1
|
Analysis of Mitochondrial Function, Structure, and Intracellular Organization In Situ in Cardiomyocytes and Skeletal Muscles. Int J Mol Sci 2022; 23:ijms23042252. [PMID: 35216368 PMCID: PMC8876605 DOI: 10.3390/ijms23042252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of the function, structure, and intracellular organization of mitochondria is important for elucidating energy metabolism and intracellular energy transfer. In addition, basic and clinically oriented studies that investigate organ/tissue/cell dysfunction in various human diseases, including myopathies, cardiac/brain ischemia-reperfusion injuries, neurodegenerative diseases, cancer, and aging, require precise estimation of mitochondrial function. It should be noted that the main metabolic and functional characteristics of mitochondria obtained in situ (in permeabilized cells and tissue samples) and in vitro (in isolated organelles) are quite different, thereby compromising interpretations of experimental and clinical data. These differences are explained by the existence of the mitochondrial network, which possesses multiple interactions between the cytoplasm and other subcellular organelles. Metabolic and functional crosstalk between mitochondria and extra-mitochondrial cellular environments plays a crucial role in the regulation of mitochondrial metabolism and physiology. Therefore, it is important to analyze mitochondria in vivo or in situ without their isolation from the natural cellular environment. This review summarizes previous studies and discusses existing approaches and methods for the analysis of mitochondrial function, structure, and intracellular organization in situ.
Collapse
|
2
|
Maniti O, François-Moutal L, Lecompte MF, Vial C, Lagarde M, Guichardant M, Marcillat O, Granjon T. Protein "amyloid-like" networks at the phospholipid membrane formed by 4-hydroxy-2-nonenal-modified mitochondrial creatine kinase. Mol Membr Biol 2015; 32:1-10. [PMID: 25865250 DOI: 10.3109/09687688.2015.1023376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
4-Hydroxy-2-nonenal (4-HNE) is a reactive aldehyde and a lipid peroxidation product formed in biological tissues under physiological and pathological conditions. Its concentration increases with oxidative stress and induces deleterious modifications of proteins and membranes. Mitochondrial and cytosolic isoforms of creatine kinase were previously shown to be affected by 4-HNE. In the present study, we analyzed the effect of 4-HNE on mitochondrial creatine kinase, an abundant protein from the mitochondrial intermembrane space with a key role in mitochondrial physiology. We show that this effect is double: 4-HNE induces a step-wise loss of creatine kinase activity together with a fast protein aggregation. Protein-membrane interaction is affected and amyloid-like networks formed on the biomimetic membrane. These fibrils may disturb mitochondrial organisation both at the membrane and in the inter membrane space.
Collapse
Affiliation(s)
- Ofelia Maniti
- Université de Lyon, Lyon; Université Lyon 1, CNRS, UMR 5246, ICBMS, IMBL , Villeurbanne , France
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Acyl chain composition determines cardiolipin clustering induced by mitochondrial creatine kinase binding to monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1129-39. [DOI: 10.1016/j.bbamem.2011.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/21/2010] [Accepted: 01/10/2011] [Indexed: 01/18/2023]
|
4
|
Vernoux N, Maniti O, Besson F, Granjon T, Marcillat O, Vial C. Mitochondrial creatine kinase adsorption to biomimetic membranes: a Langmuir monolayer study. J Colloid Interface Sci 2007; 310:436-45. [PMID: 17359991 DOI: 10.1016/j.jcis.2007.01.093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/29/2007] [Accepted: 01/29/2007] [Indexed: 11/16/2022]
Abstract
Interaction of mitochondrial creatine kinase (mtCK) with either synthetic or natural zwitterionic or acidic phospholipids was monitored by surface pressure measurements. Injection of mtCK beneath a monolayer at very low surface pressure results in a large increase in the apparent area per lipid molecule reflecting the intrinsic surface activity of the protein. This effect is particularly pronounced with anionic phospholipid-containing films. Upon compression to high lateral pressure, the protein is squeezed out of the lipid monolayer. On the contrary, mtCK injected beneath a monolayer compressed at 30 mN/m, does not insert into the monolayer but is concentrated below the surface by anionic phospholipids as evidenced by the immediate and strong increase in the apparent molecular area occurring upon decompression. Below 8 mN/m the protein adsorbs to the interface and remains intercalated until the lateral pressure increases again. The critical pressure of insertion is higher for anionic lipid-containing monolayers than for films containing only zwitterionic phospholipids. In the former case it is markedly diminished by NaCl. The adsorption of mtCK depends on the percentage of negative charges carried by the monolayer and is reduced by increasing NaCl concentrations. However, the residual interaction existing in the absence of a global negative charge on the membrane may indicate that this interaction also involves a hydrophobic component.
