1
|
Tomioka Y, Akuta T, Tokunaga M, Arakawa T. Different behavior of Ferguson plot between agarose and polyacrylamide gels. Biophys Chem 2024; 307:107200. [PMID: 38367540 DOI: 10.1016/j.bpc.2024.107200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
In this study, we conducted Ferguson plot analyses using both agarose and polyacrylamide gels in native electrophoresis and SDS-PAGE. The results revealed intriguing differences in the behavior of bovine serum albumin (BSA) and other model proteins. Specifically, BSA exhibited Ferguson plot slopes that were dependent on the oligomer size in agarose native gel electrophoresis, while such size-dependent behavior was not observed in native-PAGE or SDS-PAGE. These findings suggest that Ferguson plot analysis is a suitable approach when using agarose gel under the electrophoretic conditions employed in this study. Furthermore, our investigation extended to model proteins with acidic isoelectric points and larger molecular weights, namely Ferritin and caseinolytic peptidase B (ClpB). Notably, these proteins displayed distinct Ferguson plot slopes when subjected to agarose gel electrophoresis. Intriguingly, when polyacrylamide gel was employed, ClpB exhibited multiple bands, each with its unique Ferguson plot slope, deviating from the expected behavior based on molecular size. This divergence in Ferguson plot characteristics between agarose and polyacrylamide gels points to an interesting and complex interplay between protein properties and gel electrophoresis conditions.
Collapse
Affiliation(s)
- Yui Tomioka
- Product Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Teruo Akuta
- Product Development Division, Kyokuto Pharmaceutical Industrial Co., Ltd., 3333-26, Aza-Asayama, Kamitezuna Takahagi-shi, Ibaraki 318-0004, Japan.
| | - Masao Tokunaga
- Applied and Molecular Microbiology, Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima-shi 890-0065, Japan
| | - Tsutomu Arakawa
- Alliance Protein Laboratories, 13380 Pantera Rd, San Diego, CA 92130, USA.
| |
Collapse
|
2
|
Ishiguro R, Fujisawa T. Thermodynamic and kinetic analysis on oligomeric protein dissociation using high-pressure native PAGE velocity method. Anal Biochem 2023; 664:115035. [PMID: 36621706 DOI: 10.1016/j.ab.2022.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
High pressure is known to dissociate several oligomeric proteins, and regarded as an important tool to shift the oligomerization equilibrium. Native polyacrylamide gel electrophoresis (native PAGE) at high pressure can characterize the dissociates and clearly discriminate the aggregates. However, a band smearing of migration profiles often hinders more detailed analyses (Miwa et al., High Pressure Res. (2019) 39, 218-224). In this paper, we focused on the band smearing dependent on the migration velocity so as to extract both thermodynamic and kinetic parameters. We systematically perturbed the migration velocity by changing the gel concentration and carried out numerical analysis for a series of the migration profiles based on a simple dissociation reaction scheme with limited thermodynamic and kinetic parameters. Then, complete volumetric properties on oligomerization process can be available. We term the present analysis method as a high-pressure native PAGE velocity method. We also report the application of this method to revisit the pressure dissociation of tetrameric lactate dehydrogenase (LDH) from pig heart.
Collapse
Affiliation(s)
- Ryo Ishiguro
- Faculty of Engineering, Gifu University, Gifu, Japan
| | | |
Collapse
|
3
|
Fish Cytolysins in All Their Complexity. Toxins (Basel) 2021; 13:toxins13120877. [PMID: 34941715 PMCID: PMC8704401 DOI: 10.3390/toxins13120877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023] Open
Abstract
The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.
Collapse
|
4
|
Szafner G, Dóka O, Gombkötő N. Effect of protein content on the thermal effusivity of foods. ACTA ALIMENTARIA 2021. [DOI: 10.1556/066.2021.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The availability of thermophysical properties of both foods and their constituents is of considerable importance to the industry. The thermal effusivity is one of the less explored thermophysical parameters. It governs the penetration of heat into materials and is defined as the square root of the product of thermal conductivity of the material, volume-specific heat capacity, and density. This paper describes the application of a relatively new inverse photopyroelectric method (IPPE) to determine thermal effusivity of dehydrated whey protein isolate and egg white powder versus protein content. In both cases the effusivity values decreased linearly with increasing protein content. One percent increase in protein content of whey protein isolate and egg white lead to 6.5 and 7.2 Ws1/2 m−2 K−1 decrease in effusivity values, respectively.
Collapse
Affiliation(s)
- G. Szafner
- 1 Hungarian Dairy Research Institute Ltd., Lucsony street 24, H-9200, Mosonmagyaróvár, Hungary
| | - O. Dóka
- 2 Department of Physics and Chemistry, Faculty of Engineering, Informatics and Electrical Engineering, Széchenyi István University. Egyetem sq. 1, H-9026, Győr, Hungary
| | - N. Gombkötő
- 3 Department of Economics, Faculty of Agricultural and Food Sciences, Széchenyi István University, Vár 2, H-9200, Mosonmagyaróvár, Hungary
| |
Collapse
|
5
|
Ghatge S, Yang Y, Moon S, Song WY, Kim TY, Liu KH, Hur HG. A novel pathway for initial biotransformation of dinitroaniline herbicide butralin from a newly isolated bacterium Sphingopyxis sp. strain HMH. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123510. [PMID: 32736179 DOI: 10.1016/j.jhazmat.2020.123510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 05/27/2023]
Abstract
Butralin (N-sec- Butyl-4-tert-butyl-2,6-dinitroaniline) is a highly persistent dinitroaniline herbicide frequently detected in the environment. In this study, butralin-degrading soil bacterium, Sphingopyxis sp. strain HMH was isolated from agricultural soil samples. Based on whole genome sequence analysis of the strain HMH, the gene encoding a nitroreductase NfnB was identified and expressed in Escherichia coli (E. coli), and protein was purified to homogeneity. NfnB is a flavin-nitroreductase, found to be a functional tetramer, composed of subunit molecular mass of 25 kDa. The metabolites from butralin degradation by strain HMH and purified NfnB were identified using ultra performance liquid chromatography high resolution mass spectrometry (UPLC-HRMS), and a novel mechanism of butralin degradation was proposed. NfnB selectively nitro-reduced butralin into N- (sec-Butyl)-4-(tert-butyl)-6-nitrobenzene- 1,2-diamine, followed by formation of 5-(tert-Butyl)-3 -nitrobenzene-1,2-diamine and butanone by N- dealkylation through possible hydroxylation reaction onto the carbon linked amine of the N-(sec-Butyl) moiety. In our study, we could not detect the hydroxylated product 2-(2-Amino-4-tert-butyl-6-nitro- phenylamino)-butan-2-ol) (carbinolamine), instead its Schiff base product (E)-2-(Butan-2-yildeneamino)-5- (tert-butyl)-3-nitroaniline was detected. The release of butanone was further confirmed by derivatization with 2,4- dinitrophenylhydrazine (DNPH) followed by MS analysis. In conclusion, this study explores a novel multi-functional flavin- nitroreductase family enzyme NfnB, catalyzing unique and sequential nitroreduction and N-dealkylation through oxidative hydroxylation of dinitroaniline herbicide butralin.
