Szabó G, Bährle S, Braun M, Stumpf N, Vahl CF, Hagl S. Modulation of catecholamine responsiveness and beta-adrenergic receptor/adenylyl cyclase pathway during cardiac allograft rejection1 2.
Transplantation 2002;
73:535-40. [PMID:
11889424 DOI:
10.1097/00007890-200202270-00007]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND
This study investigated the changes of catecholamine responsiveness and beta-adrenergic receptor/adenylyl cyclase pathway during acute cardiac transplant rejection.
METHODS
Isogeneic Lewis to Lewis and allogeneic Dark Agouti (DA) to Lewis rat cardiac transplants were studied 3 and 5 days after heterotopic intraabdominal transplantation (n=6/group). Myocardial blood flow (MBF), left ventricular systolic pressure (LVSP), maximum pressure development (+dP/dt), and end-diastolic pressure (LVEDP) were measured using an intraventricular balloon. Contractile response to dobutamine (5 microg/kg/min) was also assessed. In separate groups beta-adrenergic receptor density and adenylyl cyclase activity were measured in the grafts, in the recipients' native hearts and in native hearts of sham-operated controls.
RESULTS
During mild to moderate rejection cardiac function indices remained unchanged, although MBF and contractile response to dobutamine decreased significantly (P<0.05) in the allogeneic group. The beta-adrenergic receptor density was significantly (P<0.05) increased in both isografts and allografts and in the native hearts of allografted recipients in comparison to native hearts of controls. Adenylyl cyclase activity showed a significant decrease (P<0.05) only in allografts. During severe rejection, LVSP and +dP/dt decreased and LVEDP increased in allografts in comparison to isografts (P<0.05). This was accompanied by a significant decrease in MBF, contractile response to dobutamine, beta-adrenergic receptor density, and adenylyl cyclase activity (P<0.05).
CONCLUSIONS
Both microcirculatory disturbances and primary alteration in adenylyl cyclase activity may contribute to decreased contractile reserve in mild to moderate cardiac allograft rejection, whereas beta-adrenergic receptor density seems to be also influenced by cardiac denervation. Severe rejection leads to systolic and diastolic heart failure with complex dysregulation of the beta-adrenergic receptor/adenylyl cyclase pathway and impaired microcirculation.
Collapse