1
|
Schönberg A, Rödiger A, Mehwald W, Galonska J, Christ G, Helm S, Thieme D, Majovsky P, Hoehenwarter W, Baginsky S. Identification of STN7/STN8 kinase targets reveals connections between electron transport, metabolism and gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1176-1186. [PMID: 28295753 DOI: 10.1111/tpj.13536] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
The thylakoid-associated kinases STN7 and STN8 are involved in short- and long-term acclimation of photosynthetic electron transport to changing light conditions. Here we report the identification of STN7/STN8 in vivo targets that connect photosynthetic electron transport with metabolism and gene expression. Comparative phosphoproteomics with the stn7 and stn8 single and double mutants identified two proteases, one RNA-binding protein, a ribosomal protein, the large subunit of Rubisco and a ferredoxin-NADP reductase as targets for the thylakoid-associated kinases. Phosphorylation of three of the above proteins can be partially complemented by STN8 in the stn7 single mutant, albeit at lower efficiency, while phosphorylation of the remaining three proteins strictly depends on STN7. The properties of the STN7-dependent phosphorylation site are similar to those of phosphorylated light-harvesting complex proteins entailing glycine or another small hydrophobic amino acid in the -1 position. Our analysis uncovers the STN7/STN8 kinases as mediators between photosynthetic electron transport, its immediate downstream sinks and long-term adaptation processes affecting metabolite accumulation and gene expression.
Collapse
Affiliation(s)
- Anna Schönberg
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Wiebke Mehwald
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Johann Galonska
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Gideon Christ
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Stefan Helm
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Domenika Thieme
- Proteomeanalytik, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Petra Majovsky
- Proteomeanalytik, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | | | - Sacha Baginsky
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Biozentrum, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Wang Y, Ji K, Shen S, Chen H. Probing molecular events associated with early development of thylakoid membranes by comparative proteomics and low temperature fluorescence. J Proteomics 2016; 143:401-415. [PMID: 27126603 DOI: 10.1016/j.jprot.2016.04.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 04/24/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED A comparison of protein profiles between prolamellar bodies from dark-grown etioplasts and thylakoid membranes from de-etioplasts illuminated respectively for 1, 5 and 9h revealed 155 differentially expressed CBB-stained spots. Clear results showed that the nonphototransformable Pchlide627-632 was the dominant pigment form in the PLBs of rice etioplasts during plant development in dark and transformed slowly to chlorophyllide in rice etioplasts when exposed to light. The light-induced accumulation of ACC oxidase, which catalyzes the final step of ethylene synthesis using ACC as substrate, would facilitate chlorophyll synthesis by inducing PORa/b expression via ethylene signaling. It could be also suggested that cyclic electron transport might play an important role in generation of ATP for carbon fixation and photoprotection of photosystems from excessive light in prothylakoid. Furthermore, the overproduction of ClpC1, which targets proteins to the ClpPR core complex for degradation, was observed only in Stage 1, during which period PLBs disrupted and converted into prothylakoids, suggesting that ClpC1 was of particular importance for disassembly of PLBs of etioplasts when exposed to light. This study revealed the possible biochemical and physiological processes lead to the formation of functional thylakoid membranes. BIOLOGICAL SIGNIFICANCE In this study, we monitored the light-induced transformation of prolamellar bodies into thylakoid membranes, which is correlated to the biogenesis of photosynthetic apparatus involving a complex cascade of biochemical and structural events. Three stages of thylakoid development classified according to the thylakoid development status (Adam et al., 2011) were studied for biogenesis of photosynthetic apparatus: Stage 1, prothylakoids emerge from the disrupted PLBs; Stage 2, prothylakoids converted into primary thylakoids which were dispersed in the stroma; Stage 3, the continuous grana and stroma thylakoids are formed. The development stage-dependent changes in the proteomic profile of the thylakoids were analyzed by two-dimensional electrophoresis (2-DE). This information was complemented with the steady-state 77K chlorophyll fluorescence of thylakoids at the corresponding development stage. Together, these analyses allowed us to further understand the molecular processes connected to the formation of functional thylakoid membranes.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuixian Ji
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shihua Shen
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Hui Chen
