominal crosslinking ratio of 0.1, the number average molecular mass between crosslinks is found to be M(c) = 2300.
Collapse
Affiliation(s)
- Viktória Torma
- Department of Pharmaceutics, Faculty of Pharmacy, Semmelweis University, Hogyes Endre u. 7, H-1092 Budapest, Hungary.
| | | | | | | |
Collapse
|
35
|
Fernández-Botello A, Operschall BP, Holy A, Moreno V, Sigel H. Metal ion-binding properties of 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA). Steric guiding of metal ion-coordination by the purine-amino group. Dalton Trans 2010; 39:6344-54. [DOI: 10.1039/c005238h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Goeschen C, Herges R, Richter J, Tokarczyk B, Wirz J. 2-(2,4-Dinitrobenzyl)pyridine (DNBP): A Potential Light-Activated Proton Shuttle. Helv Chim Acta 2009. [DOI: 10.1002/hlca.200900191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Sigel H, Operschall BP, Griesser R. Xanthosine 5'-monophosphate (XMP). Acid-base and metal ion-binding properties of a chameleon-like nucleotide. Chem Soc Rev 2009; 38:2465-94. [PMID: 19623361 DOI: 10.1039/b902181g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H(3)(XMP)(+), reveal that in the physiological pH range around 7.5 (X - H x MP)(3-) strongly dominates and not XMP(2-) as commonly given in textbooks and often applied in research papers. Therefore, this nucleotide, which participates in many metabolic processes, should be addressed as xanthosinate 5'-monophosphate as is stated in this critical review. Micro acidity constant schemes allow quantification of intrinsic site basicities. In 9-methylxanthine nucleobase deprotonation occurs to more than 99% at (N3)H, whereas for xanthosine it is estimated that about 30% are (N1)H deprotonated and for (X - H x MP)(3-) it is suggested that (N1)H deprotonation is further favored, especially in macrochelates where the phosphate-coordinated M(2+) interacts with N7. The formation degree of these macrochelates in the (X - H x MP x M)(-) species of Co(2+), Ni(2+), Cu(2+), Zn(2+) or Cd(2+) amounts to 90% or more. In the monoprotonated (M x X - H x MP x H)(+/-) complexes, M(2+) is located at the N7/[(C6)O] unit as the primary binding site and it forms macrochelates with the P(O)(2)(OH)(-) group to about 65% for nearly all metal ions considered (i.e., including Ba(2+), Sr(2+), Ca(2+), Mg(2+)); this indicates outer-sphere binding to P(O)(2)(OH)(-). Finally, a new method quantifying the chelate effect is applied to the M(X - H x MP)(-) species, stabilities and structures of mixed-ligand complexes are considered, and the stability constants for several M(X - H x DP)(2-) and M(X - H x TP)(3-) complexes are estimated (112 references).
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
38
|
Demadis KD, Stavgianoudaki N, Grossmann G, Gruner M, Schwartz JL. Calcium-phosphonate interactions: solution behavior and Ca2+ binding by 2-hydroxyethylimino-bis(methylenephosphonate) studied by multinuclear NMR spectroscopy. Inorg Chem 2009; 48:4154-64. [PMID: 19323525 DOI: 10.1021/ic802400r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tetra-acid 2-hydroxyethylimino-bis(methylenephosphonic acid) (HEIBPH, 1) and its ring condensation product, the triacid 2-hydroxy-2-oxo-4-phosphonemethyl-1,4,2-oxazaphosphorinane (2), were investigated for determination of protonation constants using (31)P, (1)H, and (13)C NMR spectroscopy in a wide pH range. As for other alpha-amino-phosphonic acids, the first protonation of 1 is straightforward and occurs at the nitrogen, while for 2 the first protonation occurs simultaneously at the exo phosphonate group, allowing estimation of the microscopic protonation constants. The complexation of Ca(2+) with 1 in a 1:1 molar ratio in aqueous solutions and in the presence of a 5-fold excess Na(+) is rationalized by the products LCaH(2), LCaH, LCaNaH, LCa, and LCa(2) (L = 1). Only the phosphonate groups are involved in Ca(2+) binding at pH > 3, while the phosphonate, hydroxyl, and amine functionalities coordinate to Ca(2+) at pH > 6-7, as soon as the proton at N is lost. Probable conformation states of ions of 1 and 2 are estimated by means of the dependence of vicinal coupling constants (3)J(HH) and (3)J(PC) from dihedral angles.
