1
|
Shi Y, Li R, White DJ, Biesbrock AR. Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus. Adv Dent Res 2018; 29:124-130. [PMID: 29355427 DOI: 10.1177/0022034517737027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF2. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn2+ (in the form of SnF2) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.
Collapse
Affiliation(s)
- Y Shi
- 1 The Procter and Gamble Company, Beijing Technical Center, Beijing, China
| | - R Li
- 2 The Procter and Gamble Company, International Operations SA SG Branch, Singapore
| | - D J White
- 3 The Procter and Gamble Company, Mason Business Center, Mason, OH, USA
| | - A R Biesbrock
- 3 The Procter and Gamble Company, Mason Business Center, Mason, OH, USA
| |
Collapse
|
2
|
Mukherjee S, Sahu P, Halder G. Microbial remediation of fluoride-contaminated water via a novel bacterium Providencia vermicola (KX926492). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:413-423. [PMID: 28915476 DOI: 10.1016/j.jenvman.2017.08.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
The present study emphasizes on the isolation, identification and characterization of a fluoride-resistant bacteria from contaminated groundwater of a severely affected rural area. The isolate was investigated for its possible role towards bioremediation of fluoride. Bacterial growth was determined by various carbon and nitrogen sources. Influence of parameters like initial fluoride concentration (5-25 mg L-1), pH (3-9) and temperature (15-42 °C) on fluoride removal by Providencia sp. KX926492 were also examined. SEM, EDX and FTIR were performed to analyse the surface texture, elemental composition and functional groups of the bacterium involved in the uptake of fluoride ions. 16S rRNA sequencing was performed to identify the isolate. Plackett-Burman design was employed to optimize the various parametric conditions of fluoride removal. Maximum removal of 82% was achieved when the initial fluoride concentration was 20 mgL-1 at pH 7 and 37 °C temperature with dextrose and nitrogen concentrations of 5 and 4 g per 50 mL respectively. Results suggested that Providencia vermicola (KX926492) could be a potential bacterium in removal of fluoride from contaminated water.
Collapse
Affiliation(s)
- Shraboni Mukherjee
- Chemical Engg Department, National Institute of Technology, Durgapur, 713209, India
| | - Priyanka Sahu
- Chemical Engg Department, National Institute of Technology, Durgapur, 713209, India
| | - Gopinath Halder
- Chemical Engg Department, National Institute of Technology, Durgapur, 713209, India.
| |
Collapse
|
3
|
Asención Diez MD, Demonte AM, Guerrero SA, Ballicora MA, Iglesias AA. The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes. Mol Microbiol 2013; 90:1011-27. [PMID: 24112771 DOI: 10.1111/mmi.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje 'El Pozo' CC 242, S3000ZAA, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068, W Sheridan Rd., Chicago, IL, 60660, USA
| | | | | | | | | |
Collapse
|
4
|
Welin-Neilands J, Svensäter G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl Environ Microbiol 2007; 73:5633-8. [PMID: 17630302 PMCID: PMC2042095 DOI: 10.1128/aem.01049-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/04/2007] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, a member of the dental plaque community, has been shown to be involved in the carious process. Cells of S. mutans induce an acid tolerance response (ATR) when exposed to sublethal pH values that enhances their survival at a lower pH. Mature biofilm cells are more resistant to acid stress than planktonic cells. We were interested in studying the acid tolerance and ATR-inducing ability of newly adhered biofilm cells of S. mutans. All experiments were carried out using flow-cell systems, with acid tolerance tested by exposing 3-h biofilm cells to pH 3.0 for 2 h and counting the number of survivors by plating on blood agar. Acid adaptability experiments were conducted by exposing biofilm cells to pH 5.5 for 3 h and then lowering the pH to 3.5 for 30 min. The viability of the cells was assessed by staining the cells with LIVE/DEAD BacLight viability stain. Three-hour biofilm cells of three different strains of S. mutans were between 820- and 70,000-fold more acid tolerant than corresponding planktonic cells. These strains also induced an ATR that enhanced the viability at pH 3.5. The presence of fluoride (0.5 M) inhibited the induction of an ATR, with 77% fewer viable cells at pH 3.5 as a consequence. Our data suggest that adhesion to a surface is an important step in the development of acid tolerance in biofilm cells and that different strains of S. mutans possess different degrees of acid tolerance and ability to induce an ATR.