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Weis BL, Schleiff E, Zerges W. Protein targeting to subcellular organelles via MRNA localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:260-73. [PMID: 23457718 DOI: 10.1016/j.bbamcr.2012.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cells have complex membranous organelles for the compartmentalization and the regulation of most intracellular processes. Organelle biogenesis and maintenance requires newly synthesized proteins, each of which needs to go from the ribosome translating its mRNA to the correct membrane for insertion or transclocation to an a organellar subcompartment. Decades of research have revealed how proteins are targeted to the correct organelle and translocated across one or more organelle membranes ro the compartment where they function. The paradigm examples involve interactions between a peptide sequence in the protein, localization factors, and various membrane embedded translocation machineries. Membrane translocation is either cotranslational or posttranslational depending on the protein and target organelle. Meanwhile research in embryos, neurons and yeast revealed an alternative targeting mechanism in which the mRNA is localized and only then translated to synthesize the protein in the correct location. In these cases, the targeting information is coded by the cis-acting sequences in the mRNA ("Zipcodes") that interact with localization factors and, in many cases, are transported by the molecular motors on the cytoskeletal filaments. Recently, evidence has been found for this "mRNA based" mechanism in organelle protein targeting to endoplasmic reticulum, mitochondria, and the photosynthetic membranes within chloroplasts. Here we review known and potential roles of mRNA localization in protein targeting to and within organelles. This article is part of a Special Issue entitled: Protein Import and Quality Control in Mitochondria and Plastids.
Collapse
Affiliation(s)
- Benjamin L Weis
- Goether University, Cluster of Excellence Macromolecular Complexes, Institute for Molecular Biosciences, Max-von-Laue Str. 9, D-60438 Frankfort, Germany
| | | | | |
Collapse
|
4
|
Agarwal R, Matros A, Melzer M, Mock HP, Sainis JK. Heterogeneity in thylakoid membrane proteome of Synechocystis 6803. J Proteomics 2010; 73:976-91. [DOI: 10.1016/j.jprot.2009.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/25/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
|
5
|
Engineering Photosynthetic Pathways. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1755-0408(07)01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
|
6
|
Translation and translational regulation in chloroplasts. CELL AND MOLECULAR BIOLOGY OF PLASTIDS 2007. [DOI: 10.1007/4735_2007_0234] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Eichacker LA, Henry R. Function of a chloroplast SRP in thylakoid protein export. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1541:120-34. [PMID: 11750668 DOI: 10.1016/s0167-4889(01)00151-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein export systems derived from prokaryotes are used to transport proteins into or across the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoid membrane. Signal recognition particle (SRP) and its receptor are essential components used exclusively for cotranslational export of endomembrane and secretory proteins to the endoplasmic reticulum in eukaryotes and export of polytopic membrane proteins to the cytoplasmic membrane in prokaryotes. An organellar SRP in chloroplasts (cpSRP) participates in cotranslational targeting of chloroplast synthesized integral thylakoid proteins. Remarkably, cpSRP is also used to posttranslationally localize a subset of nuclear encoded thylakoid proteins. Recent work has begun to reveal the basis for cpSRP's unique ability to function in co- and posttranslational protein localization, yet much is left to question. This review will attempt to highlight these advances and will also focus on the role of other soluble and membrane components that are part of this novel organellar SRP targeting pathway.
Collapse
|
8
|
Röhl T, van Wijk KJ. In vitro reconstitution of insertion and processing of cytochrome f in a homologous chloroplast translation system. J Biol Chem 2001; 276:35465-72. [PMID: 11459839 DOI: 10.1074/jbc.m103005200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a homologous chloroplast translation system, we have reconstituted insertion and processing of the chloroplast-encoded thylakoid protein cytochrome f (pCytf). Cross-linking demonstrated that pCytf nascent chains when attached to the 70 S ribosome tightly interact with cpSecA, but this is strictly dependent on thylakoid membranes and a functional signal peptide. This indicates that cpSecA is only operative in pCytf biogenesis when it is bound to the membrane, most likely as part of the Sec translocon. No evidence for interaction between the 54-kDa subunit of the chloroplast signal recognition particle (cpSRP) and the pCytf nascent chain could be detected, suggesting that pCytf, in contrast to the polytopic D1 protein, does not require cpSRP for targeting. Insertion of pCytf occurred only co-translationally, resulting in processing and accumulation of both the processed signal peptide and the mature protein in the thylakoid. This co-translational membrane insertion and processing required a functional signal peptide and was inhibited by azide, demonstrating that cpSecA is essential for translocation of the soluble luminal domain. pCytf also associated post-translationally with thylakoids, but the soluble N-terminal domain could not be translocated into the lumen. This is the first study in which synthesis, targeting, and insertion of a chloroplast-encoded thylakoid membrane protein is reconstituted from exogenous transcripts and using the chloroplast translational machinery.
