1
|
Chitin is a functional component of the larval adhesive of barnacles. Commun Biol 2020; 3:31. [PMID: 31953492 PMCID: PMC6969031 DOI: 10.1038/s42003-020-0751-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/17/2019] [Indexed: 12/21/2022] Open
Abstract
Barnacles are the only sessile crustaceans, and their larva, the cyprid, is supremely adapted for attachment to surfaces. Barnacles have a universal requirement for strong adhesion at the point of larval attachment. Selective pressure on the cyprid adhesive has been intense and led to evolution of a tenacious and versatile natural glue. Here we provide evidence that carbohydrate polymers in the form of chitin provide stability to the cyprid adhesive of Balanus amphitrite. Chitin was identified surrounding lipid-rich vesicles in the cyprid cement glands. The functional role of chitin was demonstrated via removal of freshly attached cyprids from surfaces using a chitinase. Proteomic analysis identified a single cement gland-specific protein via its association with chitin and localized this protein to the same vesicles. The role of chitin in cyprid adhesion raises intriguing questions about the evolution of barnacle adhesion, as well as providing a new target for antifouling technologies. Nick Aldred et al. show that chitin provides stability in the cyprid adhesive of the barnacle Balanus amphitrite. They show that a single cement gland-specific protein associates with chitin, and that freshly attached cyprids can be removed from surfaces using chitinase.
Collapse
|
2
|
Olsvik PA, Aulin M, Samuelsen OB, Hannisdal R, Agnalt AL, Lunestad BT. Whole-animal accumulation, oxidative stress, transcriptomic and metabolomic responses in the pink shrimp (Pandalus montagui) exposed to teflubenzuron. J Appl Toxicol 2018; 39:485-497. [DOI: 10.1002/jat.3739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Pål A. Olsvik
- Institute of Marine Research; Nordnes 5817 Bergen Norway
- Faculty of Biosciences and Aquaculture; Nord University; N-8049 Bodø Norway
| | - Marte Aulin
- Institute of Marine Research; Nordnes 5817 Bergen Norway
| | | | - Rita Hannisdal
- Institute of Marine Research; Nordnes 5817 Bergen Norway
| | | | | |
Collapse
|
3
|
Hoffmann R, Grabińska K, Guan Z, Sessa WC, Neiman AM. Long-Chain Polyprenols Promote Spore Wall Formation in Saccharomyces cerevisiae. Genetics 2017; 207:1371-1386. [PMID: 28978675 PMCID: PMC5714454 DOI: 10.1534/genetics.117.300322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Dolichols are isoprenoid lipids of varying length that act as sugar carriers in glycosylation reactions in the endoplasmic reticulum. In Saccharomyces cerevisiae, there are two cis-prenyltransferases that synthesize polyprenol-an essential precursor to dolichol. These enzymes are heterodimers composed of Nus1 and either Rer2 or Srt1. Rer2-Nus1 and Srt1-Nus1 can both generate dolichol in vegetative cells, but srt1∆ cells grow normally while rer2∆ grows very slowly, indicating that Rer2-Nus1 is the primary enzyme used in mitotically dividing cells. In contrast, SRT1 performs an important function in sporulating cells, where the haploid genomes created by meiosis are packaged into spores. The spore wall is a multilaminar structure and SRT1 is required for the generation of the outer chitosan and dityrosine layers of the spore wall. Srt1 specifically localizes to lipid droplets associated with spore walls, and, during sporulation there is an SRT1-dependent increase in long-chain polyprenols and dolichols in these lipid droplets. Synthesis of chitin by Chs3, the chitin synthase responsible for chitosan layer formation, is dependent on the cis-prenyltransferase activity of Srt1, indicating that polyprenols are necessary to coordinate assembly of the spore wall layers. This work shows that a developmentally regulated cis-prenyltransferase can produce polyprenols that function in cellular processes besides protein glycosylation.
