1
|
Chiaranunt P, Ferrara JLM, Byersdorfer CA. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol 2015; 68:564-74. [PMID: 26359186 PMCID: PMC11523081 DOI: 10.1016/j.molimm.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 07/19/2015] [Indexed: 02/09/2023]
Abstract
The classic paradigm of T cell metabolism posits that activated Teff cells utilize glycolysis to keep pace with increased energetic demands, while resting and Tmem cells rely on the oxidation of fat. In contrast, Teff cells during graft-versus-host disease (GVHD) increase their reliance on oxidative metabolism and, in particular, on fatty acid oxidation (FAO). To explore the potential mechanisms driving adoption of this alternative metabolism, we first review key pathways regulating FAO across a variety of disparate tissue types, including liver, heart, and skeletal muscle. Based upon these comparative studies, we then outline a consensus network of transcriptional and signaling pathways that predict a model for regulating FAO in Teff cells during GVHD. This model raises important implications about the dynamic nature of metabolic reprogramming in T cells and suggests exciting future directions for further study of in vivo T cell metabolism.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - James L M Ferrara
- The Tisch Cancer Institute & Division of Hematology/Medical Oncology, Icahn School of Medicine, Hess Center for Science and Medicine, New York, NY 10029, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
2
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
3
|
Effects of vanadate supplementation on high fat-diet and diabetes-induced metabolic changes in liver. Indian J Clin Biochem 1996. [DOI: 10.1007/bf02896426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Brichard SM, Ongemba LN, Girard J, Henquin JC. Tissue-specific correction of lipogenic enzyme gene expression in diabetic rats given vanadate. Diabetologia 1994; 37:1065-72. [PMID: 7867878 DOI: 10.1007/bf00418369] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Vanadium is a potent insulinomimetic agent. In vivo, its blood glucose lowering action in insulin-deficient diabetic rats is associated with corrected expression of genes involved in hepatic glucose metabolism. In this study, we investigated whether vanadate treatment also reverses the impaired expression of genes coding for key enzymes of lipogenesis in diabetic liver and white adipose tissue. Oral administration of vanadate to streptozotocin-rats caused a 55% fall in plasma glucose levels after feeding without modifying low insulinaemia. It also partially corrected the low thyroid hormone concentrations. In untreated diabetic animals, hepatic mRNA levels of acetyl-CoA carboxylase and fatty acid synthase were reduced by more than 80 and 90%, respectively, in close correlation with changes in enzyme activities. Three weeks of vanadate treatment totally restored acetyl-CoA carboxylase mRNA and partially restored fatty acid synthase mRNA (71% of control levels). The activities of both lipogenic enzymes were increased 3.5 to 4-fold, to reach 45 to 65% of control values. By contrast, in white adipose tissue, vanadate modified neither expression nor activity of both lipogenic enzymes, which remained blunted (< 10% of control levels). In conclusion, vanadate treatment partially restores the activities of two key lipogenic enzymes in liver, but not in white adipose tissue, of diabetic rats. This correction results from a reversal of impaired pre-translational regulatory mechanisms possibly mediated by an improvement of thyroid function and a selective restoration of liver glycolytic flux.
Collapse
Affiliation(s)
- S M Brichard
- Unité d'Endocrinologie et Métabolisme, University of Louvain, Faculty of Medicine, Brussels, Belgium
| | | | | | | |
Collapse
|
5
|
Guzman M, Kolodziej MP, Caldwell A, Corstorphine CG, Zammit VA. Evidence against direct involvement of phosphorylation in the activation of carnitine palmitoyltransferase by okadaic acid in rat hepatocytes. Biochem J 1994; 300 ( Pt 3):693-9. [PMID: 8010950 PMCID: PMC1138222 DOI: 10.1042/bj3000693] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanism of activation of mitochondrial overt carnitine palmitoyltransferase (CPT I) by treatment of hepatocytes with okadaic acid (OA) was investigated. Activation was observed when cells were permeabilized with digitonin, but not when a total membrane fraction was obtained by sonication. Both cell disruption methods preserved the activation of phosphorylase observed in OA-treated hepatocytes. Activation of CPT I was also observed in crude homogenates of OA-treated hepatocytes, but it was lost upon subsequent isolation of mitochondria from such homogenates. In all experiments, any activation observed did not depend on the presence or absence of fluoride ions in the permeabilization/homogenization media. When hepatocytes were permeabilized in the absence of fluoride and further incubated with exogenous phosphatases 1 and 2A, the OA-induced activation of CPT was not reversed, whereas the activation of glycogen phosphorylase in the same cells was rapidly reversed. Treatment of hepatocytes with OA, followed by permeabilization and incubation before assay of CPT I, demonstrated that OA had no short-term effect on the sensitivity of CPT I to malonyl-CoA, although the difference in sensitivity between cells isolated from fed and starved rats was fully preserved. Incubation of isolated mitochondria or purified mitochondrial outer membranes with cyclic AMP-dependent or AMP-activated protein kinases, under phosphorylating conditions, did not affect the activity of CPT I or its sensitivity to malonyl-CoA inhibition. Under the same conditions, the use of [32P]ATP resulted in the labelling of several outer-membrane proteins but, unlike [3H]etomoxir-labelled CPT I, none of them was specifically removed from membrane extracts by a specific polyclonal antibody to the enzyme. We conclude that the increase in overt CPT activity observed in permeabilized hepatocytes is not due to direct phosphorylation of CPT I, but may involve interactions between the mitochondrial outer membrane and other membranous or soluble cytosolic components of the cell.
