1
|
Sillapawattana P, Klungsupya P. Ecotoxicity testing of paraquat metabolites degraded by filamentous fungi in model organism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153631. [PMID: 35124045 DOI: 10.1016/j.scitotenv.2022.153631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/20/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Paraquat has been intensively used worldwide for several decades for the purpose of weed control in profit crop plantation. This leads to the accumulation of the herbicide and its metabolites in the environment. One promising method to reduce and/or eliminate the paraquat-contaminants is via microbial bioremediation. Filamentous fungi, Aspergillus tamarii PRPY-2, isolated from rubber tree plantation in the northern part of Thailand exhibited the ability to degrade paraquat in liquid media at laboratory scale. Thus, utilization of this species in paraquat-contaminated sites is potentially feasible. However, metabolites generated during biodegradation processes are possibly more toxic than the parent compound. Hence, before introducing this microbe into the environment, it is necessary to ensure that metabolites have no adverse effects on the ecosystem. The present work focuses on the study of the toxic effects of paraquat metabolites on the eukaryote model organism using Saccharomyces cerevisiae of wild type and five mutant strains. The relation between paraquat degradation and growth of fungi was firstly performed. Ecotoxicity testing was done via chemo-genetic screening method. Oxidative stress-related enzyme, superoxide dismutase of S. cerevisiae was also verified. The results illustrated that fungi could degrade 100% of paraquat in Czapeck Dox liquid medium within 21 days. Ecotoxicity data indicated that all yeast strains grew better in a medium containing paraquat metabolites than the one containing parent compound. Among them, mutant lacking superoxide dismutase (SOD1) gene was the most affected strain. Moreover, enzyme activity of yeast cells exposed to paraquat metabolites was found to be lower than that exposed to parent compound. In summary, metabolites degraded by A. tamarii are less toxic to model organism than paraquat. Therefore, the utilization of this species for remediation purpose was found to be safe for the environment.
Collapse
Affiliation(s)
- Panwad Sillapawattana
- Program in Environmental Technology, Faculty of Science, Maejo University, Chiangmai, Thailand.
| | - Prapaipat Klungsupya
- Thailand Institute of Scientific and Technological Research (TISTR), Techno Polis, Pathum Thani, Thailand
| |
Collapse
|
2
|
Wei JD, Lin YL, Tsai CH, Shieh HS, Lin PI, Ho WP, Chen RM. SATB2 participates in regulation of menadione-induced apoptotic insults to osteoblasts. J Orthop Res 2012; 30:1058-66. [PMID: 22570222 DOI: 10.1002/jor.22046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 12/01/2011] [Indexed: 02/04/2023]
Abstract
Special AT-rich sequence binding protein 2 (SATB2), a nuclear matrix attachment region-binding protein, can regulate embryonic development, cell differentiation, and cell survival. Previous studies showed that SATB2 is involved in osteoblast differentiation and skeletal development. In this study, we evaluated the role of SATB2 in oxidative stress-induced apoptotic insults to human osteoblast-like MG63 cells and mouse MC3T3-E1 cells. Exposure of MG63 cells to menadione increased intracellular reactive oxygen species levels in a concentration- and time-dependent manner. Simultaneously, menadione-induced oxidative stress triggered cell shrinkage and decreased cell viability. In addition, treatment of MG63 cells with menadione time-dependently decreased the mitochondrial membrane potential but enhanced caspase-3 activity. As a result, menadione-induced DNA fragmentation and cell apoptosis. As to the mechanism, exposure of MG63 cells to menadione amplified SATB2 messenger (m)RNA and protein expression in a time-dependent manner. Knockdown of translation of SATB2 mRNA using RNA interference led to chromatin disruption and nuclear damage. When MG63 cells and MC3T3-E1 cells were treated with SATB2 small interfering RNA, menadione-induced cell apoptosis was increased. We conclude that menadione causes oxidative stress in human osteoblasts and induces cellular apoptosis via a mitochondrion-caspase protease pathway. In addition, SATB2 may play a crucial role in protecting against oxidative stress-induced osteoblast apoptosis.