Collapse
Affiliation(s)
- Nathalie Vernoux
- CNRS UMR 5246/IMBL, Biomembranes et enzymes associés, Université Lyon 1, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne cedex, France
| | | | | | | | | | | |
Collapse
|
5
|
Vernoux N, Granjon T, Marcillat O, Besson F, Vial C. Interfacial behavior of cytoplasmic and mitochondrial creatine kinase oligomeric states. Biopolymers 2006; 81:270-81. [PMID: 16283667 DOI: 10.1002/bip.20412] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adsorption to the air/water interface of isoenzymes of creatine kinase was investigated using surface pressure-area isotherms and Brewster angle microscopy (BAM) observations. Octameric mitochondrial creatine kinase (mtCK) exhibits a significant affinity for the air/water interface. Whatever the mode of formation of the interfacial film, i.e., injection of the protein in the subphase or spreading onto the buffer surface, the final arrangement and conformation adopted by mtCK molecules lead to a similar result. In contrast, the dimeric isoenzymes mtCK and cytosolic MMCK do not induce any surface pressure variation. However, when the subphase contains 0.3M NaCl, both isoenzymes adsorb to the interface. When treated with 0.8 or 3M GdnHCl, muscle creatine kinase (MMCK) becomes surface active and occupies a greater surface than mtCK. This result contrasts with previous observations, often derived from monomeric proteins, that their surface activity is increased upon unfolding. It underlines the possible influence exerted by the protein oligomeric state on its interfacial activity. At a subphase pH of 8.8, which corresponds to the pI of octameric mtCK, the profiles of the isotherms obtained with dimeric and octameric states and the resistance to compression of the protein monolayers are significantly affected when compared to those recorded at pH 7.4. These data suggest that the octamer is more hydrophobic than the dimer and may contribute to explaining why octamers bind to the inner mitochondrial membrane while dimers do not.
Collapse
Affiliation(s)
- Nathalie Vernoux
- UMR CNRS 5013, Biomembranes et enzymes associés, Université Claude Bernard Lyon I, 43, boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | | | | | | | | |
Collapse
|
6
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 437] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
7
|
Territo PR, French SA, Dunleavy MC, Evans FJ, Balaban RS. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering. J Biol Chem 2001; 276:2586-99. [PMID: 11029457 DOI: 10.1074/jbc.m002923200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parallel activation of heart mitochondria NADH and ATP production by Ca(2+) has been shown to involve the Ca(2+)-sensitive dehydrogenases and the F(0)F(1)-ATPase. In the current study we hypothesize that the response time of Ca(2+)-activated ATP production is rapid enough to support step changes in myocardial workload ( approximately 100 ms). To test this hypothesis, the rapid kinetics of Ca(2+) activation of mV(O(2)), [NADH], and light scattering were evaluated in isolated porcine heart mitochondria at 37 degrees C using a variety of optical techniques. The addition of Ca(2+) was associated with an initial response time (IRT) of mV(O(2)) that was dose-dependent with a minimum IRT of 0.27 +/- 0.02 s (n = 41) at 535 nm Ca(2+). The IRTs for NADH fluorescence and light scattering in response to Ca(2+) additions were similar to mV(O(2)). The Ca(2+) IRT for mV(O(2)) was significantly shorter than 1.6 mm ADP (2.36 +/- 0.47 s; p < or = 0.001, n = 13), 2.2 mm P(i) (2.32 +/- 0.29, p < or = 0.001, n = 13), or 10 mm creatine (15.6.+/-1.18 s, p < or = 0.001, n = 18) under similar experimental conditions. Calcium effects were inhibited with 8 microm ruthenium red (2.4 +/- 0.31 s; p < or = 0.001, n = 16) and reversed with EGTA (1.6 +/- 0.44; p < or = 0.01, n = 6). Estimates of Ca(2+) uptake into mitochondria using optical Ca(2+) indicators trapped in the matrix revealed a sufficiently rapid uptake to cause the metabolic effects observed. These data are consistent with the notion that extramitochondrial Ca(2+) can modify ATP production, via an increase in matrix Ca(2+) content, rapidly enough to support cardiac work transitions in vivo.