Collapse
Affiliation(s)
- Sunil Ghatge
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Youri Yang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Seonyun Moon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Woo-Young Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
6
|
Cruz Rodríguez A, Sánchez Esperanza FA, Pérez-Campos E, Hernández-Huerta MT, Pérez-Campos Mayoral L, Matias-Cervantes CA, Martínez Barras A, Mayoral-Andrade G, Santos Pineda LÁ, Díaz Barrita AJ, Zenteno E, Romero Díaz C, Martínez Cruz R, Pérez-Campos Mayoral E, Bernabé Pérez EA, Pérez Santiago AD, Pina-Canseco MDS, Martínez Cruz M. Aggregation and Molecular Properties of β-Glucosidase Isoform II in Chayote ( Sechium edule). Molecules 2020; 25:1699. [PMID: 32276317 PMCID: PMC7180739 DOI: 10.3390/molecules25071699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 11/17/2022] Open
Abstract
The presence of isoforms of β-glucosidase has been reported in some grasses such as sorghum, rice and maize. This work aims to extract and characterize isoform II in β-glucosidase from S. edule. A crude extract was prepared without buffer solution and adjusted to pH 4.6. Contaminating proteins were precipitated at 4 °C for 24 h. The supernatant was purified by chromatography on carboxymethyl cellulose (CMC) column, molecular exclusion on Sephacryl S-200HR, and exchange anionic on QFF column. Electrophoretic analyzes revealed a purified enzyme with aggregating molecular complex on SDS-PAGE, Native-PAGE, and AU-PAGE. Twelve peptides fragments were identified by nano liquid chromatography-tandem mass spectrometry (nano LC-ESI-MS/MS), which presented as 61% identical to Cucurbita moschata β-glucosidase and 55.74% identical to β-glucosidase from Cucumis sativus, another Cucurbitaceous member. The relative masses which contained 39% hydrophobic amino acids ranged from 982.49 to 2,781.26. The enzyme showed a specificity to β-d-glucose with a Km of 4.59 mM, a Vmax value of 104.3 μM∙min-1 and a kcat of 10,087 μM∙min-1 using p-nitrophenyl-β-D-glucopyranoside. The presence of molecular aggregates can be attributed to non-polar amino acids. This property is not mediated by a β-glucosidase aggregating factor (BGAF) as in grasses (maize and sorghum). The role of these aggregates is discussed.
Collapse
Affiliation(s)
- Alberto Cruz Rodríguez
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - Fabiola Anaid Sánchez Esperanza
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - María Teresa Hernández-Huerta
- CONACyT Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68020, México; (M.T.H.-H.); (C.A.M.-C.)
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Carlos Alberto Matias-Cervantes
- CONACyT Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68020, México; (M.T.H.-H.); (C.A.M.-C.)
| | - Alexis Martínez Barras
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Querétaro 76017, México;
| | - Gabriel Mayoral-Andrade
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Luis Ángel Santos Pineda
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - Aymara Judith Díaz Barrita
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - Edgar Zenteno
- Facultad de Medicina de la Universidad Nacional Autónoma de México, Ciudad de México 04510, México;
| | - Carlos Romero Díaz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Ruth Martínez Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Edith Alhelí Bernabé Pérez
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - Alma Dolores Pérez Santiago
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| | - María del Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Oaxaca 68020, México; (L.P.-C.M.); (G.M.-A.); (C.R.D.); (R.M.C.); (E.P.-C.M.)
| | - Margarito Martínez Cruz
- Tecnológico Nacional de México/IT de Oaxaca, Oaxaca 68030, México; (A.C.R.); (F.A.S.E.); (E.P.-C.); (L.Á.S.P.); (A.J.D.B.); (E.A.B.P.); (A.D.P.S.)
| |
Collapse
|
7
|
The venoms of the lesser ( Echiichthys vipera) and greater ( Trachinus draco) weever fish- A review. Toxicon X 2020; 6:100025. [PMID: 32550581 PMCID: PMC7285994 DOI: 10.1016/j.toxcx.2020.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
In comparison with other animal venoms, fish venoms remain relatively understudied. This is especially true for that of the lesser Echiichthys vipera and greater weever fish Trachinus draco which, apart from the isolation of their unique venom cytolysins, trachinine and dracotoxin, respectively, remain relatively uncharacterised. Envenomation reports mainly include mild symptoms consisting of nociception and inflammation. However, like most fish venoms, if the venom becomes systemic it causes cardiorespiratory and blood pressure changes. Although T. draco venom has not been studied since the 1990's, recent studies on E. vipera venom have discovered novel cytotoxic components on human cancer cells, but due to the scarcity of research on the molecular make-up of the venom, the molecule(s) causing this cytotoxicity remains unknown. This review analyses past studies on E. vipera and T. draco venom, the methods used in the , the venom constituents characterised, the reported symptoms of envenomation and compares these findings with those from other venomous Scorpaeniformes. Research on the weever fish venoms Echiichthys vipera and Trachinus draco has been scarce. E. vipera and T. draco venoms elicit cardiorespiratory symptoms in victims. E. vipera and T. draco contain unique cytolysins – Trachinine and Dracotoxin. Dracotoxin is haemolytic and contains membrane depolarising activities. E. vipera venom triggers apoptosis in human colon carcinoma cells.
Collapse
|
8
|
Biochemical adaptation in brain Acetylcholinesterase during acclimation to sub-lethal temperatures in the eurythermal fish Tilapia mossambica. Sci Rep 2019; 9:19762. [PMID: 31874993 PMCID: PMC6930213 DOI: 10.1038/s41598-019-56066-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022] Open
Abstract
Tilapia mossambica is a eurythermal tropical fish. We studied the effect of temperature on the kinetics of brain Acetylcholinesterase (AChE) during adaptation to sublethal temperatures by acclimating the fish to 37 °C, and controls to 25 °C. Electrophoresis showed the presence of two AChE bands that did not change in position or intensity with acclimation period or temperature. The apparent Km was 0.23 ± 0.01 mM ATChI and remained relatively constant over the in vitro assay temperature range 10 °C to 40 °C. Biochemical characterization suggested that the enzyme is a ‘eurytolerant protein’ in its stability of kinetic and thermal properties over a wide temperature range. Thermal stability and arrhenius plots suggested that the AChE was made up of two forms that differed in their thermal properties.The two molecular forms of acetylcholinesterase were purified from the brain of T. mossambica. Molecular weight studies revealed that the two forms were size isomers: a monomer of 59 KDa and a tetramer of 244 KDa. They differed in their Kms, thermal stabilities and energies of activation. We suggest that biochemical adaptation to temperature in the brain acetylcholinerase system of the fish Tilapia mossambica is based on the aggregation-dissociation of these size isomers.
Collapse
|
9
|
Hong CS, Chin SY, Kui Cheng C, Chua GK. Selective oxidation of glycerol to mesoxalic acid by laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system: Effect of process conditions and the kinetic modeling. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1566128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chi Shein Hong
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| | - Sim Yee Chin
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
- Faculty of Chemical & Natural Resources Engineering, Centre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Pahang, Malaysia
| |
Collapse
|
10
|
Rodríguez-Ruiz M, González-Gordo S, Cañas A, Campos MJ, Paradela A, Corpas FJ, Palma JM. Sweet Pepper ( Capsicum annuum L.) Fruits Contain an Atypical Peroxisomal Catalase That is Modulated by Reactive Oxygen and Nitrogen Species. Antioxidants (Basel) 2019; 8:E374. [PMID: 31487955 PMCID: PMC6769641 DOI: 10.3390/antiox8090374] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
Abstract
During the ripening of sweet pepper (Capsicum annuum L.) fruits, in a genetically controlled scenario, enormous metabolic changes occur that affect the physiology of most cell compartments. Peroxisomal catalase gene expression decreases after pepper fruit ripening, while the enzyme is also susceptible to undergo post-translational modifications (nitration, S-nitrosation, and oxidation) promoted by reactive oxygen and nitrogen species (ROS/RNS). Unlike most plant catalases, the pepper fruit enzyme acts as a homodimer, with an atypical native molecular mass of 125 to 135 kDa and an isoelectric point of 7.4, which is higher than that of most plant catalases. These data suggest that ROS/RNS could be essential to modulate the role of catalase in maintaining basic cellular peroxisomal functions during pepper fruit ripening when nitro-oxidative stress occurs. Using catalase from bovine liver as a model and biotin-switch labeling, in-gel trypsin digestion, and nanoliquid chromatography coupled with mass spectrometry, it was found that Cys377 from the bovine enzyme could potentially undergo S-nitrosation. To our knowledge, this is the first report of a cysteine residue from catalase that can be post-translationally modified by S-nitrosation, which makes it especially important to find the target points where the enzyme can be modulated under either physiological or adverse conditions.