Collapse
Affiliation(s)
- Jyh-Ding Wei
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
3
|
Clejan LA, Cederbaum AI. Stimulation by paraquat of microsomal and cytochrome P-450-dependent oxidation of glycerol to formaldehyde. Biochem J 1993; 295 ( Pt 3):781-6. [PMID: 8240292 PMCID: PMC1134629 DOI: 10.1042/bj2950781] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Glycerol can be oxidized to formaldehyde by microsomes in a reaction that is dependent on cytochrome P-450. An oxidant derived from the interaction of H2O2 with iron was responsible for oxidizing the glycerol, with P-450 suggested to be necessary to produce H2O2 and reduce non-haem iron. The effect of paraquat on formaldehyde production from glycerol and whether paraquat could replace P-450 in supporting this reaction were studied. Paraquat increased NADPH-dependent microsomal oxidation of glycerol; the stimulation was inhibited by glutathione, catalase, EDTA and desferrioxamine, but not by superoxide dismutase or hydroxyl-radical scavengers. The paraquat stimulation was also inhibited by inhibitors, substrate and ligand for P-4502E1 (pyrazole-induced P-450 isozyme), as well as by anti-(P-4502E1) IgG. These results suggest that P-450 still played an important role in glycerol oxidation, even in the presence of paraquat. Purified NADPH-cytochrome P-450 reductase did not oxidize glycerol to formaldehyde; some oxidation, however, did occur in the presence of paraquat. Reductase plus P-4502E1 oxidized glycerol, and a large stimulation was observed in the presence of paraquat. Rates in the presence of P-450, reductase and paraquat were more than additive than the sums from the reductase plus P-450 and reductase plus paraquat rates, suggesting synergistic interactions between paraquat and P-450. These results indicate that paraquat increases oxidation of glycerol to formaldehyde by microsomes and reconstituted systems, that H2O2 and iron play a role in the overall reaction, and that paraquat can substitute, in part, for P-450 in supporting oxidation of glycerol. However, cytochrome P-450 is required for elevated rates of formaldehyde production even in the presence of paraquat.
Collapse
Affiliation(s)
- L A Clejan
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
4
|
Ghersi-Egea JF, Livertoux MH, Minn A, Perrin R, Siest G. Enzyme mediated superoxide radical formation initiated by exogenous molecules in rat brain preparations. Toxicol Appl Pharmacol 1991; 110:107-17. [PMID: 1651570 DOI: 10.1016/0041-008x(91)90294-o] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of brain tissue preparation to generate superoxide from xenobiotic interactions has been investigated. We showed that a significant superoxide production occurred with different molecules known to undergo a single electron reductive pathway of metabolism, both in a homogenate derived from neuronal and glial cells and in isolated cerebral microvessels which form the blood-brain barrier. Determination of the nucleotide cofactors requirement and data obtained with different subcellular fractions indicated that this production was largely associated with the microsomal fraction in a NADPH-dependent pathway and was probably mediated by NADPH-cytochrome P450 (c) reductase. A significant xenobiotic-mediated production of superoxide also occurred in mitochondria under in vitro conditions. Thus the evidence of reductive pathways of xenobiotic metabolism and the generation of oxygenated free radicals observed are of neurotoxicological significance.
Collapse
Affiliation(s)
- J F Ghersi-Egea
- Université de NANCY I, Centre du Médicament, CNRS URA 597, Nancy, France
| | | | | | | | | |
Collapse
|
5
|
Dicker E, Cederbaum AI. NADH-dependent generation of reactive oxygen species by microsomes in the presence of iron and redox cycling agents. Biochem Pharmacol 1991; 42:529-35. [PMID: 1650215 DOI: 10.1016/0006-2952(91)90315-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
NADH was found previously to catalyze the reduction of various ferric complexes and to promote the generation of reactive oxygen species by rat liver microsomes. Experiments were conducted to evaluate the ability of NADH to interact with ferric complexes and redox cycling agents to catalyze microsomal generation of potent oxidizing species. In the presence of iron, the addition of menadione increased NADPH- and NADH-dependent oxidation of hydroxyl radical (.OH) scavenging agents; effective iron complexes included ferric-EDTA, -diethylenetriamine pentaacetic acid, -ATP, -citrate, and ferric ammonium sulfate. The stimulation produced by menadione was sensitive to catalase and to competitive .OH scavengers but not to superoxide dismutase. Paraquat, irrespective of the iron catalyst, did not increase significantly the NADH-dependent oxidation of .OH scavengers under conditions in which the NADPH-dependent reaction was increased. Menadione promoted H2O2 production with either NADH or NADPH; paraquat was stimulatory only with NADPH. Stimulation of H2O2 generation appears to play a major role in the increased production of .OH-like species. Menadione inhibited NADH-dependent microsomal lipid peroxidation, whereas paraquat produced a 2-fold increase. Neither the control nor the paraquat-enhanced rates of lipid peroxidation were sensitive to catalase, superoxide dismutase, or dimethyl sulfoxide. Although the NADPH-dependent microsomal system shows greater reactivity and affinity for interacting with redox cycling agents, the capability of NADH to promote menadione-catalyzed generation of .OH-like species and H2O2 or paraquat-mediated lipid peroxidation may also contribute to the overall toxicity of these agents in biological systems. This may be especially significant under conditions in which the production of NADH is increased, e.g. during ethanol oxidation by the liver.