Collapse
Affiliation(s)
- T Röhl
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
9
|
Abstract
The discovery that chloroplasts have semi-autonomous genetic systems has led to many insights into the biogenesis of these organelles and their evolution from free-living photosynthetic bacteria. Recent developments of our understanding of the molecular mechanisms of translation in chloroplasts suggest selective pressures that have maintained the 100-200 genes of the ancestral endosymbiont in chloroplast genomes. The ability to introduce modified genes into chloroplast genomes by homologous recombination and the recent development of an in vitro chloroplast translation system have been exploited for analyses of the cis-acting requirements for chloroplast translation. Trans-acting translational factors have been identified by genetic and biochemical approaches. Several studies have suggested that chloroplast mRNAs are translated in association with membranes.
Collapse
Affiliation(s)
- W Zerges
- Concordia University, 1455 de Maisonneuve W., H3G 1M8, Quebec, Montreal, Canada.
| |
Collapse
|
10
|
Mühlbauer SK, Eichacker LA. The stromal protein large subunit of ribulose-1,5-bisphosphate carboxylase is translated by membrane-bound ribosomes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:784-8. [PMID: 10215896 DOI: 10.1046/j.1432-1327.1999.00337.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation of the large subunit of ribulose-1,5-bisphosphate carboxylase (LSU) was investigated by labeling of isolated barley plastids with [35S]-methionine. In both chloroplasts and etioplasts, labeling of LSU was severely impaired if plastid membranes were removed from the reaction mixtures. Removal of membrane-bound polysomes with high salt or puromycin greatly decreased translation of LSU. Pulse-labeled chloroplast membranes were shown to release LSU if chased with unlabeled methionine in the presence of stroma. Immunoprecipitation detected higher amounts of labeled LSU translation intermediates associated with the membrane fraction than in the soluble fraction. We therefore conclude that, in plastids, membrane-bound polysomes are required not only for translation of membrane-intrinsic proteins but also for translation of a soluble protein.
Collapse
|
11
|
Mühlbauer SK, Eichacker LA. Light-dependent formation of the photosynthetic proton gradient regulates translation elongation in chloroplasts. J Biol Chem 1998; 273:20935-40. [PMID: 9694842 DOI: 10.1074/jbc.273.33.20935] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon transfer of lysed chloroplasts from darkness to light, the accumulation of membrane and stromal chloroplast proteins is strictly regulated at the level of translation elongation. In darkness, translation elongation is retarded even in the presence of exogenously added ATP and dithiothreitol. In the light, addition of the electron transport inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethyl urea inhibits translation elongation even in the presence of ATP. This inhibition can be overcome by addition of artificial electron donors in the presence of light, but not in darkness. Electron flow between photosystem II and I induced by far red light of 730 nm is sufficient for the activation of translation elongation. This activation can also be obtained by electron donors to photosystem I, which transport protons into the thylakoid lumen. Release of the proton gradient by uncouplers prevents the light-dependent activation of translation elongation. Also, the induction of translation activation is switched off rapidly upon transfer from light to darkness. Hence, we propose that the formation of a photosynthetic proton gradient across the thylakoid membrane activates translation elongation in chloroplasts.
Collapse
Affiliation(s)
- S K Mühlbauer
- Department of Botany, University of Munich, 80638 München, Menzinger Strasse 67, Federal Republic of Germany
| | | |
Collapse
|
12
|
Abstract
Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival.