Collapse
Affiliation(s)
- M Guzman
- Department of Biochemistry and Molecular Biology I, Complutense University, Madrid, Spain
| | | | | | | | | |
Collapse
|
6
|
Abstract
The in vitro and in vivo effects of lovastatin on fatty acid metabolism were studied in isolated rat hepatocytes. When added in vitro to cell incubations, lovastatin stimulated de novo fatty acid synthesis and acetyl-CoA carboxylase activity, whereas fatty acid synthase activity was unaffected. Lovastatin depressed palmitate, but not octanoate, oxidation. This may be attributed to the lovastatin-induced increase in intracellular malonyl-CoA levels, as no concomitant change of carnitine palmitoyltransferase I (CPT-I) specific activity was detected. Lovastatin had no effect on the synthesis and secretion of triacylglycerols and phospholipids in the form of very low density lipoproteins (VLDL). When rats were fed a diet supplemented with 0.1% (w/w) lovastatin for one week, both acetyl-CoA carboxylase activity and de novo fatty acid synthesis were reduced compared to pair-fed controls, whereas fatty acid synthase activity was unaffected. Palmitate oxidation was enhanced in the lovastatin-fed group. There was an increase in CPT-I activity but no change in intracellular concentration of malonyl-CoA. Lovastatin feeding had no significant effect either on the esterification of exogenous palmitic acid into both cellular and VLDL triacylglycerols and phospholipids or on hepatic lipid accumulation. The in vitro and in vivo effects of lovastatin were not significantly different between periportal and perivenous hepatocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, Madrid, Spain
| | | | | |
Collapse
|
7
|
Guzmán M, Geelen MJ. Regulation of fatty acid oxidation in mammalian liver. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1167:227-41. [PMID: 8097629 DOI: 10.1016/0005-2760(93)90224-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, Madrid, Spain
| | | |
Collapse
|
8
|
Skrede S, Bremer J. Acylcarnitine formation and fatty acid oxidation in hepatocytes from rats treated with tetradecylthioacetic acid (a 3-thia fatty acid). BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1167:189-96. [PMID: 8466948 DOI: 10.1016/0005-2760(93)90161-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In livers of rats fed a single morning dose of 100 mg tetradecylthioacetic acid (TTA) total long-chain acyl-CoA increased significantly to 3 times control levels within 6 h, then the level declined almost to control value within the next morning. Hepatic malonyl-CoA was reduced 75% 6 h after TTA treatment. From 6 to 24 h malonyl-CoA increased about 10-fold to about 3 times that of controls. Paradoxically there was nearly a 2-fold higher oxidation of both [1-14C]palmitic acid (0.5 mM) and [1-14C]oleic acid (0.5 mM) in hepatocytes isolated from rats 24 h after TTA treatment compared to controls. After 6 h, when malonyl-CoA was at a minimum in vivo, fatty acid oxidation in cells was not increased. Acylcarnitine formation in digitonin permeabilized hepatocytes isolated 24 h after administration of TTA was increased both in the absence and in the presence of malonyl-CoA. At 24 h peroxisomal palmitoyl-CoA oxidase activity was not increased. The results suggest that an increased CPT activity and increased acylcarnitine formation in the presence of malonyl-CoA is a delayed response to increased acyl-CoA levels. Furthermore, in hepatocytes isolated after 24 h incorporation of [1-14C]oleic acid into triacylglycerols was significantly reduced. The data show that in hepatocytes isolated from rats 24 h after administration of a single dose of TTA, there is a diversion of hepatic acyl-CoA from synthesis of triacylglycerols into beta-oxidation in the mitochondria.
