1
|
Analytical Methods for Determination of Phytic Acid and Other Inositol Phosphates: A Review. Molecules 2020; 26:molecules26010174. [PMID: 33396544 PMCID: PMC7795710 DOI: 10.3390/molecules26010174] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
From the early precipitation-based techniques, introduced more than a century ago, to the latest development of enzymatic bio- and nano-sensor applications, the analysis of phytic acid and/or other inositol phosphates has never been a straightforward analytical task. Due to the biomedical importance, such as antinutritional, antioxidant and anticancer effects, several types of methodologies were investigated over the years to develop a reliable determination of these intriguing analytes in many types of biological samples; from various foodstuffs to living cell organisms. The main aim of the present work was to critically overview the development of the most relevant analytical principles, separation and detection methods that have been applied in order to overcome the difficulties with specific chemical properties of inositol phosphates, their interferences, absence of characteristic signal (e.g., absorbance), and strong binding interactions with (multivalent) metals and other biological molecules present in the sample matrix. A systematical and chronological review of the applied methodology and the detection system is given, ranging from the very beginnings of the classical gravimetric and titrimetric analysis, through the potentiometric titrations, chromatographic and electrophoretic separation techniques, to the use of spectroscopic methods and of the recently reported fluorescence and voltammetric bio- and nano-sensors.
Collapse
|
2
|
Wilson MSC, Saiardi A. Importance of Radioactive Labelling to Elucidate Inositol Polyphosphate Signalling. Top Curr Chem (Cham) 2017; 375:14. [PMID: 28101851 PMCID: PMC5396384 DOI: 10.1007/s41061-016-0099-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
Inositol polyphosphates, in their water-soluble or lipid-bound forms, represent a large and multifaceted family of signalling molecules. Some inositol polyphosphates are well recognised as defining important signal transduction pathways, as in the case of the calcium release factor Ins(1,4,5)P3, generated by receptor activation-induced hydrolysis of the lipid PtdIns(4,5)P2 by phospholipase C. The birth of inositol polyphosphate research would not have occurred without the use of radioactive phosphate tracers that enabled the discovery of the “PI response”. Radioactive labels, mainly of phosphorus but also carbon and hydrogen (tritium), have been instrumental in the development of this research field and the establishment of the inositol polyphosphates as one of the most important networks of regulatory molecules present in eukaryotic cells. Advancements in microscopy and mass spectrometry and the development of colorimetric assays have facilitated inositol polyphosphate research, but have not eliminated the need for radioactive experimental approaches. In fact, such experiments have become easier with the cloning of the inositol polyphosphate kinases, enabling the systematic labelling of specific positions of the inositol ring with radioactive phosphate. This approach has been valuable for elucidating their metabolic pathways and identifying specific and novel functions for inositol polyphosphates. For example, the synthesis of radiolabelled inositol pyrophosphates has allowed the discovery of a new protein post-translational modification. Therefore, radioactive tracers have played and will continue to play an important role in dissecting the many complex aspects of inositol polyphosphate physiology. In this review we aim to highlight the historical importance of radioactivity in inositol polyphosphate research, as well as its modern usage.