Collapse
Affiliation(s)
- Marta Rodríguez-Ruiz
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Salvador González-Gordo
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Amanda Cañas
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - María Jesús Campos
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - Alberto Paradela
- Proteomics Core Facility, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain.
| | - Francisco J Corpas
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| | - José M Palma
- Group Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain.
| |
Collapse
|
11
|
Gallagher SR. One-Dimensional Electrophoresis Using Nondenaturing Conditions. ACTA ACUST UNITED AC 2018; 94:e73. [DOI: 10.1002/cpps.73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Acero-Navarro KE, Jiménez-Ramírez M, Villalobos MA, Vargas-Martínez R, Perales-Vela HV, Velasco-García R. Cloning, overexpression, and purification of glucose-6-phosphate dehydrogenase of Pseudomonas aeruginosa. Protein Expr Purif 2017; 142:53-61. [PMID: 28986240 DOI: 10.1016/j.pep.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/14/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PDH) (EC 1.1.1.363) plays an important role in the human pathogen Pseudomonas aeruginosa because it generates NADPH, an essential cofactor for several biosynthetic pathways and antioxidant enzymes. P. aeruginosa G6PDH is also a key enzyme in the metabolism of various carbon sources, such as glucose, glycerol, fructose, and mannitol. Understanding the kinetic characteristics and mechanisms that control the activity of this enzyme is crucial for future studies in this context. However, one of the impediments to achieving this goal is the limited amount of protein obtained when current purification protocols are implemented, a factor curtailing its biochemical characterization. In this study, we report a fast, efficient and reproducible procedure for the purification of P. aeruginosa G6PDH that can be implemented in a short period (2 days). In order to establish this protocol, the zwf gene, which encodes for this enzyme, was cloned and overexpressed in Escherichia coli cells. In contrast to other procedures, our method is based on protein precipitation with CaCl2 and further purification by ion exchange chromatography. Using this protocol, we were able to obtain 31 mg/L of pure protein that manifested specific activity of 145.7 U/mg. The recombinant enzyme obtained in this study manifested similar physicochemical and kinetic properties to those reported in previous works for this molecule. The large quantities of active enzyme obtained using this procedure will facilitate its structural characterization and identify differences between P. aeruginosa- and human G6PDH, thus contributing to the search for selective inhibitors against the bacterial enzyme.
Collapse
Affiliation(s)
- Kevin E Acero-Navarro
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, C. P. 54090, Mexico
| | - Mariella Jiménez-Ramírez
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, C. P. 54090, Mexico
| | - Miguel A Villalobos
- Laboratorio de Biología Molecular de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino, Tlaxcala, Mexico
| | - Rocío Vargas-Martínez
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, C. P. 54090, Mexico
| | - Hugo V Perales-Vela
- Laboratorio de Bioquímica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, C. P. 54090, Mexico
| | - Roberto Velasco-García
- Laboratorio de Osmorregulación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, C. P. 54090, Mexico.
| |
Collapse
|
14
|
Gottlieb LD, Weeden NF. CORRELATION BETWEEN SUBCELLULAR LOCATION AND PHOSPHOGLUCOSE ISOMERASE VARIABILITY. Evolution 2017; 35:1019-1022. [DOI: 10.1111/j.1558-5646.1981.tb04967.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1980] [Revised: 12/12/1980] [Indexed: 11/26/2022]
Affiliation(s)
- L. D. Gottlieb
- Department of Genetics University of California Davis 95616
| | - N. F. Weeden
- Department of Genetics University of California Davis 95616
| |
Collapse
|
15
|
Cloning, expression and characterization of histidine-tagged biotin synthase of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2016; 98:42-9. [PMID: 27156617 DOI: 10.1016/j.tube.2016.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/21/2016] [Accepted: 02/29/2016] [Indexed: 11/20/2022]
Abstract
The emergence of Mycobacterium tuberculosis strains that are resistant to the current anti-tuberculosis (TB) drugs necessitates a need to develop a new class of drugs whose targets are different from the current ones. M. tuberculosis biotin synthase (MtbBS) is one such target that is essential for the survival of the bacteria. In this study, MtbBS was cloned, overexpressed and purified to homogeneity for biochemical characterization. It is likely to be a dimer in its native form. Its pH and temperature optima are 8.0 and 37 °C, respectively. Km for DTB and SAM was 2.81 ± 0.35 and 9.95 ± 0.98 μM, respectively. The enzyme had a maximum velocity of 0.575 ± 0.015 μM min(-1), and a turn-over of 0.0935 min(-1). 5'-deoxyadenosine (dAH), S-(5'-Adenosyl)-l-cysteine (AdoCy) and S-(5'-Adenosyl)-l-homocysteine (AdoHcy) were competitive inhibitors of MtbBS with the following inactivation parameters: Ki = 24.2 μM, IC50 = 267.4 μM; Ki = 0.84 μM, IC50 = 9.28 μM; and Ki = 0.592 μM, IC50 = 6.54 μM for dAH, AdoCy and AdoHcy respectively. dAH could inhibit the growth of M. tuberculosis H37Ra with an MIC of 392.6 μg/ml. This information should be useful for the discovery of inhibitors of MtbBS.
Collapse
|
16
|
Mateos SE, Cervantes CAM, Zenteno E, Slomianny MC, Alpuche J, Hernández-Cruz P, Martínez-Cruz R, del Socorro Pina Canseco M, Pérez-Campos E, Rubio MS, Mayoral LPC, Martínez-Cruz M. Purification and Partial Characterization of β-Glucosidase in Chayote (Sechium edule). Molecules 2015; 20:19372-19392. [PMID: 26512637 PMCID: PMC6332095 DOI: 10.3390/molecules201019372] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/07/2015] [Accepted: 10/10/2015] [Indexed: 12/23/2022] Open
Abstract
β-Glucosidase (EC 3.2.1.21) is a prominent member of the GH1 family of glycoside hydrolases. The properties of this β-glucosidase appear to include resistance to temperature, urea, and iodoacetamide, and it is activated by 2-ME, similar to other members. β-Glucosidase from chayote (Sechium edule) was purified by ionic-interchange chromatography and molecular exclusion chromatography. Peptides detected by LC-ESI-MS/MS were compared with other β-glucosidases using the BLAST program. This enzyme is a 116 kDa protein composed of two sub-units of 58 kDa and shows homology with Cucumis sativus β-glucosidase (NCBI reference sequence XP_004154617.1), in which seven peptides were found with relative masses ranging from 874.3643 to 1587.8297. The stability of β-glucosidase depends on an initial concentration of 0.2 mg/mL of protein at pH 5.0 which decreases by 33% in a period of 30 h, and then stabilizes and is active for the next 5 days (pH 4.0 gives similar results). One hundred μg/mL β-D-glucose inhibited β-glucosidase activity by more than 50%. The enzyme had a Km of 4.88 mM with p-NPG and a Kcat of 10,000 min(-1). The optimal conditions for the enzyme require a pH of 4.0 and a temperature of 50 °C.
Collapse
Affiliation(s)
| | | | - Edgar Zenteno
- Facultad de Medicina de la, Universidad Nacional Autónoma de México, Distrito Federal 04510, Mexico.
| | - Marie-Christine Slomianny
- Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, Université des Sciences et Technologies de Lille 1, Villeneuve d'Ascq 59655, France.
| | - Juan Alpuche
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Pedro Hernández-Cruz
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Ruth Martínez-Cruz
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Maria del Socorro Pina Canseco
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Eduardo Pérez-Campos
- Unidad de Bioquímica e Inmunología, Instituto Tecnológico de Oaxaca, Oaxaca 68030, Mexico.
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | - Manuel Sánchez Rubio
- Unidad de Bioquímica e Inmunología, Instituto Tecnológico de Oaxaca, Oaxaca 68030, Mexico.