Collapse
Affiliation(s)
- S Skrede
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | |
Collapse
|
9
|
Guzmán M, Geelen MJ. Activity of carnitine palmitoyltransferase in mitochondrial outer membranes and peroxisomes in digitonin-permeabilized hepatocytes. Selective modulation of mitochondrial enzyme activity by okadaic acid. Biochem J 1992; 287 ( Pt 2):487-92. [PMID: 1332675 PMCID: PMC1133191 DOI: 10.1042/bj2870487] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A procedure is described for the rapid measurement of the activity of mitochondrial-outer-membrane carnitine palmitoyltransferase (CPTo) and peroxisomal carnitine palmitoyltransferase (CPTp) in digitonin-permeabilized hepatocytes. CPTo activity was determined as the tetradecylglycidate (TDGA)-sensitive malonyl-CoA-sensitive CPT activity, whereas CPTp activity was monitored as the TDGA-insensitive malonyl-CoA-sensitive CPT activity. Under these experimental conditions, the respective contributions of CPTo and CPTp to total hepatocellular malonyl-CoA-sensitive CPT activity were 74.6 and 25.4%, which correlated well with the values of 76.9 and 23.1% for the respective contributions of the mitochondrial and the peroxisomal compartment to total hepatocellular palmitate oxidation. The sensitivity of CPTo to inhibition by malonyl-CoA was very similar to that of CPTp; thus 50% inhibition of CPTo and CPTp activities was achieved with malonyl-CoA concentrations of 2.6 +/- 0.5 and 3.0 +/- 0.4 microM respectively. Short-term incubation of hepatocytes with the phosphatase inhibitor okadaic acid (i) increased the activity of CPTo and the rate of mitochondrial palmitate oxidation, (ii) decreased the affinity of CPTo for palmitoyl-CoA substrate, and (iii) decreased the sensitivity of CPTo to inhibition by malonyl-CoA. By contrast, neither the properties of CPTp nor the rate of peroxisomal palmitate oxidation were changed upon incubation of cells with okadaic acid. Results indicate therefore that CPTo, but not CPTp, may be regulated by a mechanism of phosphorylation/dephosphorylation. The physiological relevance of these findings is discussed.
Collapse
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, Madrid, Spain
| | | |
Collapse
|
10
|
Abstract
Liver parenchyma shows a remarkable heterogeneity of the hepatocytes along the porto-central axis with respect to ultrastructure and enzyme activities resulting in different cellular functions within different zones of the liver lobuli. According to the concept of metabolic zonation, the spatial organization of the various metabolic pathways and functions forms the basis for the efficient adaptation of liver metabolism to the different nutritional requirements of the whole organism in different metabolic states. The present review summarizes current knowledge about this heterogeneity, its development and determination, as well as about its significance for the understanding of all aspects of liver function and pathology, especially of intermediary metabolism, biotransformation of drugs and zonal toxicity of hepatotoxins.
Collapse
Affiliation(s)
- R Gebhardt
- Physiologisch-Chemisches Institut, University of Tübingen, Germany
| |
Collapse
|
11
|
Guzmán M, Castro J. Okadaic acid stimulates carnitine palmitoyltransferase I activity and palmitate oxidation in isolated rat hepatocytes. FEBS Lett 1991; 291:105-8. [PMID: 1936236 DOI: 10.1016/0014-5793(91)81114-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Okadaic acid parallely increased carnitine [corrected] palmitoyltransferase I activity and the rate of palmitate oxidation in isolated rat hepatocytes. Nevertheless, okadaic acid had no significant effect on the rate of octanoate oxidation. Maximal effects of okadaic acid were similar and non-additive to those of dibutyryl-cAMP, forskolin and glucagon. Results indicate that carnitine palmitoyltransferase I activity may be controlled by a mechanism of phosphorylation/dephosphorylation.
Collapse
Affiliation(s)
- M Guzmán
- Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Complutense University, Madrid, Spain
| | | |
Collapse
|