Collapse
Affiliation(s)
- P R Territo
- Laboratory of Cardiac Energetics, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1061, USA.
| | | | | | | | | |
Collapse
|
8
|
Alzogaray RA, Zerba EN. Behavioral response of fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) to pyrethroids. Acta Trop 2001; 78:51-7. [PMID: 11164751 DOI: 10.1016/s0001-706x(00)00167-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hyperactivity (an increase in locomotor activity) and repellency produced by eight pyrethroids, applied as films on filter paper, were evaluated on fifth instar nymphs of Triatoma infestans (Hemiptera: Reduviidae) using a video tracking technique. All the pyrethroids studied produced hyperactivity. As a trend, hyperactivity produced by cyanopyrethroids was higher than that produced by non-cyanopyrethroids. Hyperactivity was not observed when nymphs were pretreated with the sulphydryl reagent N-ethylmaleimide before exposure to the pyrethroids. The eight pyrethroids failed to produce repellency. No repellency was also observed for the flowable formulation of deltamethrin at the concentration recommended for T. infestans control.
Collapse
Affiliation(s)
- R A Alzogaray
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-CITEFA/CONICET), Zufriategui 4380, 1603, Prov. de Buenos Aires, Villa Martelli, Argentina
| | | |
Collapse
|
9
|
Vacheron MJ, Clottes E, Chautard C, Vial C. Mitochondrial creatine kinase interaction with phospholipid vesicles. Arch Biochem Biophys 1997; 344:316-24. [PMID: 9264545 DOI: 10.1006/abbi.1997.0181] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The characteristics of the interaction of mitochondrial creatine kinase (mt-CK) with phospholipid vesicles are determined. The presence of negatively charged phospholipids is required to obtain a significant binding of mt-CK. The interaction seems to be largely of an electrostatic nature: it increases with increasing amounts of anionic phospholipid in liposomes and decreases when the ionic strength increases or when the pH of the medium is higher than the pI of mt-CK. We have compared the effects of various effectors used to solubilize mt-CK from the mitochondrial membrane on the binding of mt-CK to liposomes: the nucleotide substrates ATP and ADP have no influence, parahydroxymercuribenzoate, a negatively charged organomercurial compound, partially decreases mt-CK binding; and the anticancer agent adriamycin efficiently prevents mt-CK binding. As monitored by the increase in absorbance, mt-CK causes vesicle aggregation. A differential scanning calorimetry study, using dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol vesicles, shows that mt-CK produces a decrease in the enthalpy variation without any change in the position of the calorimetric peak maximum. This suggests a partial disorganization of the phospholipid bilayer upon interaction with mt-CK.
Collapse
Affiliation(s)
- M J Vacheron
- UPRESA 5013 CNRS-LYON I Biomembranes et Enzymes Associés, Université Claude Bernard Lyon I, Villeurbanne, France.
| | | | | | | |
Collapse
|
10
|
Bouzidi MF, Enjolras N, Carrier H, Vial C, Lopez-Mediavilla C, Burt-Pichat B, Couthon F, Godinot C. Variations of muscle mitochondrial creatine kinase activity in mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1316:61-70. [PMID: 8672552 DOI: 10.1016/0925-4439(95)00126-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondrial creatine kinase (mtCK) activity has been measured in the mitochondria isolated from the muscle of 69 patients suspected of mitochondrial diseases. The isolated mitochondria did not contain significant amounts of the muscle isoform of creatine kinase, as checked by an immunoassay performed after electrophoretic separation of the various isoforms. Hence, the enzyme assay reliably represented the mtCK activity. Therefore, a simple measurement of CK activity in isolated mitochondria permitted the measurement of mtCK activity. An absence of mtCK activity in muscle was never observed. The lowest activities were not associated to defined mitochondrial diseases linked to defects of respiratory chain complexes or to defects of citric cycle enzymes. On the contrary, mtCK activity was significantly increased in the muscle of patients exhibiting ragged red fibers. This increase was generally associated to an increase of citrate synthase activity. Since ragged-red fibers and elevated mtCK activities were generally not found in children younger than 3 years, even in cases of characteristic oxidative phosphorylation deficiency, it is suggested that the increase in mtCK activity as well as the appearance of ragged-red fibers are not the first events which occur during the evolution of mitochondrial diseases but would rather be long-term secondary processes which slowly develop in deficient mitochondria.