Collapse
Affiliation(s)
- Miranda S C Wilson
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
3
|
Schlemmer U, Frølich W, Prieto RM, Grases F. Phytate in foods and significance for humans: Food sources, intake, processing, bioavailability, protective role and analysis. Mol Nutr Food Res 2009; 53 Suppl 2:S330-75. [DOI: 10.1002/mnfr.200900099] [Citation(s) in RCA: 521] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Bucki R, Pastore JJ, Giraud F, Sulpice JC, Janmey PA. Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J Thromb Haemost 2003; 1:1820-8. [PMID: 12911599 DOI: 10.1046/j.1538-7836.2003.00294.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dietary flavonoids are known for their antiplatelet activity resulting in cardiovascular protection. Phosphatidylinositol 4,5-bisphosphate (PIP2) was previously reported to play a direct role in phosphatidylserine (PS) exposure, as a Ca2+ target. Thrombin formation and platelet procoagulant activity are dependent on PS exposure. As flavonoids can inhibit phosphoinositide (PPI) kinases, we examined whether changes in PPI metabolism in flavonoid-treated platelets could be involved in their antiplatelet effects. Treatment with the flavonoids quercetin or catechin reduced PS exposure, thrombin formation, PIP2 level and resynthesis after platelet activation with collagen, thrombin or calcium ionophore. Flavonoids also prevented [Ca2+]i increase induced by collagen, but not by the ionophore. The ability of flavonoids to decrease PS exposure induced by ionophore treatment could result from the diminution of PIP2 levels, whereas PS exposure induced by collagen could also be diminished by flavonoids' effects on calcium signaling dependent on PIP2 hydrolysis. These data favor a role for PIP2 in the antiplatelet effects of flavonoids.
Collapse
Affiliation(s)
- R Bucki
- University of Pennsylvania, Institute for Medicine and Engineering, 1010 Vagelos Research Laboratories, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
5
|
Fathallah H, Sauvage M, Romero JR, Canessa M, Giraud F. Effects of PKC alpha activation on Ca2+ pump and K(Ca) channel in deoxygenated sickle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1206-14. [PMID: 9357764 DOI: 10.1152/ajpcell.1997.273.4.c1206] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have previously shown that a pretreatment with phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC), reduced deoxygenation-induced K+ loss and Ca2+ uptake and prevented cell dehydration in sickle anemia red blood cells (SS cells) (H. Fathallah, E. Coezy, R.-S. De Neef, M.-D. Hardy-Dessources, and F. Giraud. Blood 86: 1999-2007, 1995). The present study explores the detailed mechanism of this PMA-induced inhibition. The main findings are, first, the detection of PKC alpha and PKC zeta in normal red blood cells and the demonstration that both isoforms are expressed at higher levels in SS cells. The alpha-isoform only is translocated to the membrane and activated by PMA and by elevation of cytosolic Ca2+. Second, PMA is demonstrated to activate Ca2+ efflux in deoxygenated SS cells by a direct stimulation of the Ca2+ pump. PMA, moreover, inhibits deoxygenation-induced, charybdotoxin-sensitive K+ efflux in SS cells. This inhibition is partly indirect and explained by the reduced deoxygenation-induced rise in cytosolic Ca2+ resulting from Ca2+ pump stimulation. However, a significant inhibition of the Ca2+-activated K+ channels (K(Ca) channels) by PMA can also be demonstrated when the channels are activated by Ca2+ plus ionophore, under conditions in which the Ca2+ pump is operating near its maximal extrusion rate, but swamped by Ca2+ plus ionophore. The data thus suggest a PKC alpha-mediated phosphorylation both of the Ca2+ pump and of the K(Ca) channel or an auxiliary protein.
Collapse
Affiliation(s)
- H Fathallah
- Unité de Recherches Associée 1116, Centre National de la Recherche Scientifique, Université Paris XI, Orsay, France
| | | | | | | | | |
Collapse
|
6
|
Schultz C, Burmester A, Stadler C. Synthesis, separation, and identification of different inositol phosphates. Subcell Biochem 1996; 26:371-413. [PMID: 8744272 DOI: 10.1007/978-1-4613-0343-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- C Schultz
- Institute for Organic Chemistry, University of Bremen, Germany
| | | | | |
Collapse
|
7
|
Chapter 9 Preparative HPLC of Carbohydrates. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0301-4770(08)60514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
8
|
Lerner MR. Tools for investigating functional interactions between ligands and G-protein-coupled receptors. Trends Neurosci 1994; 17:142-6. [PMID: 7517590 DOI: 10.1016/0166-2236(94)90087-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A general assay for evaluating functional interactions between ligands and G-protein-coupled receptors within minutes has been developed. The system uses the principles employed by animals such as reptiles, amphibians and fish to control their colors. In nature, activation of G-protein-coupled receptors expressed by skin cells called chromatophores effects pigment redistribution within the cells to change an animal's coloration. The in vitro 'chameleon in a dish' equivalent can use essentially any cloned G-protein-coupled receptor.