Collapse
Affiliation(s)
- Reuben Hoffmann
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| | - Kariona Grabińska
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710
| | - William C Sessa
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520-8066
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, New York 11794-5215
| |
Collapse
|
4
|
Feng D, Chen Z, Wang Z, Zhang C, He K, Guo S. Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer. PLoS One 2015; 10:e0136430. [PMID: 26295704 PMCID: PMC4546665 DOI: 10.1371/journal.pone.0136430] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/03/2015] [Indexed: 01/11/2023] Open
Abstract
The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate in the PM of several lepidopteran insects. Binding of IE648 toxin to PM of ACB was previously reported and the goal of the current work was the identification of the binding region between Cry1Ie and the PM of ACB. Homologous competition binding assays showed that this interaction was specific. Heterologous competition binding assays performed with different fragments corresponding to domain I, domain II and domain III allowed us to identify that domain III participates in the interaction of IE648 with the PM. Specifically, peptide D3-L8 (corresponding to Cry1Ie toxin residues 607 to 616), located in an exposed loop region of domain III is probably involved in this interaction. Ligand blot assays show that IE648 interact with chitin and PM proteins with sizes of 30, 32 and 80 kDa. The fact that domain III interacts with proteins of similar molecular masses supports that this region of the toxin might be involved in PM interaction. These data provide for the first time the identification of domain III as a putative binding region between PM and 3D-Cry toxin.
Collapse
Affiliation(s)
- Dongmei Feng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhen Chen
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhiwen Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Chunlu Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China
- * E-mail:
| |
Collapse
|
5
|
Schönitzer V, Eichner N, Clausen-Schaumann H, Weiss IM. Transmembrane myosin chitin synthase involved in mollusc shell formation produced in Dictyostelium is active. Biochem Biophys Res Commun 2011; 415:586-90. [DOI: 10.1016/j.bbrc.2011.10.109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
|
6
|
Bussink AP, van Eijk M, Renkema GH, Aerts JM, Boot RG. The biology of the Gaucher cell: the cradle of human chitinases. ACTA ACUST UNITED AC 2007; 252:71-128. [PMID: 16984816 DOI: 10.1016/s0074-7696(06)52001-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gaucher disease (GD) is the most common lysosomal storage disorder and is caused by inherited deficiencies of glucocerebrosidase, the enzyme responsible for the lysosomal breakdown of the lipid glucosylceramide. GD is characterized by the accumulation of pathological, lipid laden macrophages, so-called Gaucher cells. Following the development of enzyme replacement therapy for GD, the search for suitable surrogate disease markers resulted in the identification of a thousand-fold increased chitinase activity in plasma from symptomatic Gaucher patients and that decreases upon successful therapeutic intervention. Biochemical investigations identified a single enzyme, named chitotriosidase, to be responsible for this activity. Chitotriosidase was found to be an excellent marker for lipid laden macrophages in Gaucher patients and is now widely used to assist clinical management of patients. In the wake of the identification of chitotriosidase, the presence of other members of the chitinase family in mammals was discovered. Amongst these is AMCase, an enzyme recently implicated in the pathogenesis of asthma. Chitinases are omnipresent throughout nature and are also produced by vertebrates in which they play important roles in defence against chitin-containing pathogens and in food processing.
Collapse
Affiliation(s)
- Anton P Bussink
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
7
|
Cabib E. The synthesis and degradation of chitin. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 59:59-101. [PMID: 2949540 DOI: 10.1002/9780470123058.ch2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Spindler-Barth M, Spindler KD, Londershausen M, Thomas H, Ag B. Inhibition of chitin synthesis in an insect cell-line. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/ps.2780250203] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Merzendorfer H. Insect chitin synthases: a review. J Comp Physiol B 2005; 176:1-15. [PMID: 16075270 DOI: 10.1007/s00360-005-0005-3] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/02/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Chitin is the most widespread amino polysaccharide in nature. The annual global amount of chitin is believed to be only one order of magnitude less than that of cellulose. It is a linear polymer composed of N-acetylglucosamines that are joined in a reaction catalyzed by the membrane-integral enzyme chitin synthase, a member of the family 2 of glycosyltransferases. The polymerization requires UDP-N-acetylglucosamines as a substrate and divalent cations as co-factors. Chitin formation can be divided into three distinct steps. In the first step, the enzymes' catalytic domain facing the cytoplasmic site forms the polymer. The second step involves the translocation of the nascent polymer across the membrane and its release into the extracellular space. The third step completes the process as single polymers spontaneously assemble to form crystalline microfibrils. In subsequent reactions the microfibrils combine with other sugars, proteins, glycoproteins and proteoglycans to form fungal septa and cell walls as well as arthropod cuticles and peritrophic matrices, notably in crustaceans and insects. In spite of the good effort by a hardy few, our present knowledge of the structure, topology and catalytic mechanism of chitin synthases is rather limited. Gaps remain in understanding chitin synthase biosynthesis, enzyme trafficking, regulation of enzyme activity, translocation of chitin chains across cell membranes, fibrillogenesis and the interaction of microfibrils with other components of the extracellular matrix. However, cumulating genomic data on chitin synthase genes and new experimental approaches allow increasingly clearer views of chitin synthase function and its regulation, and consequently chitin biosynthesis. In the present review, I will summarize recent advances in elucidating the structure, regulation and function of insect chitin synthases as they relate to what is known about fungal chitin synthases and other glycosyltransferases.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Germany.