Collapse
Affiliation(s)
- E Dicker
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
6
|
Puntarulo S, Cederbaum AI. Inhibition of the oxidation of hydroxyl radical scavenging agents after alkaline phosphatase treatment of rat liver microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1074:12-8. [PMID: 1904277 DOI: 10.1016/0304-4165(91)90031-b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Treatment of rat liver microsomes with alkaline phosphatase results in a loss in the FMN but not the FAD flavin prosthetic group of NADPH-cytochrome P-450 reductase (Taniguchi, H. and Pyerin, W. (1987) Biochim. Biophys. Acta 912, 295-307). Experiments were carried out to evaluate the effect of preventing electron transfer from the FADH2 to FMN component of the reductase, and subsequent mixed function oxidase activity, on reduction of ferric chelates, production of H2O2, and the generation of .OH-like species by microsomes. Treatment with alkaline phosphatase was confirmed to decrease NADPH-cytochrome c, but not NADPH-ferricyanide, reductase activity by microsomes and by purified NADPH cytochrome P-450 reductase. The oxidation of hydroxyl radical scavenging agents by microsomes and reductase was decreased by the alkaline phosphatase treatment in accordance with the decline in cytochrome c reductase activity. This decrease in hydroxyl radical production occurred in the presence of various ferric chelate catalysts. Rates of microsomal reduction of the ferric chelates were also inhibited after alkaline phosphatase treatment. Production of H2O2 was decreased in accordance to the fall in cytochrome c reductase activity and .OH production. Rates of H2O2 production appeared to be rate-limiting for the overall generation of .OH as the addition of an external H2O2-generating system stimulated .OH production as well as prevented the decline in .OH production caused by the alkaline phosphatase treatment. These results suggest that both the FAD and FMN flavin prosthetic groups of the reductase contribute towards the reduction of various ferric chelates. However, loss of the FMN component and activities dependent on electron transfer from this prosthetic group result in a decrease in H2O2 production, which appears to be responsible for the decline in the generation of .OH-like species by microsomes after treatment with alkaline phosphatase.
Collapse
Affiliation(s)
- S Puntarulo
- Physical Chemistry Division, School of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | |
Collapse
|
7
|
Winston GW, Livingstone DR, Lips F. Oxygen reduction metabolism by the digestive gland of the common marine mussel,Mytilus edulis L. ACTA ACUST UNITED AC 1990. [DOI: 10.1002/jez.1402550307] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Yamazaki I, Piette L. ESR spin-trapping studies on the reaction of Fe2+ ions with H2O2-reactive species in oxygen toxicity in biology. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77389-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
9
|
Kennedy CH, Mason RP. A reexamination of the cytochrome P-450-catalyzed free radical production from a dihydropyridine. Evidence of trace transition metal catalysis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38414-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Iannone A, Bini A, Swartz HM, Tomasi A, Vannini V. Metabolism in rat liver microsomes of the nitroxide spin probe tempol. Biochem Pharmacol 1989; 38:2581-6. [PMID: 2764982 DOI: 10.1016/0006-2952(89)90541-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paramagnetic nitroxide spin labels have been extensively used to probe various biophysical and biochemical properties of the cellular environment. Recently nitroxides have been proposed as contrast enhancing agents in proton magnetic resonance imaging and contrast enhancement has been demonstrated in animal studies. Nitroxides, possessing a stable unpaired electron, increases the relaxation rates of protons, providing an enhancement of contrast. Nitroxides are metabolized intracellularly principally via reversible reduction to hydroxylamines. Rates of reduction depend on the