Collapse
Affiliation(s)
- Konstantinos D Demadis
- Crystal Growth and Design Laboratory, Department of Chemistry, University of Crete, P.O. Box 2208, Voutes Campus, Heraklion GR-71003, Crete, Greece.
| | | | | | | | | |
Collapse
|
39
|
Shimazaki Y, Yajima T, Shiraiwa T, Yamauchi O. Zinc(II)–phenoxyl radical complexes: Dependence on complexation properties of Zn–phenolate species. Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
40
|
Freisinger E, Griesser R, Lippert B, Moreno-Luque CF, Niclós-Gutiérrez J, Ochocki J, Operschall BP, Sigel H. Comparison of the surprising metal-ion-binding properties of 5- and 6-uracilmethylphosphonate (5Umpa2- and 6Umpa2-) in aqueous solution and crystal structures of the dimethyl and di(isopropyl) esters of H2(6Umpa). Chemistry 2009; 14:10036-46. [PMID: 18803205 DOI: 10.1002/chem.200800998] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
5- and 6-Uracilmethylphosphonate (5Umpa(2-) and 6Umpa(2-)) as acyclic nucleotide analogues are in the focus of anticancer and antiviral research. Connected metabolic reactions involve metal ions; therefore, we determined the stability constants of M(Umpa) complexes (M(2+)=Mg(2+), Ca(2+), Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). However, the coordination chemistry of these Umpa species is also of interest in its own right, for example, the phosphonate-coordinated M(2+) interacts with (C4)O to form seven-membered chelates with 5Umpa(2-), thus leading to intramolecular equilibria between open (op) and closed (cl) isomers. No such interaction occurs with 6Umpa(2-). In both M(Umpa) series deprotonation of the uracil residue leads to the formation of M(Umpa-H)(-) complexes at higher pH values. Their stability was evaluated by taking into account the fact that the uracilate residue can bind metal ions to give M(2)(Umpa-H)(+) species. This has led to two further important insights: 1) In M(6Umpa-H)-cl the H(+) is released from (N1)H, giving rise to six-membered chelates (degrees of formation of ca. 90 to 99.9 % with Mn(2+), Co(2+), Cu(2+), Zn(2+), or Cd(2+)). 2) In M(5Umpa-H)$-cl the (N3)H is deprotonated, leading to a higher stability of the seven-membered chelates involving (C4)O (even Mg(2+) and Ca(2+) chelates are formed up to approximately 50 %). In both instances the M(Umpa-H)-op species led to the formation of M(2)(Umpa-H)(+) complexes that have one M(2+) at the phosphonate and one at the (N3)(-) (plus carbonyl) site; this proves that nucleotides can bind metal ions independently at the phosphate and the nucleobase residues. X-ray structural analyses of 6Umpa derivatives show that in diesters the phosphonate group is turned away from the uracil residue, whereas in H(2)(6Umpa) the orientation is such that upon deprotonation in aqueous solution a strong hydrogen bond is formed between (N1)H and PO(3) (2-); replacement of the hydro gen with M(2+) gives the M(6Umpa-H)-cl chelates mentioned.
