Doxorubicin exhibits strong and selective association with VEGF Pu
22 G-quadruplex.
Biochim Biophys Acta Gen Subj 2020;
1864:129720. [PMID:
32860839 DOI:
10.1016/j.bbagen.2020.129720]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/07/2020] [Accepted: 08/21/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND
Vascular endothelial growth factor (VEGF), is upregulated in tumor cells and thus became a potential therapeutic target for anti-cancer drugs. Recent reports suggested the use of Doxorubicin (Dox) with VEGF-targeting siRNAs for an enhanced decrease in VEGF expression. Besides, VEGF-B gene therapy was found to suppress the cardiotoxicity effects of Dox. On the other hand, even though Dox is a commonly used anti-cancer agent, its mechanism of actions isn't completely mapped out. Herein, the interactions between a G4 structure formed by the VEGF promoter region Pu22 and Dox were investigated.
METHODS
The Dox-G4 interactions were examined via competition dialysis, UV-vis Absorption, Circular Dichroism (CD) and Fluorescence spectroscopy.
RESULTS
The results demonstrated that Dox was stabilizing the VEGF Pu22 G4 structure and the calculated association constant for VEGF Pu22-G4 complex (Ka = 7.50 × 106) was very close to the reported Ka values for Dox-dsDNA complexes. Additionally, the competition dialysis experiments revealed the selectivity of Dox to Pu22 compared to other G4 structures formed in telomeric repeats and promoter regions such as BCL-2 and C-myc.
CONCLUSIONS
Dox exhibits strong and selective association with VEGF Pu22 G4 structure that was comparable to its well-known association with dsDNA.
GENERAL SIGNIFICANCE
The results presented here might be useful in the general area of antitumor drug-DNA interactions. Doxorubicin's significant affinity to VEGF Pu22 G4 might be one of the plausible mechanisms behind its anti-tumor activity.
Collapse