Collapse
Affiliation(s)
- Jessica Welin-Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, SE-205 06 Malmö, Sweden
| | | |
Collapse
|
5
|
Iwami Y, Hata S, Schachtele CF, Yamada T. Simultaneous monitoring of intracellular pH and proton excretion during glycolysis by Streptococcus mutans and Streptococcus sanguis: effect of low pH and fluoride. ORAL MICROBIOLOGY AND IMMUNOLOGY 1995; 10:355-9. [PMID: 8602343 DOI: 10.1111/j.1399-302x.1995.tb00166.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A system was developed by which 2',7'-bis(carboxyethyl)-4 or 5-carboxyfluorescein could be used to monitor intracellular pH at the same time that proton excretion was being measured. Streptococcal cells were loaded with the dye, and after the addition of glucose protons were excreted and the intracellular pH increased quickly and remained higher than the extracellular pH of 7.0. The excretion of protons stopped and the intracellular pH returned to the original level when glucose was depleted. The intracellular level of ATP remained high during glucose metabolism and decreased with the depletion of glucose. At extracellular pH of 5.5, and 5.0, the intracellular pH of fasting cells was higher than the extracellular pH value. After addition of glucose there were initial lags of proton excretion and of increases in intracellular pH at the acidic extracellular pH values. In the presence of fluoride, a lag in proton excretion and a simultaneous decrease in intracellular pH were observed, indicating a partial and transient inhibition of proton-ATPase activity.
Collapse
Affiliation(s)
- Y Iwami
- Department of Oral Biochemistry, Tohoku University School of Dentistry, Sendai, Japan
| | | | | | | |
Collapse
|
6
|
Abstract
Fluoride is widely used as a highly effective anticaries agent. Although it is felt that its anticaries action is related mainly to effects on mineral phases of teeth and on the process of remineralization, fluoride also has important effects on the bacteria of dental plaque, which are responsible for the acidification of plaque that results in demineralization. The results of recent studies have shown that fluoride can affect bacterial metabolism through a set of actions with fundamentally different mechanisms. It can act directly as an enzyme inhibitor, for example for the glycolytic enzyme enolase, which is inhibited in a quasi-irreversible manner. Direct action seems also to occur in inhibition of heme-based peroxidases with binding of fluoride to heme. The flavin-based peroxidases of many oral bacteria are insensitive to fluoride. Another mode of action involves formation of metal-fluoride complexes, most commonly AlF4-. These complexes are responsible for fluoride inhibition of proton-translocating F-ATPases and are thought to act by mimicking phosphate to form complexes with ADP at reaction centers of the enzymes. However, the actions of fluoride that are most pertinent to reducing the cariogenicity of dental plaque are those related to its weak-acid character. Fluoride acts to enhance membrane permeabilities to protons and compromises the functioning of F-ATPases in exporting protons, thereby inducing cytoplasmic acidification and acid inhibition of glycolytic enzymes. Basically, fluoride acts to reduce the acid tolerance of the bacteria. It is most effective at acid pH values. In the acidic conditions of cariogenic plaque, fluoride at levels as low as 0.1 mM can cause complete arrest of glycolysis by intact cells of Streptococcus mutans. Overall, the anticaries actions of fluoride appear to be complex, involving effects both on bacteria and on mineral phases. The antibacterial actions of fluoride appear themselves to be complex but to be dominated by weak-acid effects.