Collapse
Affiliation(s)
- Eva Freisinger
- Institute of Inorganic Chemistry, University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fernández-Botello A, Holý A, Moreno V, Operschall BP, Sigel H. Intramolecular π–π stacking interactions in aqueous solution in mixed-ligand copper(II) complexes formed by heteroaromatic amines and the nucleotide analogue 9-[2-(phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antivirally active 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA). Inorganica Chim Acta 2009. [DOI: 10.1016/j.ica.2008.02.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Operschall BP, Bianchi EM, Griesser R, Sigel H. Influence of decreasing solvent polarity (1,4-dioxane/water mixtures) on the stability and structure of complexes formed by copper(II), 2,2′-bipyridine or 1,10-phenanthroline and guanosine 5′-diphosphate: evaluation of isomeric equilibria. J COORD CHEM 2008. [DOI: 10.1080/00958970802474888] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Bert P. Operschall
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Emanuela M. Bianchi
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Rolf Griesser
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Helmut Sigel
- a Department of Chemistry, Inorganic Chemistry , University of Basel , Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Mucha A, Knobloch B, Jezowska-Bojczuk M, Kozłowski H, Sigel RKO. Comparison of the acid-base properties of ribose and 2'-deoxyribose nucleotides. Chemistry 2008; 14:6663-71. [PMID: 18567033 DOI: 10.1002/chem.200800496] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The extent to which the replacement of a ribose unit by a 2'-deoxyribose unit influences the acid-base properties of nucleotides has not hitherto been determined in detail. In this study, by potentiometric pH titrations in aqueous solution, we have measured the acidity constants of the 5'-di- and 5'-triphosphates of 2'-deoxyguanosine [i.e., of H(2)(dGDP)(-) and H(2)(dGTP)(2-)] as well as of the 5'-mono-, 5'-di-, and 5'-triphosphates of 2'-deoxyadenosine [i.e., of H(2)(dAMP)(+/-), H(2)(dADP)(-), and H(2)(dATP)(2-)]. These 12 acidity constants (of the 56 that are listed) are compared with those of the corresponding ribose derivatives (published data) measured under the same experimental conditions. The results show that all protonation sites in the 2'-deoxynucleotides are more basic than those in their ribose counterparts. The influence of the 2'-OH group is dependent on the number of 5'-phosphate groups as well as on the nature of the purine nucleobase. The basicity of N7 in guanine nucleotides is most significantly enhanced (by about 0.2 pK units), while the effect on the phosphate groups and the N1H or N1H(+) sites is less pronounced but clearly present. In addition, (1)H NMR chemical shift change studies in dependence on pD in D(2)O have been carried out for the dAMP, dADP, and dATP systems, which confirmed the results from the potentiometric pH titrations and showed the nucleotides to be in their anti conformations. Overall, our results are not only of relevance for metal ion binding to nucleotides or nucleic acids, but also constitute an exact basis for the calculation, determination, and understanding of perturbed pK(a) values in DNAzymes and ribozymes, as needed for the delineation of acid-base mechanisms in catalysis.
Collapse
Affiliation(s)
- Ariel Mucha
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Mucha A, Knobloch B, Jezowska-Bojczuk M, Kozłowski H, Sigel RKO. Effect of the ribose versus 2'-deoxyribose residue on the metal ion-binding properties of purine nucleotides. Dalton Trans 2008:5368-77. [PMID: 18827944 DOI: 10.1039/b805911j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction between metal ions and nucleotides is well characterized, as is their importance for metabolic processes, e.g. in the synthesis of nucleic acids. Hence, it is surprising to find that no detailed comparison is available of the metal ion-binding properties between nucleoside 5'-phosphates and 2'-deoxynucleoside 5'-phosphates. Therefore, we have measured here by potentiometric pH titrations the stabilities of several metal ion complexes formed with 2'-deoxyadenosine 5'-monophosphate (dAMP2-), 2'-deoxyadenosine 5'-diphosphate (dADP3-) and 2'-deoxyadenosine 5'-triphosphate (dATP4-). These results are compared with previous data measured under the same conditions and available in the literature for the adenosine 5'-phosphates, AMP(2-), ADP(3-) and ATP(4-), as well as guanosine 5'-monophosphate (GMP(2-)) and 2'-deoxyguanosine 5'-monophosphate (dGMP(2-)). Hence, in total four nucleotide pairs, GMP(2-)/dGMP(2-), AMP(2-)/dAMP(2-), ADP(3-)/dADP(3-) and ATP(4-)/dATP(4-) (= NP/dNP), could be compared for the four metal ions Mg2+, Ni2+, Cu2+ and Zn2+ (= M2+). The comparisons show that complex stability and extent of macrochelate formation between the phosphate-coordinated metal ion and N7 of the purine residue is very similar (or even identical) for the AMP(2-)/dAMP(2-) and ADP(3-)/dADP(3-) pairs. In the case of the complexes formed with ATP(4-)/dATP(4-) the 2'-deoxy complexes are somewhat more stable and show also a slightly enhanced tendency for macrochelate formation. This is different for guanine nucleotides: the stabilities of the M(dGMP) complexes are clearly higher, as are the formation degrees of their macrochelates, than is the case with the M(GMP) complexes. This enhanced complex stability and greater tendency to form macrochelates can be attributed to the enhanced basicity (DeltapKaca. 0.2) of N7 in the 2'-deoxy compound. These results allow general conclusions regarding nucleic acids to be made.