physical characteristics of the nitroxides, in general 5-membered pyrrolidine ring are reduced more slowly than those with a 6-membered piperidine ring. Oxidation back to the nitroxide is relevant for lipid soluble hydroxylamines, while is low for water soluble ones. It is known that nitroxides are metabolized by subcellular fractions (cytosol, mitochondria, microsomes), though the enzymatic and non-enzymatic systems involved are poorly characterized. In the present study, the first of the necessary steps toward a systematic study of the metabolism of nitroxides by subcellular organelles, we have chosen to study the metabolism of 4-hydroxy 2,2,6,6-tetramethylpiperidine-N-oxyl in isolated rat liver microsomes. Microsomes were able to reduce Tempol slowly without any substrate addition; when NADPH was added, the reduction rate substantially increased. In phenobarbitone induced rats the reduction rate was significantly higher than in not-induced microsomes. NADPH-dependent reduction rate was inhibited by thallium chloride (an inhibitor of the flavin-centered cytochrome P-450 reductase), superoxide dismutase, and by N-ethylmaleimide; menadione increased it. The Tempol reduction rate was not significantly affected by various cytochrome P-450 inhibitors with the sole exception of metyrapone. A solution containing purified cytochrome P-450 reductase and NADPH readily reduced Tempol. Microsomes fortified with NADPH were able to reduce Tempol at an appreciable rate. In order to distinguish between reduction of nitroxides to hydroxylamine or destruction of nitroxides following nitroxide reduction, microsomal suspensions were treated with a mild oxidant (ferricyanide 0.5-10 mM). The recovery varied from 40 to 60%, indicating a process of probe destruction leading to as yet unknown metabolites. The present study clearly indicates that, in this model system, cytochrome c (P-450) reductase and not cytochrome P-450 is responsible for the observed Tempol metabolism; along with hydroxylamine formation, other Tempol derived metabolites are formed during the process.
Collapse
Affiliation(s)
- A Iannone
- Department of Biophysics, University of Illinois College of Medicine at U.C
| | | | | | | | | |
Collapse
|
11
|
Clejan L, Cederbaum AI. Synergistic interactions between NADPH-cytochrome P-450 reductase, paraquat, and iron in the generation of active oxygen radicals. Biochem Pharmacol 1989; 38:1779-86. [PMID: 2500125 DOI: 10.1016/0006-2952(89)90412-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The toxicity associated with paraquat is believed to involve the generation of active oxygen radicals and the production of oxidative stress. Paraquat can be reduced by NADPH-cytochrome P-450 reductase to the paraquat radical; this results in consumption of NADPH. A variety of ferric complexes, including ferric-ATP, -citrate, -EDTA, ferric diethylenetriamine pentaacetic acid and ferric ammonium sulfate, produced a synergistic increase in the paraquat-mediated oxidation of NADPH. This synergism could be observed with very low concentrations of iron, e.g. 0.25 microM ferric-ATP. Very low rates of hydroxyl radical were generated by the reductase with paraquat alone, or with ferric-citrate or -ATP or ferric ammonium sulfate in the absence of paraquat; however, synergistic increases in the rate of hydroxyl radical generation occurred when these ferric complexes were added together with paraquat. Ferric-EDTA and -DTPA catalyzed some production of hydroxyl radicals, which was also synergistically elevated in the presence of paraquat. Ferric desferrioxamine was essentially inert in the absence or presence of paraquat. This enhancement of hydroxyl radical generation was sensitive to catalase and competitive scavengers but not to superoxide dismutase. The interaction of paraquat with NADPH-cytochrome P-450 reductase and ferric complexes resulted in an increase in oxygen radical generation, and various ferric complexes increased the catalytic effectiveness and potentiated significantly the toxicity of paraquat via this synergistic increase in oxygen radical generation by the reductase.