| |
Collapse
|
10
|
Abstract
This article compiles the papers dealing with the biochemistry of chitin synthase (CS) published during the last decade, provides up-to-date information on the state of knowledge and understanding of chitin synthesis in vitro, and points out some firmly entrenched ideas and tenets of CS biochemistry that have become of age without hardly ever having been critically re-evaluated. The subject is dealt with under the headings "Components of the CS reaction" (educt, cation requirement and intermediates; product), "Regulation of CS" (cooperativity and allostery; non-allosteric activation or priming of CS; latency), "Concerted action of CS and enzymes of chitinolysis", "Inhibition of CS", "Multiplicity of CSs", and "Structure of CS" (the putative UDPGlcNAc-binding domain of CS; identification of CS polypeptides; glycoconjugation). The prospects are outlined of obtaining a refined three-dimensional (3D) model of the catalytic site of CS for biotechnological applications.
Collapse
Affiliation(s)
- R A Merz
- Department of Plant Biology, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
11
|
Kamst E, Bakkers J, Quaedvlieg NE, Pilling J, Kijne JW, Lugtenberg BJ, Spaink HP. Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O4 of the reducing-terminal residue. Biochemistry 1999; 38:4045-52. [PMID: 10194317 DOI: 10.1021/bi982531u] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions.
Collapse
Affiliation(s)
- E Kamst
- Clusius Laboratory, Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Kamst E, van der Drift KM, Thomas-Oates JE, Lugtenberg BJ, Spaink HP. Mass spectrometric analysis of chitin oligosaccharides produced by Rhizobium NodC protein in Escherichia coli. J Bacteriol 1995; 177:6282-5. [PMID: 7592395 PMCID: PMC177470 DOI: 10.1128/jb.177.21.6282-6285.1995] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A system for studying the in vivo activity of Rhizobium NodC protein in Escherichia coli has been developed. Using thin-layer chromatography, high-performance liquid chromatography, and mass spectrometry, we show that in this system R. leguminosarum bv. viciae NodC protein directs the synthesis of chitinpentaose, chitintetraose, chitintriose, and two as yet unidentified modified chitin oligosaccharides.
Collapse
Affiliation(s)
- E Kamst
- Clusius Laboratory, Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
14
|
Spaink HP, Wijfjes AH, van der Drift KM, Haverkamp J, Thomas-Oates JE, Lugtenberg BJ. Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Mol Microbiol 1994; 13:821-31. [PMID: 7815941 DOI: 10.1111/j.1365-2958.1994.tb00474.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Rhizobium nodulation genes nodABC are involved in the synthesis of lipo-chitin oligosaccharides. We have analysed the metabolites which are produced in vivo and in vitro by Rhizobium strains which express the single nodA, nodB and nodC genes or combinations of the three. In vivo radioactive labelling experiments, in which D-[1-14C]-glucosamine was used as a precursor, followed by mass spectrometric analysis of the purified radiolabelled metabolic products, showed that Rhizobium strains that only express the combination of the nodB and nodC genes do not produce lipo-chitin oligosaccharides but instead produce chitin oligomers (mainly pentamers) which are devoid of the N-acetyl group on the non-reducing terminal sugar residue (designated NodBC metabolites). Using the same procedure we have shown that when the nodL gene is expressed in addition to the nodBC genes the majority of metabolites contain an additional O-acetyl substituent on the non-reducing terminal sugar residue (designated NodBCL metabolites). The NodBC and NodBCL metabolites purified after in vivo labelling were compared with the radiolabelled metabolites produced in vitro by Rhizobium bacterial cell lysates to which UDP-N-acetyl-D-[U-14C]-glucosamine was added using thin-layer chromatography. The results show that the lysates of strains which expressed the nodBC or nodBCL genes can also produce NodBC and NodBCL metabolites. The same results were obtained when the NodB and NodC proteins were produced separately in two different strains. On the basis of these and other recent results, we propose that NodB is a chitin oligosaccharide deacetylase, NodC an N-acetylglucosaminyltransferase and, by default, NodA is involved in lipid attachment.