Collapse
Affiliation(s)
- Ariel Mucha
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Knobloch B, Okruszek A, Sigel H. Inosylyl(3'-->5')inosine (IpI-). Acid-base and metal ion-binding properties of a dinucleoside monophosphate in aqueous solution. Inorg Chem 2008; 47:2641-8. [PMID: 18330981 DOI: 10.1021/ic701976v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The acidity constants of the (N7)H(+) sites of inosylyl(3'-->5')inosine (IpI(-)) were estimated and those of its (N1)H sites were measured by potentiometric pH titrations in aqueous solution (25 degrees C; I = 0.1 M, NaNO3). The same method was used for the determination of the stability constants of the 1:1 complexes formed between Mg(2+), Co(2+), Ni(2+), Zn(2+), or Cd(2+) (= M(2+)) and (IpI - H)(2-) and, in the case of Mg(2+), also of (IpI - 2H)(3-). The stability constants of the M(IpI)(+) complexes were estimated. The acidity constants of H(inosine)(+) and the stability constants of the M(Ino)(2+) and M(Ino - H)(+) complexes were taken from the literature. The comparison of these and related data allows the conclusion that, in the M(IpI - H) species, chelates are formed; most likely they are preferably of an N7/N7 type. For the metal ions Co(2+), Ni(2+), Zn(2+), or Cd(2+), the formation degrees of the chelates are on the order of 60-80%; no chelates could be detected for the Mg(IpI - H) complexes. It is noteworthy that the (N1)H deprotonation, which leads to the M(IpI - H) species, occurs in all M(IpI)(+) complexes in the physiological pH range of about 7.5 or even below.
Collapse
Affiliation(s)
- Bernd Knobloch
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
46
|
Knobloch B, Nawrot B, Okruszek A, Sigel RKO. Discrimination in metal-ion binding to RNA dinucleotides with a non-bridging oxygen or sulfur in the phosphate diester link. Chemistry 2008; 14:3100-9. [PMID: 18270983 DOI: 10.1002/chem.200701491] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Replacement of a non-bridging oxygen in the phosphate diester bond by a sulfur has become quite popular in nucleic acid research and is often used as a probe, for example, in ribozymes, where the normally essential Mg(2+) is partly replaced by a thiophilic metal ion to reactivate the system. Despite these widely applied rescue experiments no detailed studies exist quantifying the affinity of metal ions to such terminal sulfur atoms. Therefore, we performed potentiometric pH titrations to determine the binding properties of pUp((S))U(3-) towards Mg(2+), Mn(2+), Zn(2+), Cd(2+), and Pb(2+), and compared these data with those previously obtained for the corresponding pUpU(3-) complexes. The primary binding site in both dinucleotides is the terminal phosphate group. Theoretically, also the formation of 10-membered chelates involving the terminal oxygen or sulfur atoms of the (thio)phosphate bridge is possible with both ligands. The results show that Mg(2+) and Mn(2+) exist as open (op) isomers binding to both dinucleotides only at the terminal phosphate group. Whereas Cd(pUpU)(-) only exists as Cd(pUpU)(-)(op), Cd(pUp((S))U)(-) is present to about 64 % as the S-coordinated macrochelate, Cd(pUp((S))U)(-)(cl/PS). Zn(2+) forms with pUp((S))U(3-) three isomeric species, that is, Zn(pUp((S))U)(-)(op), Zn(pUp((S))U)(-)(cl/PO), and Zn(pUp((S))U)(-)(cl/PS), which occur to about 33, 12 (O-bound), and 55 %, respectively. Pb(2+) forms the 10-membered chelate with both nucleotides involving only the terminal oxygen atoms of the (thio)phosphate bridge, that is, no indication of S binding was discovered in this case. Hence, Zn(2+) and Cd(2+) show pronounced thiophilic properties, whereas Mg(2+), Mn(2+), and Pb(2+) coordinate to the oxygen, macrochelate formation being of relevance with Pb(2+) only.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
47
|
