1
|
da Luz MHM, Pino JMV, Santos TG, Antunes HKM, Martins VR, de Souza AAL, Torquato RJS, Lee KS. Sleep deprivation regulates availability of PrP C and Aβ peptides which can impair interaction between PrP C and laminin and neuronal plasticity. J Neurochem 2020; 153:377-389. [PMID: 31950499 PMCID: PMC7383904 DOI: 10.1111/jnc.14960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/17/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022]
Abstract
PrPC is a glycoprotein capable to interact with several molecules and mediates diverse signaling pathways. Among numerous ligands, laminin (LN) is known to promote neurite outgrowth and memory consolidation, while amyloid‐beta oligomers (Aβo) trigger synaptic dysfunction. In both pathways, mGluR1 is recruited as co‐receptor. The involvement of PrPC/mGluR1 in these opposite functions suggests that this complex is a key element in the regulation of synaptic activity. Considering that sleep‐wake cycle is important for synaptic homeostasis, we aimed to investigate how sleep deprivation affects the expression of PrPC and its ligands, laminin, Aβo, and mGluR1, a multicomplex that can interfere with neuronal plasticity. To address this question, hippocampi of control (CT) and sleep deprived (SD) C57BL/6 mice were collected at two time points of circadian period (13 hr and 21 hr). We observed that sleep deprivation reduced PrPC and mGluR1 levels with higher effect in active state (21 hr). Sleep deprivation also caused accumulation of Aβ peptides in rest period (13 hr), while laminin levels were not affected. In vitro binding assay showed that Aβo can compete with LN for PrPC binding. The influence of Aβo was also observed in neuritogenesis. LN alone promoted longer neurite outgrowth than non‐treated cells in both Prnp+/+ and Prnp0/0 genotypes. Aβo alone did not show any effects, but when added together with LN, it attenuated the effects of LN only in Prnp+/+ cells. Altogether, our findings indicate that sleep deprivation regulates the availability of PrPC and Aβ peptides, and based on our in vitro assays, these alterations induced by sleep deprivation can negatively affect LN–PrPC interaction, which is known to play roles in neuronal plasticity. ![]()
Collapse
Affiliation(s)
- Marcio H M da Luz
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jessica M V Pino
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tiago G Santos
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Hanna K M Antunes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vilma R Martins
- International Research Center. A.C.Camargo Cancer Center, São Paulo, Brazil
| | - Altay A L de Souza
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Kil S Lee
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Prion Protein Family Contributes to Tumorigenesis via Multiple Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:207-224. [PMID: 29052140 DOI: 10.1007/978-981-10-5765-6_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A wealth of evidence suggests that proteins from prion protein (PrP) family contribute to tumorigenesis in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), breast cancer, glioblastoma, colorectal cancer, gastric cancer, melanoma, etc. It is well documented that PrP is a biomarker for PDAC, breast cancer, and gastric cancer. However, the underlying mechanisms remain unclear. The major reasons for cancer cell-caused patient death are metastasis and multiple drug resistance, both of which connect to physiological functions of PrP expressing in cancer cells. PrP enhances tumorigenesis by multiple pathways. For example, PrP existed as pro-PrP in most of the PDAC cell lines, thus increasing cancer cell motility by binding to cytoskeletal protein filamin A (FLNa). Using PDAC cell lines BxPC-3 and AsPC-1 as model system, we identified that dysfunction of glycosylphosphatidylinositol (GPI) anchor synthesis machinery resulted in the biogenesis of pro-PrP. In addition, in cancer cells without FLNa expression, pro-PrP can modify cytoskeleton structure by affecting cofilin/F-actin axis, thus influencing cancer cell movement. Besides pro-PrP, we showed that GPI-anchored unglycosylated PrP can elevate cell mobility by interacting with VEGFR2, thus stimulating cell migration under serum-free condition. Besides affecting cancer cell motility, overexpressed PrP or doppel (Dpl) in cancer cells has been shown to increase cell proliferation, multiple drug resistance, and angiogenesis, thus, proteins from PrP gene family by affecting important processes via multiple pathways for cancer cell growth exacerbating tumorigenesis.
Collapse
|
3
|
da Luz MHM, Glezer I, Xavier AM, da Silva MAP, Pino JMV, Zamith TP, Vieira TF, Antonio BB, Antunes HKM, Martins VR, Lee KS. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein. Neurochem Res 2016; 41:1691-9. [DOI: 10.1007/s11064-016-1885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/26/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
|
4
|
Westmark CJ, Malter JS. The regulation of AβPP expression by RNA-binding proteins. Ageing Res Rev 2012; 11:450-9. [PMID: 22504584 DOI: 10.1016/j.arr.2012.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 12/29/2022]
Abstract
Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimer's disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.