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación Medicina-UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca 68050, Mexico.
| | | |
Collapse
|
17
|
Tamaki FK, Pimentel AC, Dias AB, Cardoso C, Ribeiro AF, Ferreira C, Terra WR. Physiology of digestion and the molecular characterization of the major digestive enzymes from Periplaneta americana. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:22-35. [PMID: 25193546 DOI: 10.1016/j.jinsphys.2014.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Cockroaches are among the first insects to appear in the fossil record. This work is part of ongoing research on insects at critical points in the evolutionary tree to disclose evolutionary trends in the digestive characteristics of insects. A transcriptome (454 Roche platform) of the midgut of Periplanetaamericana was searched for sequences of digestive enzymes. The selected sequences were manually curated. The complete or nearly complete sequences showing all characteristic motifs and highly expressed (reads counting) had their predicted sequences checked by cloning and Sanger sequencing. There are two chitinases (lacking mucin and chitin-binding domains), one amylase, two α- and three β-glucosidases, one β-galactosidase, two aminopeptidases (none of the N-group), one chymotrypsin, 5 trypsins, and none β-glucanase. Electrophoretic and enzymological data agreed with transcriptome data in showing that there is a single β-galactosidase, two α-glucosidases, one preferring as substrate maltase and the other aryl α-glucoside, and two β-glucosidases. Chromatographic and enzymological data identified 4 trypsins, one chymotrypsin (also found in the transcriptome), and one non-identified proteinase. The major digestive trypsin is identifiable to a major P. americana allergen (Per a 10). The lack of β-glucanase expression in midguts was confirmed, thus lending support to claims that those enzymes are salivary. A salivary amylase was molecularly cloned and shown to be different from the one from the midgut. Enzyme distribution showed that most digestion occurs under the action of salivary and midgut enzymes in the foregut and anterior midgut, except the posterior terminal digestion of proteins. A counter-flux of fluid may be functional in the midgut of the cockroach to explain the low excretory rate of digestive enzymes. Ultrastructural and immunocytochemical localization data showed that amylase and trypsin are released by both merocrine and apocrine secretion mainly from gastric caeca. Finally, a discussion on Polyneoptera digestive physiology is provided.
Collapse
Affiliation(s)
- Fábio K Tamaki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - André C Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Alcides B Dias
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Alberto F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05513-970 São Paulo, Brazil
| | - Clélia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P. 26077, 05513-970 São Paulo, Brazil.
| |
Collapse
|
18
|
Purification and expression of glutathione S-transferase from a Malaysian population of Aedes albopictus (Diptera: Culicidae). Biologia (Bratisl) 2014. [DOI: 10.2478/s11756-014-0342-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Hoh YK, Yeoh HH, Tan TK. Isolation and characterization of β-glucosidases from Aspergillus nidulans mutant USDB 1183. World J Microbiol Biotechnol 2014; 9:555-8. [PMID: 24420198 DOI: 10.1007/bf00386292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/01/1993] [Accepted: 04/01/1993] [Indexed: 11/27/2022]
Abstract
Two extracellular β-glucosidases (cellobiase, EC 3.2.1.21), I and II, from Aspergillus nidulans USDB 1183 were purified to homogeneity with molecular weights of 240,000 and 78,000, respectively. Both hydrolysed laminaribiose, β-gentiobiose, cellobiose, p-nitrophenyl-β-L-glucoside, phenyl-β-L-glucoside, o-nitrophenyl-β-L-glucoside, salicin and methyl-β-L-glucoside but not α-linked disaccharides. Both were competitively inhibited by glucose and non-competitively (mixed) inhibited by glucono-1,5-lactone. β-Glucosidase I was more susceptible to inhibition by Ag(+) and less inhibited by Fe(2+) and Fe(3+) than β-glucosidase II.
Collapse
Affiliation(s)
- Y K Hoh
- Department of Botany, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 0511, Singapore, Singapore
| | | | | |
Collapse
|
20
|
Coker OO, Warit S, Rukseree K, Summpunn P, Prammananan T, Palittapongarnpim P. Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis. BMC Microbiol 2013; 13:292. [PMID: 24330471 PMCID: PMC3866925 DOI: 10.1186/1471-2180-13-292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 12/07/2013] [Indexed: 01/19/2023] Open
Abstract
Background Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is ‘RHA’ unlike ‘RHG’ found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. Results Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. Conclusion Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic annotation systems towards a better understanding of this important group of enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand.
| |
Collapse
|
21
|
Gomez A, Cardoso C, Genta FA, Terra WR, Ferreira C. Active site characterization and molecular cloning of Tenebrio molitor midgut trehalase and comments on their insect homologs. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:768-780. [PMID: 23770497 DOI: 10.1016/j.ibmb.2013.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 05/22/2013] [Indexed: 06/02/2023]
Abstract
The soluble midgut trehalase from Tenebrio molitor (TmTre1) was purified after several chromatographic steps, resulting in an enzyme with 58 kDa and pH optimum 5.3 (ionizing active groups in the free enzyme: pK(e1) = 3.8 ± 0.2 pK(e2) = 7.4 ± 0.2). The purified enzyme corresponds to the deduced amino acid sequence of a cloned cDNA (TmTre1-cDNA), because a single cDNA coding a soluble trehalase was found in the T. molitor midgut transcriptome. Furthermore, the mass of the protein predicted to be coded by TmTre1-cDNA agrees with that of the purified enzyme. TmTre1 has the essential catalytic groups Asp 315 and Glu 513 and the essential Arg residues R164, R217, R282. Carbodiimide inactivation of the purified enzyme at different pH values reveals an essential carboxyl group with pKa = 3.5 ± 0.3. Phenylglyoxal modified a single Arg residue with pKa = 7.5 ± 0.2, as observed in the soluble trehalase from Spodoptera frugiperda (SfTre1). Diethylpyrocarbonate modified a His residue that resulted in a less active enzyme with pK(e1) changed to 4.8 ± 0.2. In TmTre1 the modified His residue (putatively His 336) is more exposed than the His modified in SfTre1 (putatively His 210) and that affects the ionization of an Arg residue. The architecture of the active site of TmTre1 and SfTre1 is different, as shown by multiple inhibition analysis, the meaning of which demands further research. Trehalase sequences obtained from midgut transcriptomes (pyrosequencing and Illumina data) from 8 insects pertaining to 5 different orders were used in a cladogram, together with other representative sequences. The data suggest that the trehalase gene went duplication and divergence prior to the separation of the paraneopteran and holometabolan orders and that the soluble trehalase derived from the membrane-bound one by losing the C-terminal transmembrane loop.
Collapse
Affiliation(s)
- Ana Gomez
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, C.P 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
22
|
Deka D, Jawed M, Goyal A. Purification and characterization of an alkaline cellulase produced by Bacillus subtilis (AS3). Prep Biochem Biotechnol 2013; 43:256-70. [PMID: 23379273 DOI: 10.1080/10826068.2012.719849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An extracellular alkaline carboxymethycellulase (CMCase) from Bacillus subtilis was purified by salt precipitation followed by anion-exchange chromatography using DEAE-Sepharose. The cell-free supernatant containing crude enzyme had a CMCase activity of 0.34 U/mg. The purified enzyme gave a specific activity of 3.33 U/mg, with 10-fold purification and an overall activity yield of 5.6%. The purified enzyme displayed a protein band on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular size of 30 kDa, which was also confirmed by zymogram analysis. The enzyme displayed multisubstrate specificity, showing significantly higher activity with lichenan and β-glucan as compared to carboxymethylcellulose (CMC), laminarin, hydroxyethylcellulose, and steam-exploded bagasse, and negligible activity with crystalline substrate such as Avicel and filter paper. It was optimally active at pH 9.2 and temperature 45°C. The enzyme was stable in the pH range 6-10 and retained 70% activity at pH 12. Thermal stability analysis revealed that the enzyme was stable in temperature range of 20°C to 45°C and retained more than 50% activity at 60°C for 30 min. The enzyme had a Km of 0.13 mg/ml and Vmax of 3.38 U/mg using CMC as substrate.
Collapse
Affiliation(s)
- Deepmoni Deka
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | | |
Collapse
|
23
|
The bipolar assembly domain of the mitotic motor kinesin-5. Nat Commun 2013; 4:1343. [PMID: 23299893 PMCID: PMC3562449 DOI: 10.1038/ncomms2348] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/30/2012] [Indexed: 01/13/2023] Open
Abstract
An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5's bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil 'BASS' (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments.