Collapse
Affiliation(s)
- E H Harris
- DCMB Group, Department of Botany, Duke University, Durham, North Carolina 27708-1000
| | | | | |
Collapse
|
13
|
Breidenbach E, Leu S, Michaels A, Boschetti A. Synthesis of EF-Tu and distribution of its mRNA between stroma and thylakoids during the cell cycle of Chlamydomonas reinhardii. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1048:209-16. [PMID: 2322577 DOI: 10.1016/0167-4781(90)90058-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In Chlamydomonas reinhardii the elongation factor EF-Tu is encoded in the chloroplast DNA. We identified EF-Tu in the electrophoretic product pattern of chloroplast-made proteins and showed that this protein is only synthesized in the first half of the light period in synchronized cells. The newly synthesized EF-Tu contributed little to the almost invariable content of EF-Tu in chloroplasts during the light period of the cell cycle. However, increasing cell volume and the lack of EF-Tu synthesis in the second half of the light period led to a decrease in the concentration of EF-Tu in chloroplasts. At different times in the vegetative cell cycle, the RNA was extracted from whole chloroplasts and from free and thylakoid-bound chloroplast polysomes. The content of mRNA of EF-Tu in chloroplasts and the distribution between stroma and thylakoids were determined. During the light period, the content of the mRNA for EF-Tu varied in parallel to the rate of EF-Tu synthesis. However, in the dark, some mRNA was present even in the absence of EF-Tu synthesis. Most of the mRNA was bound to thylakoids during the whole cell cycle. This suggests that synthesis of EF-Tu is associated with thylakoid membranes.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | | | |
Collapse
|
14
|
Roy H, Cannon S, Gilson M. Assembly of Rubisco from native subunits. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 957:323-34. [PMID: 3058207 DOI: 10.1016/0167-4838(88)90221-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Large subunits of ribulosebisphosphate carboxylase/oxygenase (Rubisco) (3-phospho-D-glycerate carboxy-lyase (dimerizing), EC 4.1.1.39) from prokaryotic sources can assemble into intact enzyme either in vitro or in Escherichia coli cells. Large subunits of higher plant Rubisco do not assemble into Rubisco in E. coli cells, nor is it possible to reconstitute higher plant Rubisco from its dissociated subunits in vitro. This behavior represents an obstacle to any practical attempts at engineering the higher plant enzyme, and it suggests that the in vivo assembly mechanism of higher plant Rubisco must be more complex than is commonly expected for oligomeric proteins of organelles. In pea chloroplasts, a binding protein interacts with newly synthesized large subunits, in quantities expected for an intermediate in the assembly process, as judged by Western blotting. Radiotracer-labeled large subunits which interact with this binding protein can be shown to assemble into Rubisco in reactions which lead to changes in the aggregation state of the binding protein. Antibody to this binding protein specifically inhibits the assembly of these subunits into Rubisco. Rubisco synthesis appears to be subject to many types of control: gene dosage, transcription rate, selective translation of message, post-translational degradation and threshold concentration effects have been observed in various organisms' synthesis of Rubisco. The biochemical mechanisms underlying most of these effects have not been elucidated. The post-translational assembly mechanism in particular appears to require further study.
Collapse
Affiliation(s)
- H Roy
- Biology Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
| | | | | |
Collapse
|
15
|
Rodermel SR, Abbott MS, Bogorad L. Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 1988; 55:673-81. [PMID: 3052855 DOI: 10.1016/0092-8674(88)90226-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The biosynthesis of ribulose bisphosphate carboxylase (RUBISCO) provides a model system for studying the coordination of nuclear and organelle gene expression, since this abundantly transcribed and expressed chloroplast enzyme is composed of small (SS) and large subunits (LS) encoded by a nuclear multigene family and a single chloroplast gene, respectively. We have tested the possibility that SS mRNA or protein levels affect LS mRNA amounts or LS protein production and accumulation. We find that expression of antisense DNA sequences for the SS in transgenic tobacco plants drastically reduces the accumulation of SS mRNA and SS protein. These changes are accompanied by corresponding reductions of LS protein but not LS mRNA amounts; accumulation of the LS protein appears to be regulated by translational and posttranslational factors. We also find that the transgenic plants display striking variations in growth that are correlated with antisense gene dosage.