Collapse
Affiliation(s)
- Cara J Westmark
- University of Wisconsin, Waisman Center for Developmental Disabilities, 1500 Highland Avenue, Madison, WI 53705, USA.
| | | |
Collapse
|
5
|
Proteinase K-resistant material in ARR/VRQ sheep brain affected with classical scrapie is composed mainly of VRQ prion protein. J Virol 2011; 85:12537-46. [PMID: 21917981 DOI: 10.1128/jvi.00448-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical scrapie is a prion disease in sheep and goats. In sheep, susceptibility to disease is genetically influenced by single amino acid substitutions. Genetic breeding programs aimed at enrichment of arginine-171 (171R) prion protein (PrP), the so-called ARR allele, in the sheep population have been demonstrated to be effective in reducing the occurrence of classical scrapie in the field. Understanding the molecular basis for this reduced prevalence would serve the assessment of ARR adaptation. The prion formation mechanism and conversion of PrP from the normal form (PrP(C)) to the scrapie-associated form (PrP(Sc)) could play a key role in this process. Therefore, we investigated whether the ARR allele substantially contributes to scrapie prion formation in naturally infected heterozygous 171Q/R animals. Two methods were applied to brain tissue of 171Q/R heterozygous sheep with natural scrapie to determine the relative amount of the 171R PrP fraction in PrP(res), the proteinase K-resistant PrP(Sc) core. An antibody test differentiating between 171Q and 171R PrP fragments showed that PrP(res) was mostly composed of the 171Q allelotype. Furthermore, using a novel tool for prion research, endoproteinase Lys-C-digested PrP(res) yielded substantial amounts of a nonglycosylated and a monoglycosylated PrP fragment comprising codons 114 to 188. Following two-dimensional gel electrophoresis, only marginal amounts (<9%) of 171R PrP(res) were detected. Enhanced 171R(res) proteolytic susceptibility could be excluded. Thus, these data support a nearly zero contribution of 171R PrP in PrP(res) of 171R/Q field scrapie-infected animals. This is suggestive of a poor adaptation of classical scrapie to this resistance allele under these natural conditions.
Collapse
|
6
|
Malter JS, Ray BC, Westmark PR, Westmark CJ. Fragile X Syndrome and Alzheimer's Disease: Another story about APP and beta-amyloid. Curr Alzheimer Res 2010; 7:200-6. [PMID: 20088809 DOI: 10.2174/156720510791050957] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/24/2009] [Indexed: 01/05/2023]
Abstract
As the mechanisms underlying neuronal development and degeneration become clarified, a number of common effectors and signaling pathways are becoming apparent. Here we describe the identification of Abeta, long considered a pathologic mediator of Alzheimers Disease and Down Syndrome, as similarly over-expressed in the neurodevelopmental disease, Fragile X Syndrome. We also show that mGluR5 inhibitors, currently employed for the treatment of Fragile X, reduce Abeta production in rodent models of Fragile X and AD as well as reduce disease phenotypes including seizures. Thus seemingly disparate neurologic diseases may share a common pathologic instigator and be treatable with a common, currently available class of therapeutics.
Collapse
Affiliation(s)
- J S Malter
- Department of Pathology, Waisman Center for Developmental Disabilities, UWMadison, WI, USA.
| | | | | | | |
Collapse
|
7
|
Westmark CJ, Malter JS. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol 2007; 5:e52. [PMID: 17298186 PMCID: PMC1808499 DOI: 10.1371/journal.pbio.0050052] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 12/18/2006] [Indexed: 01/31/2023] Open
Abstract
Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome. Alzheimer disease (AD) and fragile X syndrome (FXS) are devastating neurological disorders associated with synaptic dysfunction resulting in cognitive impairment and behavioral deficits. Despite these similar endpoints, the pathobiology of AD and FXS have not previously been linked. We have established that translation of amyloid precursor protein (APP), which is cleaved to generate neurotoxic βamyloid, is normally repressed by the fragile X mental retardation protein (FMRP) in the dendritic processes of neurons. Activation of a particular subtype of glutamate receptor (mGluR5) rapidly increases translation of APP in neurons by displacing FMRP from a guanidine-rich sequence in the coding region of APP mRNA. In the absence of FMRP, APP synthesis is constitutively increased and nonresponsive to mGluR-mediated signaling. Excess APP is proteolytically cleaved to generate significantly elevated βamyloid in multiple mutant mouse strains lacking FMRP compared to wild type. Our data support a growing consensus that FMRP binds to guanine-rich domains of some dendritic mRNAs, suppressing their translation and suggest that AD (neurodegenerative disorder) and FXS (neurodevelopmental disorder) may share a common molecular pathway leading to the overproduction of APP and its protein-cleaving derivatives. FMRP, the cytoplasmic mRNA-binding protein lost in fragile X syndrome, regulates the translation of amyloid precursor protein in neurons.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Pathology and Laboratory Medicine, Waisman Center for Developmental Disabilities, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | |
Collapse
|
8
|
Sung YJ, Weiler IJ, Greenough WT, Denman RB. Selectively enriched mRNAs in rat synaptoneurosomes. ACTA ACUST UNITED AC 2004; 126:81-7. [PMID: 15207920 DOI: 10.1016/j.molbrainres.2004.03.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2004] [Indexed: 11/26/2022]
Abstract
Differential display was used to identify synapse-enriched mRNAs. Of 15 mRNAs initially identified, all were found in multiple synaptoneurosome preparations; 58% were subsequently shown to be enriched in all the preparations by Northern blotting and semiquantitative RT-PCR. RNAs involved in signal transduction, vesicle trafficking, lipid modification and cell shape and remodeling were among these messages. Tip60a mRNA, recently found to associate with the fragile X mental retardation protein, was also identified. These data demonstrate the diversity of the local message pool at synapses.