Collapse
|
24
|
Fractionation and Characterization of Protease Inhibitors from Fish Eggs Based on Protein Solubility. ACTA ACUST UNITED AC 2013. [DOI: 10.5657/kfas.2013.0119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Aoki K, Matsubara S, Umeda M, Tachibanac S, Doi M, Takenaka S. Aspartic protease from Aspergillus (Eurotium) repens strain MK82 is involved in the hydrolysis and decolourisation of dried bonito (Katsuobushi). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1349-1355. [PMID: 23044751 DOI: 10.1002/jsfa.5896] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Revised: 08/02/2012] [Accepted: 08/12/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Katsuobushi is a dried, smoked and fermented bonito used in Japanese cuisine. During the fermentation process with several Aspergillus species, the colour of Katsuobushi gradually changes from a dark reddish-brown derived from haem proteins to pale pink. The change in colour gives Katsuobushi a higher ranking and price. This study aimed to elucidate the mechanism of decolourisation of Katsuobushi. RESULTS A decolourising factor from the culture supernatant of Aspergillus (Eurotium) repens strain MK82 was purified to homogeneity. The purification was monitored by measuring the decolourising activity using equine myoglobin and bovine haemoglobin as substrates. It was found that the decolourising factor had protease activity towards myoglobin and haemoglobin. Complete inhibition of the enzyme by the inhibitor pepstatin A and the internal amino acid sequence classified the protein as an aspartic protease. The enzyme limitedly hydrolysed myoglobin between 1-Met and 2-Gly, 43-Lys and 44-Phe, and 70-Leu and 71-Thr. The purified enzyme decolourised blood of Katsuwonus pelamis (bonito) and a slice of dried bonito. CONCLUSION It is proposed that aspartic protease plays a role in the decolourisation of Katsuobushi by the hydrolysis of haem proteins that allows the released haem to aggregate in the dried bonito.
Collapse
Affiliation(s)
- Kenji Aoki
- Division of Nutritional Science, Graduate School of Nutritional Science, Sagami Women's University, 2-1-1 Bunkyo, Sagamihara, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Im SA, Wang W, Lee CK, Lee YN. Activation of Macrophages by Exopolysaccharide Produced by MK1 Bacterial Strain Isolated from Neungee Mushroom, Sarcodon aspratus. Immune Netw 2010; 10:230-8. [PMID: 21286384 PMCID: PMC3026943 DOI: 10.4110/in.2010.10.6.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/03/2022] Open
Abstract
Background The MK1 strain, a novel bacterial isolate from soft-rotten tissue of the Neungee mushroom, produces copious amounts of exopolysaccharide (EPS) in a dextrose minimal medium. This study examined the molecular characteristics and immunomodulatory activity of MK1 EPS. Methods The EPS in the culture supernatant was purified by cold ethanol precipitation, and characterized by SDS-PAGE/silver staining and Bio-HPLC. The immunomodulatory activities of the EPS were examined using the mouse monocytic cell line, RAW 264.7 cells. Results The molecular weights of the purified EPS were rather heterogeneous, ranging from 10.6 to 55 kDa. The EPS was composed of glucose, rhamnose, mannose, galactose, and glucosamine at an approximate molar ratio of 1.00:0.8:0.71:0.29:0.21. EPS activated the RAW cells to produce cytokines, such as TNF-α and IL-1β, and nitric oxide (NO). EPS also induced the expression of co-stimulatory molecules, such as B7-1, B7-2 and ICAM-1, and increased the phagocytic activity. The macrophage-activating activity of EPS was not due to endotoxin contamination because the treatment of EPS with polymyin B did not reduce the macrophage-activating activity. Conclusion The EPS produced from the MK1 strain exerts macrophage-activating activity.
Collapse
Affiliation(s)
- Sun-A Im
- College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea
| | | | | | | |
Collapse
|
27
|
Baibai T, Oukhattar L, Mountassif D, Assobhei O, Serrano A, Soukri A. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris. Acta Biochim Biophys Sin (Shanghai) 2010; 42:863-72. [PMID: 21106768 DOI: 10.1093/abbs/gmq103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The NAD(+)-dependent cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), which is recognized as a key to central carbon metabolism in glycolysis and gluconeogenesis and as an important allozymic polymorphic biomarker, was purified from muscles of two marine species: the skeletal muscle of Sardina pilchardus Walbaum (Teleost, Clupeida) and the incompressible arm muscle of Octopus vulgaris (Mollusca, Cephalopoda). Comparative biochemical studies have revealed that they differ in their subunit molecular masses and in pI values. Partial cDNA sequences corresponding to an internal region of the GapC genes from Sardina and Octopus were obtained by polymerase chain reaction using degenerate primers designed from highly conserved protein motifs. Alignments of the deduced amino acid sequences were used to establish the 3D structures of the active site of two enzymes as well as the phylogenetic relationships of the sardine and octopus enzymes. These two enzymes are the first two GAPDHs characterized so far from teleost fish and cephalopod, respectively. Interestingly, phylogenetic analyses indicated that the sardina GAPDH is in a cluster with the archetypical enzymes from other vertebrates, while the octopus GAPDH comes together with other molluscan sequences in a distant basal assembly closer to bacterial and fungal orthologs, thus suggesting their different evolutionary scenarios.
Collapse
Affiliation(s)
- Tarik Baibai
- Université Hassan II, Casablanca B.P., Morrocco.
| | | | | | | | | | | |
Collapse
|
28
|
Hayashida S, Teramoto Y. Production and Characteristics of Raw-Starch-Digesting alpha-Amylase from a Protease-Negative Aspergillus ficum Mutant. Appl Environ Microbiol 2010; 52:1068-73. [PMID: 16347204 PMCID: PMC239174 DOI: 10.1128/aem.52.5.1068-1073.1986] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N'-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher alpha-amylaseactivity than the parent strain under submerged culture at 30 degrees C for 24 h. About 70% of the total alpha-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable alpha-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable alpha-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal alpha-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.
Collapse
Affiliation(s)
- S Hayashida
- Department of Agricultural Chemistry, Kyushu University, Fukuoka 812, Japan
| | | |
Collapse
|
29
|
Kozich V, Sokolová J, Klatovská V, Krijt J, Janosík M, Jelínek K, Kraus JP. Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity. Hum Mutat 2010; 31:809-19. [PMID: 20506325 PMCID: PMC2966864 DOI: 10.1002/humu.21273] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 04/14/2010] [Indexed: 01/08/2023]
Abstract
Misfolding of mutant enzymes may play an important role in the pathogenesis of cystathionine beta-synthase (CBS) deficiency. We examined properties of a series of 27 mutant variants, which together represent 70% of known alleles observed in patients with homocystinuria due to CBS deficiency. The median amount of SDS-soluble mutant CBS polypeptides in the pellet after centrifugation of bacterial extracts was increased by 50% compared to the wild type. Moreover, mutants formed on average only 12% of tetramers and their median activity reached only 3% of the wild-type enzyme. In contrast to the wild-type CBS about half of mutants were not activated by S-adenosylmethionine. Expression at 18 degrees C substantially increased the activity of five mutants in parallel with increasing the amounts of tetramers. We further analyzed the role of solvent accessibility of mutants as a determinant of their folding and activity. Buried mutations formed on average less tetramers and exhibited 23 times lower activity than the solvent exposed mutations. In summary, our results show that topology of mutations predicts in part the behavior of mutant CBS, and that misfolding may be an important and frequent pathogenic mechanism in CBS deficiency.
Collapse
Affiliation(s)
- Viktor Kozich
- First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Institute of Inherited Metabolic Disorders, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
30
|
Mellor RB, Christensen TM, Werner D. Choline kinase II is present only in nodules that synthesize stable peribacteroid membranes. Proc Natl Acad Sci U S A 2010; 83:659-63. [PMID: 16593653 PMCID: PMC322923 DOI: 10.1073/pnas.83.3.659] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Host-cell cytoplasm from soybean plants infected with the peribacteroid membrane (PBM)-building Rhizobium japonicum strain 61-A-101 (effective, N(2)-fixing) had much higher choline kinase activity than cytoplasm from either uninfected tissue or tissue infected with the non-PBM-building (ineffective, non-N(2)-fixing) strain 61-A-24. Ion-exchange chromatography showed that both types of nodule and root tissue possessed constitutive choline kinase I activity that had a K(m) for choline of approximately 150 muM. The nodules of the effective symbiosis had another activity, choline kinase II (K(m) = 81 muM). Nondenaturing and NaDodSO(4) electrophoresis revealed no multimeric subunit structure of the two enzyme forms but did show the molecular sizes for choline kinase I, 58-59 kDa, and choline kinase II, 60 kDa. Choline kinase I and II and pI values of 8.1 and 8.5, respectively, and two-dimensional gel electrophoresis of whole cytoplasm from control and infected tissue showed a spot corresponding to choline kinase II only in the case of the effective symbiosis, whereas both tissue types had spots corresponding to choline kinase I. Choline kinase II is presumed to be encoded by the plant as neither free-living nor symbiotic (bacteroid) forms of the prokaryote showed any choline kinase activity.
