Henly DC, Berry MN. Effect of palmitate concentration on the relative contributions of the beta-oxidation pathway and citric acid cycle to total O2 consumption of isolated rat hepatocytes.
BIOCHIMICA ET BIOPHYSICA ACTA 1993;
1175:269-76. [PMID:
8435443 DOI:
10.1016/0167-4889(93)90216-c]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The relative contributions of beta-oxidation and citric acid cycle activity to total O2 consumption during fatty acid oxidation were examined in isolated hepatocytes. When hepatocytes were incubated with palmitate alone, a rise in fatty acid concentration induced an increase in O2 uptake that reflected a large stimulation of beta-oxidation and an accompanying smaller inhibition of citric acid cycle oxidation. In the presence of lactate, successive increments in palmitate concentration over the range from 0 to 1.0 mM stimulated glucose synthesis and brought about a concomitant incremental stimulation of both beta-oxidation and citric acid cycle flux. However, above 1.5 mM palmitate, additional increments in fatty acid concentration depressed gluconeogenesis and citric acid cycle activity but induced a further stimulation of beta-oxidation. These findings demonstrate that, during fatty acid oxidation, the rate of citric acid cycle turnover is more closely linked to the rate of glucose synthesis than is the rate of beta-oxidation. This may be relevant to observations that the stimulation of hepatic O2 consumption, induced by fatty acid oxidation, is much greater than can be explained in terms of the ATP-demand arising from exposure of hepatocytes to fatty acid.
Collapse