Collapse
Affiliation(s)
- R E Marquis
- Department of Microbiology, University of Rochester Medical Center, NY 14642-8672, USA
| |
Collapse
|
7
|
Van Loveren C, Spitz LM, Buijs JF, Ten Cate JM, Eisenberg AD. In vitro demineralization of enamel by F-sensitive and F-resistant mutans streptococci in the presence of 0, 0.05, or 0.5 mmol/L NaF. J Dent Res 1991; 70:1491-6. [PMID: 1774379 DOI: 10.1177/00220345910700120401] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lactate production and accompanying enamel demineralization by fluoride-sensitive and fluoride-resistant mutans streptococci were studied in an in vitro demineralization model in the presence of 0, 0.05, or 0.5 mmol/L NaF. The fluoride-resistant strains were derived from laboratory strains or were recently isolated strains from xerostomic patients on high-dose fluoride therapy. The demineralization model was composed of a cell suspension in a glucose-agarose gel overlying a bovine enamel block. Lactate and calcium content of the agarose were determined after 22-hour incubations at 37 degrees C. Fluoride-resistant variants of Streptococcus sobrinus 6715-15 produced less lactate and caused less demineralization than did the parent strain even in the presence of fluoride. On the other hand, fluoride-resistant variants of Streptococcus mutans C180-2 and of S. mutans GS-5 produced more acid and caused greater demineralization than did their respective parent strains, both in the absence and presence of fluoride. Two recently isolated fluoride-resistant S. mutans strains produced more lactate and demineralized enamel more than did two recently isolated S. mutans strains from normal human subjects, both in the presence of 0 and 0.05 mmol/L NaF. It is concluded that adaptation to fluoride resistance does not invariably reduce the cariogenicity of mutans streptococci nor the effectiveness of fluoride in preventing demineralization.
Collapse
Affiliation(s)
- C Van Loveren
- Department of Cariology and Endodontology, Academic Centre for Dentistry Amsterdam (ACTA), The Netherlands
| | | | | | | | | |
Collapse
|
8
|
Abstract
Fluoride inhibition of carbohydrate metabolism by the acidogenic plaque microflora is well-established, although it has not always been appreciated that oral bacteria vary considerably in their susceptibility to fluoride. Early studies demonstrated that the F-induced reduction in acid production was due, in part, to the inhibition of the glycolytic enzyme, enolase, which converts 2-P-glycerate to P-enolpyruvate. The decreased output of PEP in the presence of F, in turn, results in the inhibition of sugar transport via the PEP phosphotransferase system (PTS). Bacterial accumulation of fluoride involves the transport of HF, a process requiring a transmembrane pH difference or pH gradient, which is generated only by metabolically active cells. The uptake of HF into the more alkaline cytoplasm results in the dissociation of HF to H+ and F- and, if allowed to continue, the accumulation of protons acidifies the cytoplasm, causing a reduction in both the proton gradient and enzyme activity. Current information indicates that in addition to enolase, F- also inhibits the membrane-bound, proton-pumping H+/ATPase, which is involved in the generation of proton gradients through the efflux of protons from the cell at the expense of ATP. Thus, fluoride has the dual action of dissipating proton gradients and preventing their generation through its action on H+/ATPase. The collapse of transmembrane proton gradient, in turn, reduces the ability of cells to transport solutes via mechanisms involving proton motive force. In spite of these known effects on the bacterial cell, there is no general agreement that the anti-microbial effects of F contribute to the anti-caries effect of fluoride.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I R Hamilton
- Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Edgar WM, Cockburn MA, Jenkins GN. Uptake of fluoride and its inhibitory effects in oral microorganisms in culture. Arch Oral Biol 1981; 26:615-23. [PMID: 6947766 DOI: 10.1016/0003-9969(81)90024-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Streckfuss JL, Perkins D, Horton IM, Brown LR, Dreizen S, Graves L. Fluoride resistance and adherence of selected strains of Streptococcus mutans to smooth surfaces after exposure to fluoride. J Dent Res 1980; 59:151-8. [PMID: 6928001 DOI: 10.1177/00220345800590021501] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The fluoride resistance and smooth surface adherence characteristics of Streptococcus mutans were examined using tooth model and radioactive cell assays. Resistance to 600 ppmF by S. mutans isolated from the plaque of radiation-induced xerostomia patients receiving daily topical applications of a caries preventive 1% NaF gel was transient. Resistance induced in vitro in two strains of S. mutans by exposure to gradually increasing levels of NaF was apparently permanent. Smooth surface adherence by both fluoride-sensitive and -resistant strains of S. mutans 6715 in a tooth model system was slightly diminished by 1% NaF gel. Fluoride-resistant strains retained 89 to 93% of their adherence capability in 600 ppmF, as determined by the cell radiolabeling assay.