Collapse
Affiliation(s)
- R B Mellor
- Department of Botany, University of Marburg, 355 Marburg, Federal Republic of Germany
| | | | | |
Collapse
|
31
|
Keith TP. Frequency Distribution of Esterase-5 Alleles in Two Populations of DROSOPHILA PSEUDOOBSCURA. Genetics 2010; 105:135-55. [PMID: 17246152 PMCID: PMC1202140 DOI: 10.1093/genetics/105.1.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Statistical tests comparing allele frequencies in natural populations with those predicted by various theories of genic variation depend critically on the accurate enumeration of alleles. This study used a series of five sequential electrophoretic conditions to characterize the allele frequency distributions of esterase-5 in two large population samples of Drosophila pseudoobscura from California. In Standard chromosome lines 12 electromorphs were discriminated using a single electrophoretic condition. When four additional criteria were used, the number of electromorphs increased to 41, 33 in one population and 22 in the other. Both populations had the same two alleles in high frequency, with other alleles present in frequencies of 6% or less. Although each population had a number of unique alleles, a chi(2) contingency test demonstrated no significant genetic divergence between them. A statistical comparison of allele frequencies in both populations with that predicted by neutral models suggests that the individual and combined distributions deviate from neutrality in the direction of purifying selection.-Sex-Ratio chromosomes differed markedly from Standard chromosomes in both allelic content and diversity. In 32 Sex-Ratio chromosomes from one population only three alleles were found, all of which were detected under the initial "standard" electrophoretic conditions. Moreover, none of these alleles was found in the Standard chromosome lines.
Collapse
Affiliation(s)
- T P Keith
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
32
|
Hou C, Herr AE. Ultrashort separation length homogeneous electrophoretic immunoassays using on-chip discontinuous polyacrylamide gels. Anal Chem 2010; 82:3343-51. [PMID: 20334346 DOI: 10.1021/ac100182j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To realize efficient homogeneous electrophoretic immunoassays, we introduce discontinuous polyacrylamide gels that enable quantitative assay completion in separation lengths as short as 350 mum in <10 s. The discontinuous cross-linked gels reduce the required electrophoretic separation lengths and thereby significantly reduce the required applied electrical potentials needed to achieve 100's V/cm electric field strengths for rapid electrophoresis. To optimize the discontinuous polyacrylamide gel assay format, we demonstrate development of a two-color homogeneous electrophoretic immunoassay for concurrent quantitation of C reactive protein (CRP) and tumor necrosis factor-alpha (TNF-alpha) for monitoring inflammatory response. To achieve necessary pore-size control at the gel discontinuity, an optimized mask-based fabrication protocol is introduced. The fabrication approach improves electrophoretic separations using the discontinuous separation gels by eliminating two confounding phenomena: (1) smaller than desired pores at the discontinuity which result in undesired physical exclusion of large-species and (2) an associated transition from small to large pores aft of the interface which acts to "destack" analyte bands during the separation. With the use of the optimized discontinuous separation gels, both assays were linear and quantitative over a two-log detection range, with a lower limit of detection of 11 ng/mL for CRP and 40 ng/mL for TNF-alpha. An optimal single-point detector location was identified by balancing the separation resolution and assay duration constraints. The ultrashort separation distance electrophoretic assays developed here provide flexibility in chip and instrument design by relaxing electrical potential requirements and expanding the possibilities for assay multiplexing, therefore addressing important design considerations when developing field-portable diagnostic assays for near-patient environments.
Collapse
Affiliation(s)
- Chenlu Hou
- Department of Electrical Engineering and Computer Science, University of California, Berkeley 94720, USA
| | | |
Collapse
|
33
|
Onishi H, Mori T, Takeuchi S, Tani K, Kobayashi T, Kamekura M. Halophilic Nuclease of a Moderately Halophilic Bacillus sp.: Production, Purification, and Characterization. Appl Environ Microbiol 2010; 45:24-30. [PMID: 16346168 PMCID: PMC242226 DOI: 10.1128/aem.45.1.24-30.1983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A moderately halophilic bacterium, Bacillus sp., isolated from rotting wood on the seashore in Nauru, produced an extracellular nuclease when cultivated aerobically in media containing 1 to 2 M NaCl. The enzyme was purified from the culture filtrate to an electrophoretically homogeneous state by ethanol precipitation, DEAE-Sephadex A-50 column chromatography, and Sephadex G-200 gel filtration. The enzyme consisted of two charge isomers and showed both RNase and DNase activities. Molecular weight was estimated to be 138,000 by Sephadex G-200 gel filtration. The enzyme had marked halophilic properties, showing maximal activities in the presence of 1.4 to 3.2 M NaCl or 2.3 to 3.2 M KCl. The enzyme hydrolyzed thymidine-5'-monophosphate-p-nitrophenyl ester at a rate that increased with NaCl concentration up to 4.8 M. In the presence of both Mg and Ca, activity was greatly enhanced. The activity was lost by dialysis against water and low-salt buffer, but it was protected when 10 mM Ca was added to the dialysis buffer. When the inactivated enzyme was dialyzed against 3.5 M NaCl buffer as much as 68% of the initial activity could be restored. The enzyme exhibited maximal activity at pH 8.5 and at 50 degrees C on DNA and at 60 degrees C on RNA and attacked RNA and DNA exonucleolytically and successively, producing 5'-mononucleotides.
Collapse
Affiliation(s)
- H Onishi
- Department of Agricultural Chemistry, Kagoshima University, Korimoto, Kagoshima-shi, Japan 890
| | | | | | | | | | | |
Collapse
|
34
|
The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun 2010; 78:2584-98. [PMID: 20368345 DOI: 10.1128/iai.00141-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Yersinia spp. undermine the immune responses of infected animals by translocating Yops directly into host cells with a type III secretion system. YopM, a leucine-rich repeat protein, is a critical virulence factor in infection. YopM localizes to both the nucleus and the cytoplasm in cultured cells, interacts with mammalian p90 ribosomal S6 kinase 1 (RSK1), and causes a decrease in NK cell populations in spleens. Little is known about the molecular interaction between YopM and RSK1 and its significance in pathogenesis. We performed a systematic deletion analysis of YopM in Yersinia pseudotuberculosis to determine which regions are required for RSK1 interactions, nuclear localization, virulence, and changes in immune cell populations during infection of mice. Full-length YopM associated with RSK1 in at least two protein complexes in infected cells, and deletion of its C-terminal tail abrogated all RSK1 interactions. The C-terminal tail was required for tissue colonization, as yopM mutants that failed to interact with RSK1 were as defective for tissue colonization as was a DeltayopM mutant; however, nuclear localization of YopM was not dependent on its RSK1 interaction. Mutants expressing YopM proteins which do not interact with RSK1 caused more pathology than did the DeltayopM mutant, suggesting that there are other RSK1-independent functions of YopM. Histopathological and flow cytometric analyses of spleens showed that infection with wild-type Y. pseudotuberculosis caused an influx of neutrophils, while mice infected with yopM mutants had increased numbers of macrophages. Decreases in NK cells after Y. pseudotuberculosis infection did not correlate with YopM expression. In conclusion, the C terminus of YopM is essential for RSK1 interactions and for virulence.
Collapse
|
35
|
Mountassif D, Andreoletti P, Cherkaoui-Malki M, Latruffe N, El Kebbaj MS. Structural and catalytic properties of the D-3-hydroxybutyrate dehydrogenase from Pseudomonas aeruginosa. Curr Microbiol 2010; 61:7-12. [PMID: 20052585 DOI: 10.1007/s00284-009-9568-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
Abstract
To put forward BDH from Pseudomonas aeruginosa's enzymatic properties, we report a two-step purification of BDH and its gene sequencing allowing the investigation of its structural properties. Purification of BDH was achieved, using ammonium sulfate fractionation and Blue Sepharose CL-6B affinity chromatography. SDS-PAGE analysis reveals a MM of 29 kDa, whereas the native enzyme showed a MM of 120 kDa suggesting a homotetrameric structure. BDH encoding gene sequence shows a nucleotide open reading frame sequence of 771 bp encoding a 265 amino acid residues polypeptide chain. The modeling analysis of the three dimensional structure fits with the importance of amino acids in the catalysis reaction especially a strictly conserved tetrad. Amino-acid residues in interaction with the coenzyme NAD(+) were also identified.