Collapse
Affiliation(s)
- L Clejan
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
12
|
Cederbaum AI. Oxygen radical generation by microsomes: role of iron and implications for alcohol metabolism and toxicity. Free Radic Biol Med 1989; 7:559-67. [PMID: 2558984 DOI: 10.1016/0891-5849(89)90033-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Experiments were carried out to evaluate whether the molecular mechanism for ethanol oxidation by microsomes, a minor pathway of alcohol metabolism, involved generation of hydroxyl radical (.OH). Microsomes oxidized chemical .OH scavengers (KMB, DMSO, t-butyl alcohol, benzoate) by a reaction sensitive to catalase, but not SOD. Iron was required for microsomal .OH generation in view of the potent inhibition by desferrioxamine; however, the chelated form of iron was important. Microsomal .OH production was effectively stimulated by ferric EDTA or ferric DTPA, but poorly increased with ferric ATP, ferric citrate, or ferric ammonium sulfate. By contrast, the latter ferric complexes effectively increased microsomal chemiluminescence and lipid peroxidation, whereas ferric EDTA and ferric DTPA were inhibitory. Under conditions that minimize .OH production (absence of EDTA, iron) ethanol was oxidized by a cytochrome P-450-dependent process independent of reactive oxygen intermediates. Under conditions that promote microsomal .OH production, the oxidation of ethanol by .OH becomes more significant in contributing to the overall oxidation of ethanol by microsomes. Experiments with inhibitors and reconstituted systems containing P-450 and NADPH-P-450 reductase indicated that the reductase is the critical enzyme locus for interacting with iron and catalyzing production of reactive oxygen species. Microsomes isolated from rats chronically fed ethanol catalyzed oxidation of .OH scavengers, light emission, and inactivation of added metabolic enzymes at elevated rates, and displayed an increase in ethanol oxidation by a .OH-dependent and a P-450-dependent pathway. It is possible that enhanced generation of reactive oxygen intermediates by microsomes may contribute to the hepatotoxic effects of ethanol.
Collapse
Affiliation(s)
- A I Cederbaum
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| |
Collapse
|
13
|
Vile GF, Winterbourn CC. Microsomal reduction of low-molecular-weight Fe3+ chelates and ferritin: enhancement by adriamycin, paraquat, menadione, and anthraquinone 2-sulfonate and inhibition by oxygen. Arch Biochem Biophys 1988; 267:606-13. [PMID: 2850767 DOI: 10.1016/0003-9861(88)90068-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reduction of iron is important in promoting xenobiotic-enhanced, microsomal lipid peroxidation, yet there is little evidence that Fe3+ chelates that promote lipid peroxidation can be reduced by the microsomal system. We have shown that rat liver microsomes catalyse NADPH-dependent reduction of Fe3+ without chelator, as well as Fe3+(ADP), Fe3+(ATP), Fe3+(citrate), Fe3+(EDTA), and ferrioxamine in N2. The NADPH oxidation that accompanied Fe3+ reduction was inhibited by CO for all chelates, except Fe3+ (EDTA). This implies that, except for Fe3+ (EDTA), cytochrome P450 was involved in reduction of the complexes. Adriamycin, paraquat, and anthraquinone 2-sulfonate (AQS) enhanced reduction of all the Fe3+ chelates, whereas menadione enhanced reduction only of Fe3+(ADP) and Fe3+(citrate). All the compounds enhanced oxidation of NADPH in the presence or absence of iron. This was not inhibited by CO, and the results are compatible with Fe3+ reduction occurring via the xenobiotic radicals produced by cytochrome P450 reductase. Microsomal reduction of the xenobiotics, except menadione, enabled the reduction and release of iron from ferritin. Fe3+ chelate reduction, both with and without xenobiotic, was inhibited by O2, although it still proceeded in air at 10-20% of the rate in N2. Iron-dependent lipid peroxidation was promoted by ADP and ATP, inhibited 50% by citrate, and completely inhibited by EDTA and desferrioxamine. Of the xenobiotics, only Adriamycin enhanced microsomal lipid peroxidation. These results indicate that the effects of chelators and xenobiotics on Fe3+ reduction do not correlate with lipid peroxidation and, although reduction is necessary, there must be other factors involved.