Collapse
Affiliation(s)
- M R Lerner
- Dept of Internal Medicine, Yale University School of Medicine, New Haven, CT 06536-0812
| |
Collapse
|
9
|
Amiot F, Leiber D, Marc S, Harbon S. GRP-preferring bombesin receptors increase generation of inositol phosphates and tension in rat myometrium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C1579-87. [PMID: 8279518 DOI: 10.1152/ajpcell.1993.265.6.c1579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the estrogen-treated rat myometrium, bombesin (Bn) and related agonists triggered contraction and the increased generation of inositol phosphates. The relative order of potencies was identical for both responses: Bn = gastrin releasing peptide (GRP) = litorin = neuromedin C >> neuromedin B. Two specific GRP-preferring receptor antagonists, namely [D-Phe6]Bn-(6-13) methyl ester and [Leu14,psi 13-14]Bn were inhibitory for both Bn-mediated tension and generation of inositol phosphates. [125I-Tyr4]Bn bound to myometrial membranes with high affinity (Kd = 104 pM) to a single class of sites in a saturable and reversible manner. The relative potencies for inhibiting binding were GRP = litorin = [Tyr4]Bn (Ki = 0.4 to 0.6 nM) >> neuromedin B (Ki = 10.3 nM). The high affinity displayed by [D-Phe6]Bn-(6-13) methyl ester (Ki = 2.8 nM) and [Leu14,psi 13-14]Bn (Ki = 35 nM) for competing for [Tyr4]Bn binding supported the involvement of a GRP-preferring Bn receptor. Guanine nucleotides decreased the binding of [125I-Tyr4]Bn and accelerated the rate of ligand dissociation, reflecting the coupling of receptors to guanine nucleotide regulatory proteins (G proteins). The results demonstrate that rat myometrium expresses functional GRP-preferring Bn receptors whose activation stimulates the phospholipase C pathway, pertussis toxin-insensitive event that contributes to Bn-mediated uterine contractions.
Collapse
Affiliation(s)
- F Amiot
- Laboratoire d'Endocrinologie et Régulations Cellulaires, Centre National de la Recherche Scientifique, Unité de Recherche Associée 1131, Université Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
10
|
Gascard P, Sauvage M, Sulpice JC, Giraud F. Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry 1993; 32:5941-8. [PMID: 8389583 DOI: 10.1021/bi00074a004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the erythrocyte membrane, only a fraction (50-60%) of phosphatidylinositol 4,5-bisphosphate (PIP2) and of phosphatidylinositol 4-phosphate (PIP) is rapidly turned over by specific kinases and phosphatases and accessible to hydrolysis by the polyphosphoinositide (PPI)-specific phospholipase C (PLC). To investigate whether the metabolic segregation of PPI resulted from preferential interactions with proteins, we have measured the accessibility of PPI to bee venom phospholipase A2 (PLA2) in native erythrocyte membranes, or after treatments designed to remove peripheral proteins and cytoplasmic domains of integral proteins. In native membranes, PPI, as well as the other major phospholipids, behaved as two distinct fractions (R1 and R2) differing by their sensitivity to PLA2. Such a behavior was not observed in PIP and PIP2 containing artificial vesicles. Evidence was provided that the highly sensitive fraction of PIP and PIP2 (R1) may be identical to the PLC-sensitive and rapidly metabolized pool. Removal of peripheral proteins, followed by proteolysis of the cytoplasmic domain of integral proteins, mainly glycophorins and band 3, led to a reduction of the R1 fraction of PIP and of PIP2. It is proposed that the rapidly metabolized pool of PIP2 and PIP, involved in the regulation of major cellular functions, would be maintained in its functional state through interactions with integral proteins.