Collapse
Affiliation(s)
- Driss Mountassif
- INSERM U866; Université de Bourgogne, LBMC (Biochimie Métabolique et Nutritionnelle), Faculté des Sciences, 6 Bd Gabriel, 21000, Dijon cedex, France
| | | | | | | | | |
Collapse
|
36
|
Heat-induced disassembly and degradation of chlorophyll-containing protein complexes in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:63-70. [DOI: 10.1016/j.bbabio.2009.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/12/2009] [Accepted: 08/18/2009] [Indexed: 11/19/2022]
|
37
|
Kapłon TM, Michnik A, Drzazga Z, Richter K, Kochman M, Ożyhar A. The rod-shaped conformation of Starmaker. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1616-24. [DOI: 10.1016/j.bbapap.2009.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 12/13/2022]
|
38
|
Abstract
The Serratia marcescens NucC protein is structurally and functionally homologous to the P2 Ogr family of eubacterial zinc finger transcription factors required for late gene expression in P2- and P4-related bacteriophages. These activators exhibit site-specific binding to a conserved DNA sequence, TGT-N(3)-R-N(4)-Y-N(3)-aCA, that is located upstream of NucC-dependent S. marcescens promoters and the late promoters of P2-related phages. In this report we describe the interactions of NucC with the P2 FETUD late operon promoter P(F). NucC is shown to bind P(F) as a tetramer and to make 12 symmetrical contacts to the DNA phosphodiester backbone. The backbone contacts are centered on the TGT-N(3)-R-N(4)-Y-N(3)-aCA motif. Major groove base contacts can be seen at most positions within the approximately 24-bp binding site. Minor groove contacts map to adjacent positions in the downstream half of the binding site, which corresponds to the area in which the DNA also appears to be bent by NucC binding. NucC binding provides a new example of protein-DNA interaction that is strikingly different from the DNA binding demonstrated for eukaryotic zinc-finger transcription factors.
Collapse
|
39
|
Mountassif D, Baibai T, Fourrat L, Moutaouakkil A, Iddar A, El Kebbaj MS, Soukri A. Immunoaffinity purification and characterization of glyceraldehyde-3-phosphate dehydrogenase from human erythrocytes. Acta Biochim Biophys Sin (Shanghai) 2009; 41:399-406. [PMID: 19430704 DOI: 10.1093/abbs/gmp026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new procedure utilizing immunoaffinity column chromatography has been used for the purification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) from human erythrocytes. The comparison between this rapid method (one step) and the traditional procedure including ammonium sulfate fractionation followed by Blue Sepharose CL-6B chromatography shows that the new method gives a highest specific activity with a highest yield in a short time. The characterization of the purified GAPDH reveals that the native enzyme is a homotetramer of ~150 kDa with an absolute specificity for the oxidized form of nicotinamide adenine dinucleotide (NAD(+)). Western blot analysis using purified monospecific polyclonal antibodies raised against the purified GAPDH showed a single 36 kDa band corresponding to the enzyme subunit. Studies on the effect of temperature and pH on enzyme activity revealed optimal values of about 43 degrees C and 8.5, respectively. The kinetic parameters were also calculated: the Vmax was 4.3 U/mg and the Km values against G3P and NAD(+) were 20.7 and 17.8 muM, respectively. The new protocol described represents a simple, economic, and reproducible tool for the purification of GAPDH and can be used for other proteins.
Collapse
Affiliation(s)
- Driss Mountassif
- Laboratoire de Biochimie et Biologie Moleculaire, Universite Hassan II-Ain Chock, Faculte des Sciences Ain Chock, km 8 route d'El Jadida BP. 5366, Maarif, Casablanca, Morocco.
| | | | | | | | | | | | | |
Collapse
|
40
|
Rózalska M, Szewczyk EM. Staphylococcus cohnii hemolysins - isolation, purification and properties. Folia Microbiol (Praha) 2009; 53:521-6. [PMID: 19381478 DOI: 10.1007/s12223-008-0082-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 08/07/2008] [Indexed: 11/30/2022]
Abstract
A total 355 of Staphylococcus cohnii isolates from hospital environment, patients (newborns), medical staff and from non-hospital environment were tested for hemolytic activity. Ninety-one % of S. cohnii ssp. cohnii and 74.5 % S. cohnii ssp. urealyticus strains exhibited hemolysis synergistic to S. aureus ATCC 25923 strain. Crude preparations of hemolysins of both bacterial subspecies presented delta-hemolysin, but not alpha- and beta-toxin activity. Highly pure hemolysins were obtained by semipreparative SDS-PAGE or by organic solvent extraction from the freeze-dried crude preparations. Native-PAGE and 2D-PAGE showed their high heterogeneity. Molar masses of single hemolysin units estimated by the Tris-Tricine-SDS-PAGE were calculated as 3.47 kDa for S. cohnii ssp. cohnii and 3.53 kDa for S. cohnii ssp. urealyticus.
Collapse
Affiliation(s)
- M Rózalska
- Department of Pharmaceutical Microbiology, Medical University of Łódź, Poland.
| | | |
Collapse
|
41
|
Wang Q, Kennedy A, Das P, McIntosh PB, Howell SA, Isaacson ER, Hinz SA, Davy C, Doorbar J. Phosphorylation of the human papillomavirus type 16 E1--E4 protein at T57 by ERK triggers a structural change that enhances keratin binding and protein stability. J Virol 2009; 83:3668-83. [PMID: 19211765 PMCID: PMC2663250 DOI: 10.1128/jvi.02063-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/30/2009] [Indexed: 02/08/2023] Open
Abstract
The E1--E4 protein of human papillomavirus type 16 (HPV16) causes cytokeratin reorganization in the middle and upper epithelial layers and is thought to contribute to multiple facets of the virus life cycle. Although little is known as to how HPV16 E1--E4 (16E1--E4) functions are controlled following the first expression of this protein, the finding that low-risk E1--E4 proteins can be phosphorylated in vivo suggests an important role for kinases. Here, we show that 16E1--E4 is phosphorylated by cyclin-dependent kinase 1 (CDK1) and CDK2, extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and PKC alpha, with CDK1/2 serine 32 and ERK threonine 57 phosphorylations representing the two primary events seen in cells in cycle. Interestingly, T57 phosphorylation was found to trigger a structural change in the 16E1--E4 protein that compacts the central fold region, leading to an increase in 16E1--E4 stability and overall abundance in the cell. When compared to wild-type 16E1--E4, a T57D phosphomimic was found to have greatly enhanced keratin-binding ability and an ability to modulate the binding of the unphosphorylated form, with keratin binding protecting the T57-phosphorylated form of 16E1--E4 from proteasomal degradation. In HPV16 genome-containing organotypic rafts, the T57-phosphorylated form was specifically detected in the intermediate cell layers, where productive infection occurs, suggesting that T57 phosphorylation may have a functional role at this stage of the viral life cycle. Interestingly, coexpression with 16E5 and ERK activation enhanced T57 phosphorylation, suggesting that E1--E4 and E5 may work together in vivo. Our data suggest a model in which the expression of 16E5 from the major E1--E4-E5 mRNA promotes T57 phosphorylation of E1--E4 and keratin binding, with dephosphorylation occurring following the switch to late poly(A) usage. Other forms of E1--E4, with alternative functional roles, may then increase in prevalence in the upper layers of the epithelium.
Collapse
Affiliation(s)
- Qian Wang
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beeby M, Bobik TA, Yeates TO. Exploiting genomic patterns to discover new supramolecular protein assemblies. Protein Sci 2009; 18:69-79. [PMID: 19177352 PMCID: PMC2708037 DOI: 10.1002/pro.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Revised: 09/19/2008] [Accepted: 09/22/2008] [Indexed: 01/29/2023]
Abstract
Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat-shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data.