Collapse
Affiliation(s)
- M F Bouzidi
- UMR 106 CNRS, UCB Lyon I, Villeurbanne, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fedosov SN, Belousova LV, Plesner IW. A model of mitochondrial creatine kinase binding to membranes: adsorption constants, essential amino acids and the effect of ionic strength. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1153:322-30. [PMID: 8274503 DOI: 10.1016/0005-2736(93)90422-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The quantitative aspects of mitochondrial creatine kinase (mitCK) binding to mitochondrial membranes were investigated. A simple adsorption and binding model was used for data fitting, taking into account the influence of protein concentration, pH, ionic strength and substrate concentration on the enzyme adsorption. An analysis of our own data as well as of the data from the literature is consistent with the adsorption site of the octameric mitCK being composed of 4 amino acid residues with pK = 8.8 in the free enzyme. The pK value changes to 9.8 upon binding of the protein to the membrane. Lysine is suggested as the main candidate to form the adsorption site of mitCK. Deprotonated octameric mitCK easily dissociated from the membrane (Ka = 0.39 mM at ionic strength I = 7.5 mM and 5 degrees C); after protonation its affinity increased many times (Kah = 39 nM). Determination of mitCK adsorption capacity by another method at pH 7.4, when the enzyme is almost protonated, gave Kah = 15 nM. The effect of ionic strength on mitCK adsorption may be described in terms of Debye-Hückel's theory for activity coefficients assuming the charges of the interacting species to be +4 and -4. The dissociation constant for the mitCK-membrane complex at pH 7.4 and I = 0 was evaluated by different approaches as approx. 1 nM. Extramitochondrial ATP (or ADP) shifted greatly the equilibrium between the adsorbed and the free mitCK towards the solubilized state, since in the adsorbed protein the external ligands had access to four binding sites and in the free protein to eight sites.
Collapse
Affiliation(s)
- S N Fedosov
- Department of Chemistry, Aarhus University, Denmark
| | | | | |
Collapse
|
12
|
Wyss M, Smeitink J, Wevers RA, Wallimann T. Mitochondrial creatine kinase: a key enzyme of aerobic energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:119-66. [PMID: 1390823 DOI: 10.1016/0005-2728(92)90096-k] [Citation(s) in RCA: 278] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- M Wyss
- Institute for Cell Biology, ETH Hönggerberg, Zürich, Switzerland
| | | | | | | |
Collapse
|
13
|
|
14
|
Kadrmas EF, Ray PD, Lambeth DO. Apparent ATP-linked succinate thiokinase activity and its relation to nucleoside diphosphate kinase in mitochondrial matrix preparations from rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1074:339-46. [PMID: 1653609 DOI: 10.1016/0304-4165(91)90083-s] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relative abilities of ATP and GTP to support succinyl-CoA synthesis by mitochondrial matrix fractions prepared from rabbit heart and liver mitoplasts were investigated. The activity supported by ATP in rabbit heart preparations was less than 15% of that obtained with GTP, while no ATP-supported activity was observed in rabbit liver preparations. However, the addition of 30 micromolar GDP to matrix fractions from either heart or liver stimulated the ATP-supported activity to 40% of that observed with GTP, and the further addition of bovine liver nucleoside diphosphate kinase in the presence of 8 microM added GDP increased the activity to near that observed with GTP. The specific activity of nucleoside diphosphate kinase assayed directly in mitochondrial matrix from heart was about 15% of the specific activity of ATP-supported succinate thiokinase induced upon adding GDP. Evidence for a complex between nucleoside diphosphate kinase and succinate thiokinase in mitochondrial matrix from rabbit heart was obtained by glycerol density gradient centrifugation. It is proposed that binding of nucleoside diphosphate kinase to succinate thiokinase activates the former enzyme, accounts for the ATP-supported succinyl-CoA synthetase activity observed, and is involved in the channeling of high energy phosphate from GTP produced in the Krebs cycle to the ATP pool.