Collapse
Affiliation(s)
- H P Spaink
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Horst MN. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1990; 256:242-54. [PMID: 2250160 DOI: 10.1002/jez.1402560303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.
Collapse
Affiliation(s)
- M N Horst
- Division of Basic Science, School of Medicine, Mercer University, Macon, Georgia 31207
| |
Collapse
|
17
|
Chitin. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/b978-0-12-461012-5.50019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Horst MN. Isolation of a crustacean N-acetyl-D-glucosamine-1-phosphate transferase and its activation by phospholipids. J Comp Physiol B 1990; 159:777-88. [PMID: 2159490 DOI: 10.1007/bf00691724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The N-acetyl-D-glucosamine-1-phosphate:dolichol phosphate transferase from Artemia has been partially purified and characterized. The enzyme is solubilized from crude microsomes using Triton X-100, and after detergent removal appears to be associated with phospholipids. Using dolichol phosphate and UDP-N-acetyl-D-glucosamine as substrates, the enzyme catalyzes the formation of dolichol-pyrophosphate-N-acetyl-D-glucosamine. The product identity has been verified by TLC and paper chromatography following mild acid hydrolysis. Under the incubation conditions used only one product is made, i.e., Dol-P-P-GlcNAc. The formation of product is linear with increasing amounts of added protein and with time of incubation. The enzyme requires magnesium ions for activity. Activity of the enzyme is stimulated 6-fold by exogenous dolichol phosphate and is also stimulated by added phospholipids, with optimal activity being obtained in the presence of mixtures of phosphatidylcholine and phosphatidylglycerol. Enzymatic activity is not increased upon addition of GDP-mannose or dolichol phosphate mannose. The enzyme is rapidly inactivated by exposure to several detergents, including Triton X-100 and deoxycholate. The activity is inhibited by tunicamycin and by the purified B2 homologue of this antibiotic. Other antibiotic inhibitors such as diumycin and polyoxin D have little effect on the enzyme. Both the microsomal and solubilized enzyme preparations are inactivated by 70% upon treatment with phospholipase A2; activity may be restored by addition of phospholipids. Following hydrophobic interaction chromatography on Phenyl Sepharose, gel filtration chromatography on Sepharose CL-4B indicated that the enzyme, purified 81-fold, contained phophatidylcholine and phosphatidyl-ethanolamine.
Collapse
Affiliation(s)
- M N Horst
- Division of Basic Medical Science, School of Medicine, Mercer University, Macon, GA 31207
| |
Collapse
|
19
|
Horst MN. Dolichol phosphorylation occurs via a CTP-dependent reaction in Artemia larvae. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 1989; 252:16-24. [PMID: 2553851 DOI: 10.1002/jez.1402520104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The phosphorylation of dolichol in larval stages of the brine shrimp, Artemia salina, has been investigated. The dolichol kinase has been assayed in crude microsomes; the enzyme requires CTP as phosphoryl donor and calcium as divalent cation. Activity increases with both incubation time and added microsomal protein. The product of the reaction has been characterized by chromatographic and enzymatic procedures. With gamma-32P CTP as substrate, the apparent Km for CTP is 24 microM. Enzymatic activity is stimulated fivefold by exogenous dolichol. The specific activity of the enzyme increases with the frequency of molting. Dolichol kinase activity was detectable in membranes prepared from dormant Artemia cysts. The low level in dormancy may anticipate the critical role of the enzyme during hatching.
Collapse
Affiliation(s)
- M N Horst
- Division of Basic Science, School of Medicine, Mercer University, Macon, Georgia 31207
| |
Collapse
|
20
|
Lezica RP, Daleo GR, Dey PM. Lipid-Linked Sugars As Intermediates in The Biosynthesis of Complex Carbohydrates in Plants. Adv Carbohydr Chem Biochem 1987. [DOI: 10.1016/s0065-2318(08)60081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
|
22
|
Kramerov A, Mukha D, Metakovsky E, Gvozdev V. Glycoproteins containing sulfated chitin-like carbohydrate moiety are synthesized in an established Drosophila melanogaster cell line. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0020-1790(86)90055-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|