Collapse
Affiliation(s)
- G F Vile
- Department of Pathology, Christchurch School of Medicine, Christchurch Hospital, New Zealand
| | | |
Collapse
|
14
|
Puntarulo S, Cederbaum AI. Comparison of the ability of ferric complexes to catalyze microsomal chemiluminescence, lipid peroxidation, and hydroxyl radical generation. Arch Biochem Biophys 1988; 264:482-91. [PMID: 2840858 DOI: 10.1016/0003-9861(88)90313-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of microsomes with iron and NADPH to generate active oxygen radicals was determined by assaying for low level chemiluminescence. The ability of several ferric complexes to catalyze light emission was compared to their effect on microsomal lipid peroxidation or hydroxyl radical generation. In the absence of added iron, microsomal light emission was very low; chemiluminescence could be enhanced by several cycles of freeze-thawing of the microsomes. The addition of ferric ammonium sulfate, ferric-citrate, or ferric-ADP produced an increase in chemiluminescence, whereas ferric-EDTA or -diethylenetriaminepentaacetic acid (detapac) were inhibitory. The same response to these ferric complexes was found when assaying for malondialdehyde as an index of microsomal lipid peroxidation. In contrast, hydroxyl radical generation, assessed as oxidation of chemical scavengers, was significantly enhanced in the presence of ferric-EDTA and -detapac and only weakly elevated by the other ferric complexes. Ferric-desferrioxamine was essentially inert in catalyzing any of these reactions. Chemiluminescence and lipid peroxidation were not affected by superoxide dismutase, catalase, or competitive hydroxyl radical scavengers whereas hydroxyl radical production was decreased by the latter two but not by superoxide dismutase. Chemiluminescence was decreased by the antioxidants propylgallate or glutathione and by inhibiting NADPH-cytochrome P-450 reductase with copper, but was not inhibited by metyrapone or carbon monoxide. The similar pattern exhibited by ferric complexes on microsomal light emission and lipid peroxidation, and the same response of both processes to radical scavenging agents, suggests a close association between chemiluminescence and lipid peroxidation, whereas both processes can be readily dissociated from free hydroxyl radical generation by microsomes.
Collapse
Affiliation(s)
- S Puntarulo
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
15
|
Puntarulo S, Cederbaum AI. Effect of oxygen concentration on microsomal oxidation of ethanol and generation of oxygen radicals. Biochem J 1988; 251:787-94. [PMID: 3415646 PMCID: PMC1149072 DOI: 10.1042/bj2510787] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The iron-catalysed production of hydroxyl radicals, by rat liver microsomes (microsomal fractions), assessed by the oxidation of substrate scavengers and ethanol, displayed a biphasic response to the concentration of O2 (varied from 3 to 70%), reaching a maximal value with 20% O2. The decreased rates of hydroxyl-radical generation at lower O2 concentrations correlates with lower rates of production of H2O2, the precursor of hydroxyl radical, whereas the decreased rates at elevated O2 concentrations correlate with lower rates (relative to 20% O2) of activity of NADPH-cytochrome P-450 reductase, which reduces iron and is responsible for redox cycling of iron by the microsomes. The oxidation of aniline or aminopyrine and the cytochrome P-450/oxygen-radical-independent oxidation of ethanol also displayed a biphasic response to the concentration of O2, reaching a maximum at 20% O2, which correlates with the dithionite-reducible CO-binding spectra of cytochrome P-450. Microsomal lipid peroxidation increased as the concentration of O2 was raised from 3 to 7 to 20% O2, and then began to level off. This different pattern of malondialdehyde generation compared with hydroxyl-radical production probably reflects the lack of a role for hydroxyl radical in microsomal lipid peroxidation. These results point to the complex role for O2 in microsomal generation of oxygen radicals, which is due in part to the critical necessity for maintaining the redox state of autoxidizable components of the reaction system.
Collapse
Affiliation(s)
- S Puntarulo
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|
16
|
Abstract
The effect of iron and other compounds known to be toxic because of the production of oxygen radicals, e.g., paraquat and menadione on the generation of hydroxyl radicals (.OH) by microsomes from chronic ethanol-fed rats and their pair-fed controls was determined. In the absence of any additions, or in the presence of ferric-chloride, -ADP or -EDTA, microsomes from the ethanol-fed rats showed a 2-fold increase in the production of .OH. Paraquat and menadione increased the generation of .OH by microsomes from the ethanol-fed and the pair-fed controls to an identical extent and thus these promoters of oxidative stress were not any more effective in interacting with microsomes after ethanol treatment. Under all conditions, .OH generation was sensitive to inhibition by catalase, implicating H2O2 as the precursor of .OH, whereas superoxide dismutase was without any significant effect. A working scheme to accommodate aspects of the interaction of iron, menadione and paraquat with microsomes with the subsequent production of .OH is described. The fact that .OH generation by microsomes in the presence of several sources of iron such as unchelated iron or ferric-ADP is elevated after chronic ethanol consumption could contribute to the hepatotoxic effects of ethanol. Studies on iron metabolism by liver cells and the effect of ethanol on the disposition of this critical trace metal are needed to further evaluate the role of oxygen radicals in the actions of ethanol.
Collapse
|