Collapse
Affiliation(s)
- S R Rodermel
- Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138
| | | | | |
Collapse
|
16
|
Breidenbach E, Jenni E, Boschetti A. Synthesis of two proteins in chloroplasts and mRNA distribution between thylakoids and stroma during the cell cycle of Chlamydomonas reinhardii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 177:225-32. [PMID: 3181155 DOI: 10.1111/j.1432-1033.1988.tb14366.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chloroplasts contain thylakoid-bound and free ribosomes and polysomes. Whether binding of polysomes plays an immediate role in the regulation of chloroplast protein synthesis is not yet clear. In the present work, variations of protein synthesis and of mRNA content were measured not in greening, but in fully differentiated chloroplasts during the cell cycle of synchronized cultures of Chlamydomonas reinhardii. At different times of the vegetative cell cycle, the RNA was extracted from free and thylakoid-bound chloroplast polysomes and the partition of mRNAs between stroma and thylakoids was measured for two proteins, i.e. the 32-kDa herbicide-binding membrane protein and the soluble large subunit of the ribulose-1,5-bisphosphate carboxylase. At the same time the rates of synthesis of these two proteins were also determined. At 2 h after the onset of light, the content of both mRNAs in chloroplasts had doubled and 75-90% of each of these mRNAs were found to be bound to the thylakoids. The rate of protein synthesis, however, increased 10-fold, but reached its maximum only after about 6 h in the light. The differences in the time courses, in the stimulation of the rate of protein synthesis, and in the mRNA-binding to thylakoids point to a translational regulation of protein synthesis. Furthermore, since a very high proportion of polysomes were bound to thylakoids, containing mRNA for both a membrane and a soluble protein, this light-induced binding of polysomes to thylakoids seems to be an essential, but not the only, prerequisite for protein synthesis in chloroplasts.
Collapse
Affiliation(s)
- E Breidenbach
- Institut für Biochemie, Universität Bern, Switzerland
| | | | | |
Collapse
|
17
|
Friemann A, Hachtel W. Chloroplast messenger RNAs of free and thylakoid-bound polysomes from Vicia faba L. PLANTA 1988; 175:50-9. [PMID: 24221628 DOI: 10.1007/bf00402881] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/1987] [Accepted: 01/26/1988] [Indexed: 05/11/2023]
Abstract
Purified chloroplasts from developing leaves of Vicia faba L. were broken and separated into stroma and thylakoid fractions. Both fractions contained polysomes as demonstrated by analytical density gradient centrifugation and in-vitro read-out translation. Messenger RNAs of free and thylakoid-bound polysomes were isolated and analysed by hybridization with heterologous gene probes from spinach and tobacco. Transcripts of the chloroplast genes psaA, psbB, psbC, psbD and petA were found predominantly on thylakoidbound polysomes engaged in the synthesis and the contrasslational integration of membrane proteins. In contrast, transcripts of the genes rbcL, psbE, petD, atpA, atpB, atpE and atpH were found more frequently on free polysomes corresponding to a stroma-located translation of these mRNAs and a posttranslational integration of the encoded intrinsic membrane proteins. We conclude from these findings that chloroplast-encoded membrane proteins are integrated by co-and posttranslational mechanisms.