Collapse
Affiliation(s)
- P Gascard
- CNRS URA 1116, Université Paris XI, Orsay, France
| | | | | | | |
Collapse
|
11
|
Graminski G, Jayawickreme C, Potenza M, Lerner M. Pigment dispersion in frog melanophores can be induced by a phorbol ester or stimulation of a recombinant receptor that activates phospholipase C. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53412-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Tuomala MH, Hirvonen MR, Savolainen KM. Production of inositol phosphates and reactive oxygen metabolites in quartz-dust-stimulated human polymorphonuclear leukocytes. FEBS Lett 1992; 296:57-60. [PMID: 1730291 DOI: 10.1016/0014-5793(92)80402-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present paper explores phosphoinositide turnover in quartz-stimulated human polymorphonuclear leukocytes. Separation of inositol phosphates was carried out with a new ion-pair, reverse-phase high performance liquid chromatographic method applying a gentle tetrabutyl ammonium phosphate buffer gradient. The method separates inositol monophosphates, inositol 1,4-bisphosphate, inositol trisphosphates and inositol 1,3,4,5-tetrakisphosphate. Reactive oxygen metabolites, indices for leukocyte activation, were measured with a luminometric assay. Quartz increased the production of reactive oxygen metabolites, preceded by facilitated inositol phosphate turnover. This finding provides evidence that inositol phosphate second messengers may be involved in quartz-induced leukocyte activation and subsequent production of reactive oxygen metabolites.
Collapse
Affiliation(s)
- M H Tuomala
- National Public Health Institute, Department of Environmental Hygiene and Toxicology, Kuopio, Finland
| | | | | |
Collapse
|
13
|
Ventura C, Guarnieri C, Stefanelli C, Cirielli C, Lakatta EG, Capogrossi MC. Comparison between alpha-adrenergic- and K-opioidergic-mediated inositol (1,4,5)P3/inositol (1,3,4,5) P4 formation in adult cultured rat ventricular cardiomyocytes. Biochem Biophys Res Commun 1991; 179:972-978. [PMID: 1898416 DOI: 10.1016/0006-291x(91)91913-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In adult cultured rat ventricular cardiac myocytes, both the alpha-adrenergic agonist phenylephrine and the selective kappa opioid receptor ligand U-50, 488H affected phosphoinositide turnover. Phenylephrine, over a time course of 10 min, caused a transient increase in Ins(1,4,5)P3 which peaked at 1 min and had returned to control at 2 min. In addition, phenylephrine produced a progressive and sustained increase in the formation of Ins (1,3,4,5)P4 which achieved a plateau after 5 min of exposure to the agonist. U-50,488H induced an increase in Ins(1,4,5)P3 which peaked at 1 min at a level significantly higher than that due to phenylephrine and was still elevated after 10 min exposure to the kappa opioid receptor agonist. In addition, U-50,488H caused a sustained increase in Ins(1,3,4,5)P4 which was comparable to that due to phenylephrine. The stimulatory effects produced by phenylephrine and U-50,488H were receptor-mediated events, since they were fully antagonized by their respective antagonists, phentolamine or Mr-1452.