Collapse
Affiliation(s)
- E F Kadrmas
- Department of Biochemistry and Molecular Biology, School of Medicine, University of North Dakota, Grand Forks 58202
| | | | | |
Collapse
|
15
|
Schlegel J, Wyss M, Eppenberger HM, Wallimann T. Functional studies with the octameric and dimeric form of mitochondrial creatine kinase. Differential pH-dependent association of the two oligomeric forms with the inner mitochondrial membrane. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38835-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Kuznetsov AV, Khuchua ZA, Vassil'eva EV, Medved'eva NV, Saks VA. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Arch Biochem Biophys 1989; 268:176-90. [PMID: 2912374 DOI: 10.1016/0003-9861(89)90578-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The state of mitochondrial creatine kinase (CKmi-mi) in intact dog heart mitochondria and mitoplasts and the mechanism of its functional coupling with the oxidative phosphorylation system have been reinvestigated under different osmotic conditions and ionic compositions of the medium. It has been established that in a medium which mimics the cardiac cell cytoplasma, dissociation of CKmi-mi from the membrane of mitoplasts increases when the mitoplasts are swollen due to hypoosmotic treatment. It was shown by EPR that hypoosmotic treatment results in the enhancement of the mobility of phospholipids in the membrane bilayer. It has been also shown that when CKmi-mi is detached from the inner membrane in intact mitochondria in isotonic KCl solution, the effects of the coupling between CKmi-mi and oxidative phosphorylation via ATP/ADP translocase disappear in spite of the presence of CKmi-mi in the intermembrane space and intactness of the outer mitochondrial membrane. Therefore, this coupling cannot be explained by the "compartmented coupling" mechanism or "dynamic adenine nucleotide compartmentation" in the intermembrane space due to diffusion limitation for adenine nucleotides through the outer mitochondrial membrane, as has been supposed by several authors (F.N. Gellerich et al. (1987) Biochim. Biophys. Acta 890, 117-126; S.P.J. Brooks and C.H. Suelter (1987) Arch. Biochem. Biophys. 253, 122-132). The data obtained show that the displacement of the enzyme from the membrane results in significantly increased sensitivity of the coupled processes of aerobic phosphocreatine synthesis to inhibition by the product, phosphocreatine. Thus, all results show that under physiological osmotic and ionic conditions CKmi-mi remains firmly attached to the inner mitochondrial membrane and effectively coupled with ATP/ADP translocase due to intimate dynamic interaction between those proteins.
Collapse
Affiliation(s)
- A V Kuznetsov
- Laboratory of Bioenergetics, USSR Research Center for Cardiology, Moscow
| | | | | | | | | |
Collapse
|
17
|
Brooks SP, Suelter CH. Association of chicken mitochondrial creatine kinase with the inner mitochondrial membrane. Arch Biochem Biophys 1987; 253:122-32. [PMID: 3813558 DOI: 10.1016/0003-9861(87)90644-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The stoichiometry and dissociation constant for the binding of homogeneous chicken heart mitochondrial creatine kinase (MiMi-CK) to mitoplasts was examined under a variety of conditions. Salts and substrates release MiMi-CK from mitoplasts in a manner that suggests an ionic interaction. The binding of MiMi-CK to mitoplasts is competitively inhibited by Adriamycin, suggesting that they compete for the same binding site. Fluorescence measurements also show that Adriamycin binds to MiMi-CK so that the effect of Adriamycin on the binding of MiMi-CK to mitoplasts is not simple. Titrating mitoplasts with homogeneous MiMi-CK at different pH values shows a pH-dependent equilibrium involving a group(s) on either the membrane or the enzyme with a pKa = 6. Extrapolating these titrations to infinite MiMi-CK concentration gives 14.6 IU bound/nmol cytochrome aa3 corresponding to 1.12 mol MiMi-CK/mol cytochrome aa3. Chicken heart mitochondria contain, after isolation, 2.86 +/- 0.42 IU/nmol cytochrome aa3. Titrating respiring mitoplasts with carboxyatractyloside gives at saturation 3.3 mol ADP/ATP translocase/mol cytochrome aa3. Therefore, chicken heart mitoplasts can maximally bind about 1 mol of MiMi-CK per 3 mol translocase; in normal chicken heart mitochondria about 1 mol of MiMi-CK is present per 13 mol translocase.