Collapse
|
11
|
Bowden GHW, Ellwood DC, Hamilton IR. Microbial Ecology of the Oral Cavity. ADVANCES IN MICROBIAL ECOLOGY 1979. [DOI: 10.1007/978-1-4615-8279-3_4] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Whitford GM, Schuster GS, Pashley DH, Venkateswarlu P. Fluoride uptake by Streptococcus mutans 6715. Infect Immun 1977; 18:680-7. [PMID: 22490 PMCID: PMC421289 DOI: 10.1128/iai.18.3.680-687.1977] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The short-term kinetics of fluoride uptake by cells from 20- to 22-h cultures of Streptococcus mutans strain 6715 were studied using rapid filtration and centrifugation techniques. Saline-suspended organisms were diluted with fluoride-containing solutions buffered at four different pH values (2.0, 4.0, 5.5, and 8.2). Fluoride disappearance from the medium was inversely related to pH and to the duration of the exposure at any given pH. The uptake was rapid and extensive at the lower pH values and decreased as the pH increased. Media fluoride concentrations subsequently increased; i.e., fluoride was released from the cells. The presence of glucose, cyanide, or iodoacetate did not influence the results. However, preincubation of the cells in fluoride-free buffers, followed by the addition of fluoride, reduced fluoride uptake markedly. Cell-to-media pH gradients were determined by the distribution of 14C-labeled 5,5-dimethyl-2,4-oxazolidinedione. Fluoride uptake was found to be a function of the magnitude of the pH gradient (P less than 0.001). It is hypothesized that fluoride uptake occurs by the diffusion of hydrogen fluoride and the subsequent trapping of ionic fluoride.
Collapse
|
13
|
Mickelson MN. Glucose transport in Streptococcus agalactiae and its inhibition by lactoperoxidase-thiocyanate-hydrogen peroxide. J Bacteriol 1977; 132:541-8. [PMID: 334746 PMCID: PMC221894 DOI: 10.1128/jb.132.2.541-548.1977] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transport of 2-deoxyglucose or glucose in Streptococcus agalactiae was strongly inhibited if the cells were first exposed to a combination of lactoperoxidase-thiocyanate-hydrogen peroxide (LP-complex). The inhibition was completely reversible with dithiothreitol. N-ethylmaleimide and p-chloromercuribenzoate inhibited sugar transport, and the inhibition was also reversible with dithiothreitol. Sodium fluoride also inhibited sugar transport. Glucolysis was completely inhibited, and dithiothreitol completely reversed the inhibition. Phosphoenolpyruvate-dependent phosphotransferase activity in S. agalactiae was not strongly inhibited by the LP-complex. Interference of the entry of glucose into cells of S. agalactiae by the LP-complex could well account for its growth inhibitory properties with this organism. The inhibition of glucose transport by the LP-complex and its reversibility with dithiothreitol suggest the modification of functional sulfhydryl groups in the cell membrane as a cause of transport inhibition.
Collapse
|
14
|
Abstract
Streptococcus mutans, S sanguis, and S salivarius use a phosphoenolpyruvate (PEP)-dependent phosphotransferase system that results in phosphorylation of glucose at carbon 6. This enzyme system is not sensitive to fluoride. Glucose uptake into resting cell suspensions is sensitive to fluoride because of inhibition of intracellular PEP production. The glucose phosphotransferase system is constitutive in oral streptococci.
Collapse
|
15
|
Khandelwal RL, Spearman TN, Hamilton IR. Purification and properties of glycogen phosphorylase from Streptococcus salivarius. Arch Biochem Biophys 1973; 154:295-305. [PMID: 4689781 DOI: 10.1016/0003-9861(73)90061-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Spearman TN, Khandelwal RL, Hamilton IR. Some regulatory properties of glycogen phosphorylase from Streptococcus salivarius. Arch Biochem Biophys 1973; 154:306-13. [PMID: 4347682 DOI: 10.1016/0003-9861(73)90062-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Kanapka JA, Hamilton IR. Fluoride inhibition of enolase activity in vivo and its relationship to the inhibition of glucose-6-P formation in Streptococcus salivarius. Arch Biochem Biophys 1971; 146:167-74. [PMID: 5144023 DOI: 10.1016/s0003-9861(71)80053-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|