Collapse
Affiliation(s)
- C Ventura
- Institute of Biochemistry, University of Sassari, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Bachelot C, Sulpice JC, Giraud F, Rendu F. Mechanisms involved in platelet activation induced by a monoclonal antibody anti glycoprotein IIb-IIIa: inositol phosphate production is not the primary event. Cell Signal 1991; 3:537-46. [PMID: 1786204 DOI: 10.1016/0898-6568(91)90030-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms involved in platelet aggregation by a monoclonal antibody (mAb) P256 specific for the GPIIb-IIIa complex was investigated following metabolic 32P labelling of platelets. When compared with thrombin, inositol phosphates (InsP) production during P256-induced activation was delayed and no apparent peak, but a small and sustained production of [32P]-Ins(1,4,5)P3 and [32P]-Ins(1,3,4,5)P4, was observed between 20 and 90 s. [32P]-Ins(1,3,4)P3 was also produced with a maximum after 90 s. Addition of the ADP scavenger creatinine phosphate/creatine phosphokinase (CP/CPK) and of the cyclooxygenase inhibitor aspirin together with P256 almost totally abolished InsP formation, whereas platelet aggregation and protein phosphorylation were partially inhibited. F(ab')2 fragments of P256 also aggregated platelets but to a smaller extent than IgG, and without any measurable InsPs. To characterize further P256-induced activation, the phosphorylation of p43, the main substrate of protein kinase C (PKC) and the phosphorylation of tyrosine protein (P-Tyr) was also studied. PKC activation was smaller with P256-IgG than with thrombin but both thrombin and P265-IgG induced a similar profile of P-Tyr involving seven major bands, whereas P256-F(ab')2 only occasionally activated PKC but always significantly phosphorylated a 64,000 molecular weight P-Tyr. The data indicate that the binding of P256 to GPIIb-IIIa, in contrast with thrombin, does not initially lead directly to the activation of the phosphoinositide phospholipase C to produce InsP's but rather involves the activation of protein kinases and also both fragments F(ab')2 and Fc play a specific role in the platelet responses to the mAb. Only the crosstalk between the two pathways evoked by F(ab')2 and Fc respectively allows the activation of all platelet activation systems.
Collapse
Affiliation(s)
- C Bachelot
- U 150 INSERM, Hôpital Lariboisière, Paris, France
| | | | | | | |
Collapse
|
15
|
Patthy M, Balla T, Arányi P. High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Separation of myo-inositol phosphates, some common nucleotides and sugar phosphates. J Chromatogr A 1990; 523:201-16. [PMID: 2090660 DOI: 10.1016/0021-9673(90)85023-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A detailed study of all the major chromatographic variables affecting the retention behaviour and separation of myo-inositol phosphates in reversed-phase ion-pair chromatographic systems was carried out. The parameters studied included the eluent concentration of the pairing ion, the eluent concentration of the organic modifier and the buffer salt, the pH of the eluent, the minimum column plate count necessary for the separation of the inositol trisphosphate isomers and isocratic and gradient modes of separation. The retention behaviour of some common nucleotides and sugar phosphates was also investigated as these phosphates present chromatographic interference problems in biochemical studies based on the cellular incorporation of [32P]Pi. The separation methods developed appear to be superior to established anion-exchange separation techniques in terms of separation speed and "mildness" of the chromatographic conditions.
Collapse
Affiliation(s)
- M Patthy
- Institute for Drug Research, Budapest, Hungary
| | | | | |
Collapse
|
16
|
Goldschmidt B. Preparative separation of myo-inositol bis- and tris-phosphate isomers by anion-exchange chromatography. Carbohydr Res 1990. [DOI: 10.1016/0008-6215(90)80089-l] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Shayman JA, Barcelon FS. Ion-pair chromatography of inositol polyphosphates with N-methylimipramine. JOURNAL OF CHROMATOGRAPHY 1990; 528:143-54. [PMID: 2200799 DOI: 10.1016/s0378-4347(00)82369-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A novel counter-ion, N-methylimipramine, was synthesized and utilized in the separation of inositol phosphates by ion-pair chromatography. The structural identity of the counter-ion was documented by nuclear magnetic resonance spectroscopy. This counter-ion was capable of resolving inositol phosphates isocratically by reversed-phase high-performance liquid chromatography. Solvent polarity and ionic strength markedly affected the retention of the polyphosphorylated inositides. pH, however, was less significant in its effects. Injection of inositol trisphosphate paired to N-methylimipramine into a mobile phase containing tetrabutylammonium ions demonstrated free exchange of the inositide between the counter-ions. This counter-ion may therefore prove useful in defining empirically the mechanisms of ion-pair chromatography.
