1
|
Wongkittichote P, Pantano C, Bogush E, Alves CAP, Hong X, He M, Demczko MM, Ganetzky RD, Goldstein A. Clinical, radiological, biochemical and molecular characterization of a new case with multiple mitochondrial dysfunction syndrome due to IBA57: Lysine and tryptophan metabolites as potential biomarkers. Mol Genet Metab 2023; 140:107710. [PMID: 37903659 DOI: 10.1016/j.ymgme.2023.107710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Iron‑sulfur clusters (FeS) are one of the most primitive and ubiquitous cofactors used by various enzymes in multiple pathways. Biosynthesis of FeS is a complex multi-step process that is tightly regulated and requires multiple machineries. IBA57, along with ISCA1 and ISCA2, play a role in maturation of [4Fe-4S] clusters which are required for multiple mitochondrial enzymes including mitochondrial Complex I, Complex II, lipoic acid synthase, and aconitase. Pathogenic variants in IBA57 have been associated with multiple mitochondrial dysfunctions syndrome 3 (MMDS3) characterized by infantile to early childhood-onset psychomotor regression, optic atrophy and nonspecific dysmorphism. Here we report a female proband who had prenatal involvement including IUGR and microcephaly and developed subacute psychomotor regression at the age of 5 weeks in the setting of preceding viral infection. Brain imaging revealed cortical malformation with polymicrogyria and abnormal signal alteration in brainstem and spinal cord. Biochemical analysis revealed increased plasma glycine and hyperexcretion of multiple organic acids in urine, raising the concern for lipoic acid biosynthesis defects and mitochondrial FeS assembly defects. Molecular analysis subsequently detected compound heterozygous variants in IBA57, confirming the diagnosis of MMDS3. Although the number of MMDS3 patients are limited, certain degree of genotype-phenotype correlation has been observed. Unusual brain imaging in the proband highlights the need to include mitochondrial disorders as differential diagnoses of structural brain abnormalities. Lastly, in addition to previously known biomarkers including high blood lactate and plasma glycine levels, the increase of 2-hydroxyadipic and 2-ketoadipic acids in urine organic acid analysis, in the appropriate clinical context, should prompt an evaluation for the lipoic acid biosynthesis defects and mitochondrial FeS assembly defects.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Cassandra Pantano
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily Bogush
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cesar Augusto P Alves
- Division of Neuroradiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xinying Hong
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Miao He
- Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew M Demczko
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca D Ganetzky
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Goldstein
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Skoog E, Shin JH, Saez-Jimenez V, Mapelli V, Olsson L. Biobased adipic acid – The challenge of developing the production host. Biotechnol Adv 2018; 36:2248-2263. [DOI: 10.1016/j.biotechadv.2018.10.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/18/2018] [Accepted: 10/27/2018] [Indexed: 11/28/2022]
|