Sigel H, Massoud SS, Song B, Griesser R, Knobloch B, Operschall BP. Acid-base and metal-ion-binding properties of xanthosine 5'-monophosphate (XMP) in aqueous solution: complex stabilities, isomeric equilibria, and extent of macrochelation. Chemistry 2007; 12:8106-22. [PMID: 16888737 DOI: 10.1002/chem.200600160] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The four acidity constants of threefold protonated xanthosine 5'-monophosphate, H3(XMP)+, reveal that at the physiological pH of 7.5 (XMP-H)(3-) strongly dominates (and not XMP(2-) as given in textbooks); this is in contrast to the related inosine (IMP(2-)) and guanosine 5'-monophosphate (GMP(2-)) and it means that XMP should better be named as xanthosinate 5'-monophosphate. In addition, evidence is provided for a tautomeric (XMP-HN1)(3-)/(XMP-HN3)(3-) equilibrium. The stability constants of the M(H;XMP)+ species were estimated and those of the M(XMP) and M(XMP-H)- complexes (M2+=Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+) measured potentiometrically in aqueous solution. The primary M2+ binding site in M(XMP) is (mostly) N7 of the monodeprotonated xanthine residue, the proton being at the phosphate group. The corresponding macrochelates involving P(O)2(OH)- (most likely outer-sphere) are formed to approximately 65% for nearly all M2+. In M(XMP-H)- the primary M2+ binding site is (mostly) the phosphate group; here the formation degree of the N7 macrochelates varies widely from close to zero for the alkaline earth ions, to approximately 50% for Mn2+, and approximately 90% or more for Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. Because for (XMP-H)(3-) the micro stability constants quantifying the M2+ affinity of the xanthosinate and PO3(2-) residues are known, one may apply a recently developed quantification method for the chelate effect to the corresponding macrochelates; this chelate effect is close to zero for the alkaline earth ions and it amounts to about one log unit for Co2+, Ni2+, Cu2+. This method also allows calculation of the formation degrees of the monodentatally coordinated isomers; this information is of relevance for biological systems because it demonstrates how metal ions can switch from one site to another through macrochelate formation. These insights are meaningful for metal-ion-dependent reactions of XMP in metabolic pathways; previous mechanistic proposals based on XMP(2-) need revision.
Collapse
Affiliation(s)
- Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Spitalstrasse 51, 4056 Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
48
|
Knobloch B, Sigel H, Okruszek A, Sigel RKO. Metal-ion-coordinating properties of the dinucleotide 2'-deoxyguanylyl(5'-->3')-2'-deoxy-5'-guanylate (d(pGpG)3-): isomeric equilibria including macrochelated complexes relevant for nucleic acids. Chemistry 2007; 13:1804-14. [PMID: 17121397 DOI: 10.1002/chem.200600744] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The interaction between divalent metal ions and nucleic acids is well known, yet knowledge about the strength of binding of labile metal ions at the various sites is very scarce. We have therefore studied the stabilities of complexes formed between the nucleic acid model d(pGpG) and the essential metal ions Mg2+ and Zn2+ as well as with the generally toxic ions Cd2+ and Pb2+ by potentiometric pH titrations; all four ions are of relevance in ribozyme chemistry. A comparison of the present results with earlier data obtained for M(pUpU)- complexes allows the conclusion that phosphate-bound Mg2+ and Cd2+ form macrochelates by interaction with N7, whereas the also phosphate-coordinated Pb2+ forms a 10-membered chelate with the neighboring phosphate diester bridge. Zn2+ forms both types of chelates with formation degrees of about 91% and 2.4% for Zn[d(pGpG)]cl/N7 and Zn[d(pGpG)]-cl/PO, respectively; the open form with Zn2+ bound only to the terminal phosphate group, Zn[d(pGpG)]-op, amounts to about 6.8 %. The various intramolecular equilibria have also been quantified for the other metal ions. Zn2+, Cu2+, and Cd2+ also form macrochelates in the monoprotonated M[H;d(pGpG)] species (the proton being at the terminal phosphate group), that is, the metal ion at N7 interacts to some extent with the P(O)2(OH)- group. Thus, this study demonstrates that the coordinating properties of the various metal ions toward a pGpG unit in a nucleic acid differ: Mg2+, Zn2+, and Cd2+ have a significant tendency to bridge the distance between N7 and the phosphate group of a (d)GMP unit, although to various extents, whereas Pb2+ (and possibly Ca2+) prefer a pure phosphate coordination.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