Collapse
|
18
|
Vial C, Marcillat O, Goldschmidt D, Font B, Eichenberger D. Interaction of creatine kinase with phosphorylating rabbit heart mitochondria and mitoplasts. Arch Biochem Biophys 1986; 251:558-66. [PMID: 3800385 DOI: 10.1016/0003-9861(86)90364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This paper demonstrates that the mitochondrial isoenzyme of creatine kinase (CKm) can be solubilized from rabbit heart mitochondria, the outer membrane of which has been removed or at least broken by a digitonin treatment or a short hypotonic exposure, but which has retained an important part of the capacity to phosphorylate ADP. Phosphate, ADP, or ATP, at concentrations which are used to study oxidative phosphorylation and creatine phosphate synthesis, solubilize CKm; the same is true with MgCl2 and KCl. The effect of adenine nucleotides does not seem to be due to their interaction with the adenine nucleotide translocase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that CKm is the main protein released in the described conditions; however, it does not amount to more than 1% of the total protein content of the mitoplasts. When the apparent Km for ATP of CKm was estimated by measuring creatine phosphate synthesis, the values obtained using water-treated mitochondria (0.21 mM) were slightly higher than those of intact mitochondria (0.12 mM) but the difference was not significant. In the former preparation 77% of CKm was in a soluble state. If we can extrapolate these results to intact mitochondria and suppose that in this case a fraction of CKm is also soluble in the intermembrane space, this does not support the theory of functional association between CKm and the adenine nucleotide translocase.
Collapse
|
19
|
Wenger WC, Murphy MP, Brierley GP, Altschuld RA. Effects of ionic strength and sulfhydryl reagents on the binding of creatine phosphokinase to heart mitochondrial inner membranes. J Bioenerg Biomembr 1985; 17:295-303. [PMID: 4086487 DOI: 10.1007/bf00751106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The concept that creatine phosphokinase is bound to the outer surface of the heart mitochondrial inner membrane originated from observations that the enzyme is retained by water-swollen heart mitochondria and by digitonin-treated heart mitochondria suspended in isotonic sucrose. The present study establishes that digitonin-treated mitochondria release creatine phosphokinase in isotonic KCl, and other investigators have reported an identical response for the water-swollen organelles. These observations suggest that mitochondrial creatine phosphokinase is not bound to the outer surface of the inner membrane at a site adjacent to the adenine nucleotide translocase under physiologic conditions.
Collapse
|
20
|
Müller M, Moser R, Cheneval D, Carafoli E. Cardiolipin is the membrane receptor for mitochondrial creatine phosphokinase. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(19)83700-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Aubert-Foucher E, Font B, Gautheron DC. Rabbit heart mitochondrial hexokinase: solubilization and general properties. Arch Biochem Biophys 1984; 232:391-9. [PMID: 6742859 DOI: 10.1016/0003-9861(84)90554-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In rabbit heart, results show that two isoenzymes of hexokinase (HK) are present. The enzymatic activity associated with mitochondria consists of only one isoenzyme; according to its electrophoretic mobility and its apparent Km for glucose (0.065 mM), it has been identified as type I isoenzyme. The bound HK I exhibits a lower apparent Km for ATPMg than the solubilized enzyme, whereas the apparent Km for glucose is the same for bound and solubilized HK. Detailed studies have been performed to investigate the interactions which take place between the enzyme and the mitochondrial membrane. Neutral salts efficiently solubilize the bound enzyme. Digitonin induces only a partial release of the enzyme bound to mitochondria; this result could be explained by the existence of contacts between the outer and the inner mitochondrial membranes [C. R. Hackenbrock (1968) Proc. Natl. Acad. Sci. USA 61, 598-605]. Furthermore, low concentrations (0.1 mM) of glucose 6-phosphate (G6P) or ATP4- specifically solubilize hexokinase. The solubilizing effect of G6P and ATP4-, which are potent inhibitors of the enzyme, can be prevented by incubation of mitochondria with Pi or Mg2+. In addition, enzyme solubilization by G6P can be reversed by Mg2+ only when the proteolytic treatment of the heart homogenate is omitted during the course of the isolation of mitochondria. These results concerning the interaction of rabbit heart hexokinase with the outer mitochondrial membrane agree with the schematic model proposed by Wilson [(1982) Biophys. J. 37, 18-19] for the brain enzyme. This model involves the existence of two kinds of interactions between HK and mitochondria; a very specific one with the hexokinase-binding protein of the outer mitochondrial membrane, which is suppressed by glucose 6-phosphate, and a less specific, cation-mediated one.
Collapse
|