Collapse
Affiliation(s)
- J A Shayman
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor
| | | |
Collapse
|
18
|
Bachelot C, Rendu F, Boucheix C, Hogg N, Levy-Toledano S. Activation of platelets induced by mAb P256 specific for glycoprotein IIb-IIIa. Possible evidence for a role for IIb-IIIa in membrane signal transduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 190:177-83. [PMID: 2364945 DOI: 10.1111/j.1432-1033.1990.tb15562.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Monoclonal antibody P256, which is specific for glycoprotein IIb-IIIa complex, was found to induce aggregation of normal platelets in plasma. The mechanism of platelet activation induced by this monoclonal antibody was thoroughly studied. The divalent binding to the IIb-IIIa molecule was necessary for triggering aggregation since Fab' fragments did not induce aggregation as did IgG and F(ab')2 fragments; however, F(ab')2 did not induce the release as did the whole IgG. P256-induced aggregation was accompanied by release of all three granule constituents, namely dense granules, alpha-granules and lysosomes, with parallel kinetics showing half-maximum release 50 s after addition of P256. Thromboxane synthesis was initiated at the same time. Using 32P-prelabeled platelets, no variation in level of [32P]phosphatidylinositol 4,5-bisphosphate could be detected in the first minute after P256 addition, indicating no activation of the calcium-independent phospholipase C specific for polyphosphoinositol phospholipid. P256 induced a calcium mobilization as measured by Indo-1 fluorescence of about the third of that measured in the presence of a thrombin concentration giving the same intensity of aggregation. P256 induced phosphorylation of the myosin light chain p20 and of the main substrate of protein kinase C, p43. Addition of aspirin inhibited almost totally calcium mobilization and partially aggregation, release and protein phosphorylations. By contrast, in the absence of external calcium, although no aggregation could occur, the release reaction was only partially reduced. In this activation, the glycoprotein IIb-IIIa complex thus appears to play a role in modulating platelet response, not only via calcium fluxes but also in activating protein kinase C responsible for p43 phosphorylation.
Collapse
Affiliation(s)
- C Bachelot
- Unité 150 Institut National de la Santé et de la Recherche Médicale, Hôpital Lariboisière, Paris, France
| | | | | | | | | |
Collapse
|
19
|
Wreggett KA, Lander DJ, Irvine RF. Two-stage analysis of radiolabeled inositol phosphate isomers. Methods Enzymol 1990; 191:707-18. [PMID: 2074779 DOI: 10.1016/0076-6879(90)91043-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Abstract
Interest in the inositol phospholipids was stimulated by the simultaneous discoveries that the products of hydrolysis of these lipids could serve as messengers to activate to synergistic signaling pathways in hormonally responsive cells, namely, inositol 1,4,5-trisphosphate which causes the release of Ca2+ from intracellular stores and diacylglycerol which promotes the activation of protein kinase C. At the same time, Berridge and co-workers introduced relatively simple approaches to study the inositol phospholipid cycle. These included the use of [3H]inositol to label the inositol metabolites, all of which are confined to this cycle, and of Li+ to decrease the rate of degradation of the inositol phosphates. Water-soluble inositol phosphates and chloroform-soluble inositol phospholipids could then be separated by solvent partition and the inositol phosphates further separated by use of an anion-exchange resin. However, the subsequent application of high-performance liquid chromatography as a separation technique indicated the existence of many isomers of the inositol phosphates formed by different pathways of dephosphorylation and phosphorylation. Mapping of these metabolic pathways may be substantially complete, but novel pathways may still be discovered. We review both old and new methods of analysis of the inositol phosphates for the measurement of mass and radioactivity. Although the complexity of the cycle sometimes demands the use of sophisticated methods of separation and rigorous identification, older and inexpensive methods may still be useful for some purposes.
Collapse
Affiliation(s)
- N M Dean
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu 96813
| | | |
Collapse
|