49
|
Yajima T, Takamido R, Shimazaki Y, Odani A, Nakabayashi Y, Yamauchi O. π–π Stacking assisted binding of aromatic amino acids by copper(ii)–aromatic diimine complexes. Effects of ring substituents on ternary complex stability. Dalton Trans 2007:299-307. [PMID: 17200749 DOI: 10.1039/b612394e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ternary Cu(ii) complexes containing an aromatic diimine (DA = di(2-pyridylmethyl)amine (dpa), 4,4'-disubstituted 2,2'-bipyridine (Y(2)bpy; Y = H (bpy), Me, Cl, N(Et)(2), CONH(2) or COOEt) or 2,2'-bipyrimidine) and an aromatic amino acid (AA = l-phenylalanine (Phe), p-substituted phenylalanine (XPhe; X = NH(2), NO(2), F, Cl or Br), l-tyrosine (Tyr), l-tryptophan (Trp) or l-alanine (Ala)) were characterized by X-ray diffraction, spectroscopic and potentiometric measurements. The structures of [Cu(dpa)(Trp)]ClO(4).2H(2)O and [Cu((CONH(2))(2)bpy)(Phe)]ClO(4).H(2)O in the solid state were revealed to have intramolecular pi-pi interactions between the Cu(ii)-coordinated aromatic ring moiety, Cu(DA) (Mpi), and the side chain aromatic ring of the AA (Lpi). The intensities of Mpi-Lpi interactions were evaluated by the stability constants of the ternary Cu(ii) complexes determined at 25 degrees C and I = 0.1 M (KNO(3)), which revealed that the stability enhancement of the Cu(DA)(AA) systems due to the interactions is in the order (CONH(2))(2)bpy < bpy < Me(2)bpy < (Et(2)N)(2)bpy with respect to DA. The results indicate that the electron density of coordinated aromatic diimines influences the intensities of the stacking interactions in the Cu(DA)(AA) systems. The Mpi-Lpi interactions are also influenced by the substituents, X, of Lpi and are in linear relationship with their Hammett sigma(p) values with the exception of X = Cl and Br.
Collapse
Affiliation(s)
- Tatsuo Yajima
- Unit of Chemistry, Faculty of Engineering, Kansai University, Suita, Osaka 564-8680, Japan
| | | | | | | | | | | |
Collapse
|
50
|
Knobloch B, Suliga D, Okruszek A, Sigel RKO. Acid-base and metal-ion binding properties of the RNA dinucleotide uridylyl-(5'-->3')-[5']uridylate (pUpU3-). Chemistry 2006; 11:4163-70. [PMID: 15861476 DOI: 10.1002/chem.200500013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is well known that Mg2+ and other divalent metal ions bind to the phosphate groups of nucleic acids. Subtle differences in the coordination properties of these metal ions to RNA, especially to ribozymes, determine whether they either promote or inhibit catalytic activity. The ability of metal ions to coordinate simultaneously with two neighboring phosphate groups is important for ribozyme structure and activity. However, such an interaction has not yet been quantified. Here, we have performed potentiometric pH titrations to determine the acidity constants of the protonated dinucleotide H2(pUpU)-, as well as the binding properties of pUpU3- towards Mg2+, Mn2+, Cd2+, Zn2+, and Pb2+. Whereas Mg2+, Mn2+, and Cd2+ only bind to the more basic 5'-terminal phosphate group, Pb2+, and to a certain extent also Zn2+, show a remarkably enhanced stability of the [M(pUpU)]- complex. This can be attributed to the formation of a macrochelate by bridging the two phosphate groups within this dinucleotide by these metal ions. Such a macrochelate is also possible in an oligonucleotide, because the basic structural units are the same, despite the difference in charge. The formation degrees of the macrochelated species of [Zn(pUpU)]- and [Pb(pUpU)]- amount to around 25 and 90 %, respectively. These findings are important in the context of ribozyme and DNAzyme catalysis, and explain, for example, why the leadzyme could be selected in the first place, and why this artificial ribozyme is inhibited by other divalent metal ions, such as Mg2+.
Collapse
Affiliation(s)
- Bernd Knobloch
- Institute of Inorganic Chemistry, University of Zürich, Switzerland
| | | | | | | |
Collapse
|