Collapse
Affiliation(s)
- Morgan Beeby
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
| | - Thomas A Bobik
- Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmes, Iowa 50011
| | - Todd O Yeates
- UCLA-DOE Institute for Genomics and Proteomics, University of California Los AngelesLos Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California Los AngelesCalifornia 90095-1569
- Molecular Biology Institute, Paul D. Boyer HallLos Angeles, California 90095-1570
| |
Collapse
|
43
|
Kumar AK, Goswami P. Dissociation and Reconstitution Studies of a Broad Substrate Specific Multimeric Alcohol Oxidase Protein Produced by Aspergillus terreus. ACTA ACUST UNITED AC 2008; 145:259-65. [DOI: 10.1093/jb/mvn163] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Bock KR. The identification and partial characterisation of plant viruses in the tropics. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/09670878209370747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Murakami S, Nagasaki K, Nishimoto H, Shigematu R, Umesaki J, Takenaka S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P, Aoki K. Purification and characterization of five alkaline, thermotolerant, and maltotetraose-producing α-amylases from Bacillus halodurans MS-2-5, and production of recombinant enzymes in Escherichia coli. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2008.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Seelert H, Krause F. Preparative isolation of protein complexes and other bioparticles by elution from polyacrylamide gels. Electrophoresis 2008; 29:2617-36. [PMID: 18494038 DOI: 10.1002/elps.200800061] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to its unmatched resolution, gel electrophoresis is an indispensable tool for the analysis of diverse biomolecules. By adaptation of the electrophoretic conditions, even fragile protein complexes as parts of intracellular networks migrate through the gel matrix under sustainment of their integrity. If the thickness of such native gels is significantly increased compared to the analytical version, also high sample loads can be processed. However, the cage-like network obstructs an in-depth analysis for deciphering structure and function of protein complexes and other species. Consequently, the biomolecules have to be removed from the gel matrix into solution. Several approaches summarized in this review tackle this problem. While passive elution relies on diffusion processes, electroelution employs an electric field to force biomolecules out of the gel. An alternative procedure requires a special electrophoresis setup, the continuous elution device. In this apparatus, molecules migrate in the electric field until they leave the gel and were collected in a buffer stream. Successful isolation of diverse protein complexes like photosystems, ATP-dependent enzymes or active respiratory supercomplexes and some other bioparticles demonstrates the versatility of preparative electrophoresis. After liberating particles out of the gel cage, numerous applications are feasible. They include elucidation of the individual components up to high resolution structures of protein complexes. Therefore, preparative electrophoresis can complement standard purification methods and is in some cases superior to them.
Collapse
Affiliation(s)
- Holger Seelert
- Department of Chemistry, Physical Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
47
|
Yoon SS, Park SH, Kim YC, Shin M, Chong CK, Choi JD. Cloning and characterization of phosphoglucomutase and phosphomannomutase derived from Sphingomonas chungbukensis DJ77. J Biochem 2008; 144:507-12. [PMID: 18664520 DOI: 10.1093/jb/mvn094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The enzymes phosphoglucomutase (PGM) and phosphomannomutase (PMM) play an important role in the synthesis of extracellular polysaccharide. By colony hybridization of the fosmid library of Sphingomonas chungbukensis DJ77, an open reading frame (ORF-1) of 1,626 nucleotides, whose predicted product is highly homologous with other PGM proteins from several bacterial species, was identified. An additional open reading frame (ORF-2) of 1,437 nucleotides was identified, and its encoded protein shows a high level of similarity with the PGM/PMM protein family. The two genes were cloned into a bacterial expression vector pET-15b (+) and expressed in Escherichia coli as fusion proteins with (His)(6)-tag. Both recombinant proteins (designated as SP-1 and SP-2 for ORF-1 and ORF-2, respectively) exhibited PGM and PMM activities. The molecular masses of subunits of SP-1 and SP-2 were estimated to be around 58 and 51 kDa from SDS-PAGE, respectively. However, molecular masses of SP-1 and SP-2 in their native condition were determined to be approximately 59.5 and 105.4 kDa, according to non-denaturing PAGE, respectively. The SP-1 protein has a preference for glucose-1-phosphate rather than mannose-1-phosphate, while the preferred substrate of SP-2 is mannose-1-phosphate. Thus, the existence of two proteins with bifunctional PGM/PMM activities was first found S. chungbukensis DJ77.
Collapse
Affiliation(s)
- Sung-Sook Yoon
- School of Life Sciences and Biotechnology Research Institute, Chungbuk National University, Cheongju, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Gallagher SR. One-dimensional electrophoresis using nondenaturing conditions. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.3. [PMID: 18429096 DOI: 10.1002/0471140864.ps1003s00] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nondenaturing or "native" electrophoresis--i.e., electrophoresis in the absence of denaturants such as detergents and urea--is an often-overlooked technique for determining the native size, subunit structure, and optimal separation of a protein. Two protocols are presented in this unit: continuous PAGE, which is highly flexible, permitting cationic and anionic electrophoresis over a full range of pH, and discontinuous PAGE, which is limited to proteins negatively charged at neutral pH but provides high resolution for accurate size calibration.
Collapse
Affiliation(s)
- S R Gallagher
- Hoefer Pharmacia Biotech, San Francisco, California, USA
| |
Collapse
|
49
|
Gallagher SR. One-dimensional electrophoresis using nondenaturing conditions. ACTA ACUST UNITED AC 2008; Chapter 10:Unit 10.2B. [PMID: 18265064 DOI: 10.1002/0471142727.mb1002bs47] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nondenaturing or "native" electrophoresis (i.e., electrophoresis in the absence of denaturants such as detergents and urea) is an often-overlooked technique for determining the native size, subunit structure, and optimal separation of a protein. Because mobility depends on the size, shape, and intrinsic charge of the protein, nondenaturing electrophoresis provides a set of separation parameters distinctly different from mainly size-dependent denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis and charge-dependent isoelectric focusing. Two protocols are presented in this unit. Continuous PAGE is highly flexible, permitting cationic and anionic electrophoresis over a full range of pH. The discontinuous procedure is limited to proteins negatively charged at neutral pH but provides high resolution for accurate size calibration.
Collapse
|
50
|
Fourrat L, Iddar A, Valverde F, Serrano A, Soukri A. Effects of oxidative and nitrosative stress on Tetrahymena pyriformis glyceraldehyde-3-phosphate dehydrogenase. J Eukaryot Microbiol 2008; 54:338-46. [PMID: 17669159 DOI: 10.1111/j.1550-7408.2007.00275.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous reports showed that hydrogen peroxide and the NO-generating reagent sodium nitroprusside (SNP)-modulated enzymatic activity of animal glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12). These modifications are suggested to have a physiological regulatory role. To gain further insight into this regulatory process the model ciliated protozoan Tetrahymena pyriformis was chosen. Both reagents inhibited growth of T. pyriformis cultures and produced a specific increase of GAPDH protein but only NO seemed to reduce GAPDH activity in cell-free extracts. Both specific activity and pI were found to be altered in the in vivo NO-treated purified enzyme, but no effect was detected by the in vivo H(2)O(2) treatment. Analytical chromatofocusing showed a single basic isoform (pI 8.8) in enzyme preparations from control and H(2)O(2)-treated cells. In contrast to this, three more acidic isoforms (pIs, 8.6, 8.0 and 7.3) were resolved in purified fractions from SNP-treated cells, suggesting post-translational modification of the enzyme by NO. Nevertheless, a decrease of GAPDH activity by H(2)O(2) and NO, mainly due to a decrease in its V(max) without apparent change in substrate affinity, was observed in vitro in the whole enzyme population. The increase of GAPDH protein level found in vivo suggests a cell response in order to compensate for the inhibitory effect on activity observed in the purified enzyme. This is the first report of NO- and H(2)O(2)-dependent effects on GAPDH of T. pyriformis, and identifies this key protein of central carbon metabolism as a physiological target of oxidative and nitrosative stress in this ciliated protozoan.
Collapse
Affiliation(s)
- Latifa Fourrat
- Laboratoire de Physiologie et Génétique moléculaire, Département de Biologie, Faculté des Sciences Aïn-Chock, Université Hassan-II, Km 8 route d'El Jadida, B.P. 5366 Mâarif, Casablanca, Morocco
| | | | | | | | | |
Collapse
|