Collapse
Affiliation(s)
- A Friemann
- Botanisches Institut der Universität, Kirschallee 1, D-5300, Bonn 1, Germany
| | | |
Collapse
|
18
|
Roy H, Cannon S. Ribulose bisphosphate carboxylase assembly: what is the role of the large subunit binding protein? Trends Biochem Sci 1988; 13:163-5. [PMID: 3255196 DOI: 10.1016/0968-0004(88)90139-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
19
|
Klein RR, Mason HS, Mullet JE. Light-regulated translation of chloroplast proteins. I. Transcripts of psaA-psaB, psbA, and rbcL are associated with polysomes in dark-grown and illuminated barley seedlings. J Biophys Biochem Cytol 1988; 106:289-301. [PMID: 3339092 PMCID: PMC2114973 DOI: 10.1083/jcb.106.2.289] [Citation(s) in RCA: 146] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously observed (Klein, R. R., and J. E. Mullet, 1986, J. Biol. Chem. 261:11138-11145) that translation of two 65-70-kD chlorophyll a-apoproteins of Photosystem I (gene products of psaA and psaB) and a 32-kD quinone-binding protein of Photosystem II (gene product of psbA) was not detected in plastids of dark-grown barley seedlings even though transcripts for these proteins were present. In the present study it was found that nearly all of the psaA-psaB transcripts in plastids of dark-grown plants were associated with membrane-bound polysomes. Membrane-associated polysomes from plastids of dark-grown plants synthesized the 65-70-kD chlorophyll a-apoproteins at low levels when added to a homologous in vitro translation extract capable of translation elongation. However, when etioplast membranes were disrupted with detergent, in vitro synthesis of the 65-70-kD chlorophyll a-apoproteins increased to levels observed with polysomes of plastids from illuminated plants. These results suggest that synthesis of the chlorophyll a-apoproteins of Photosystem I is arrested on membrane-bound polysomes at the level of polypeptide chain elongation. In addition to the selective activation of chlorophyll a-apoprotein translation, illumination also caused an increase in chloroplast polysomes (membrane-associated and stromal) and induced a recruitment of psbA and rbcL transcripts into chloroplast polysomes. These results indicate that in conjunction with the selective activation of chlorophyll a-apoprotein elongation, illumination also caused a general stimulation of chloroplast translation initiation.
Collapse
Affiliation(s)
- R R Klein
- Department of Biochemistry and Biophysics, Texas A & M University, College Station 77843-2128
| | | | | |
Collapse
|
20
|
Gnanam A, Subbaiah CC, Mannan RM. Protein synthesis by isolated chloroplasts. PHOTOSYNTHESIS RESEARCH 1988; 19:129-152. [PMID: 24425371 DOI: 10.1007/bf00114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/1987] [Accepted: 03/10/1988] [Indexed: 06/03/2023]
Abstract
Isolated chloroplasts show substantial rates of protein synthesis when illuminated. This 'in organello' protein synthesis system has been advantageously utilised to elucidate the coding capacity of chloroplast and the regulation of chloroplast genes. The system is also being used recently to transcribe and translate homologous and heterologous templates. In this mini-review, we attempt to critically ecaluate the available literature and present the current and the prospective lines of research.
Collapse
Affiliation(s)
- A Gnanam
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, 625021, Madurai, India
| | | | | |
Collapse
|
21
|
Margulies MM, Tiffany HL, Hattori T. Photosystem I reaction center polypeptides of spinach are synthesized on thylakoid-bound ribosomes. Arch Biochem Biophys 1987; 254:454-61. [PMID: 3555344 DOI: 10.1016/0003-9861(87)90124-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Purified chloroplasts were prepared from developing spinach leaves. The chloroplasts were separated into thylakoid and stroma fractions, and nucleic acids were prepared from them. Photosystem I reaction center polypeptide(s) (PS I RC) mRNA was associated with the thylakoid fraction when measured by hybridization using a probe for PS I RC polypeptide ps1A1, or when measured by translation assay. The ps1A1 polypeptide was coded for by a 5.5-kbp mRNA which others have shown also codes for PS IRC polypeptide ps1A2. This mRNA was in functional thylakoid-bound ribosomes because when thylakoids with bound ribosomes were translated in the absence of protein synthesis initiation, polypeptides that reacted with anti-PS I RC were formed. The results indicate that PS I RC polypeptides are synthesized exclusively by thylakoid-bound ribosomes.
Collapse
|
22
|
Margulies MM, Tiffany HL. Identification of polypeptides of photosystem I reaction center as the products of chloroplast genes PS1A1 and PS1A2. Biochem Biophys Res Commun 1987; 143:281-7. [PMID: 3548724 DOI: 10.1016/0006-291x(87)90662-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Photosystem I Reaction Center of spinach was found to contain two polypeptides of approximate apparent Mr of 56,000 and 64,000. the 56 kDa polypeptide was identified as the product of chloroplast gene PS1A1 using an antibody specific for the PS1A1 gene product of corn. Presumably the 64 kDa polypeptide is the product of gene PS1A2.
Collapse
|
23
|
Hurt EC, Goldschmidt-Clermont M, Pesold-Hurt B, Rochaix JD, Schatz G. A mitochondrial presequence can transport a chloroplast-encoded protein into yeast mitochondria. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67261-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|