Collapse
Affiliation(s)
- Y-J Sung
- Department of Anatomy and Cell Biology Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | |
Collapse
|
9
|
Lötscher M, Recher M, Hunziker L, Klein MA. Immunologically induced, complement-dependent up-regulation of the prion protein in the mouse spleen: follicular dendritic cells versus capsule and trabeculae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6040-7. [PMID: 12794132 DOI: 10.4049/jimmunol.170.12.6040] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of the prion protein (PrP) in the follicular dendritic cell network of germinal centers in the spleen is critical for the splenic propagation of the causative agent of prion diseases. However, a physiological role of the prion protein in the periphery remains elusive. To investigate the role and function of PrP expression in the lymphoid system we treated naive mice i.v. with preformed immune complexes or vesicular stomatitis virus. Immunohistochemistry and Western blot analysis of the spleen revealed that 8 days after immunization, immune complexes and vesicular stomatitis virus had both induced a strong increase of PrP expression in the follicular dendritic cell network. Remarkably, this up-regulation did not occur in mice that lack an early factor of the complement cascade, C1q, a component which has been shown previously to facilitate early prion pathogenesis. In addition to the variable PrP level in the germinal centers, we detected steady and abundant PrP expression in the splenic capsule and trabeculae, which are structural elements that have not been associated before with PrP localization. The abundant trabeculo-capsular PrP expression was also evident in spleens of Rag-1-deficient mice, which have been shown before to be incapable of prion expansion. We conclude that trabeculocapsular PrP is not sufficient for splenic prion propagation. Furthermore, our observations may provide important clues for a physiological function of the prion protein and allow a new view on the role of complement and PrP in peripheral prion pathogenesis.
Collapse
Affiliation(s)
- Marius Lötscher
- Institutes of. Experimental Immunology and Neuropathology, University Hospital of Zürich, Zürich, Switzerland.
| | | | | | | |
Collapse
|
10
|
Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, Denman RB. The fragile X mental retardation protein FMRP binds elongation factor 1A mRNA and negatively regulates its translation in vivo. J Biol Chem 2003; 278:15669-78. [PMID: 12594214 DOI: 10.1074/jbc.m211117200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loss of the RNA-binding protein FMRP (fragile X mental retardation protein) leads to fragile X syndrome, the most common form of inherited mental retardation. Although some of the messenger RNA targets of this protein, including FMR1, have been ascertained, many have yet to be identified. We have found that Xenopus elongation factor 1A (EF-1A) mRNA binds tightly to recombinant human FMRP in vitro. Binding depended on protein determinants located primarily in the C-terminal end of hFMRP, but the hnRNP K homology domain influenced binding as well. When hFMRP was expressed in cultured cells, it dramatically reduced endogenous EF-1A protein expression but had no effect on EF-1A mRNA levels. In contrast, the translation of several other mRNAs, including those coding for dynamin and constitutive heat shock 70 protein, was not affected by the hFMRP expression. Most importantly, EF-1A mRNA and hFMR1 mRNA were coimmunoprecipitated with hFMRP. Finally, in fragile X lymphoblastoid cells in which hFMRP is absent, human EF-1A protein but not its corresponding mRNA is elevated compared with normal lymphoblastoid cells. These data suggest that hFMRP binds to EF-1A mRNA and also strongly argue that FMRP negatively regulates EF-1A expression in vivo.
Collapse
Affiliation(s)
- Ying Ju Sung
- Department of Anatomy and Cell Biology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
The normal cellular prion protein (PrP(c)) is a membrane sialoglycoprotein of unknown function having the unique property of adopting an abnormal tertiary conformation. The pathological conformer PrP(sc) would be the agent of transmissible spongiform encephalopathies or prion diseases. They include scrapie and bovine spongiform encephalopathy in animals and Creutzfeldt-Jakob disease in humans. The conversion of PrP(c) into PrP(sc) in the brain governs the clinical phenotype of the disease. However, the three-dimensional structure change of PrP(c) can also take place outside the central nervous system, in nonneuronal cells particularly of lymphoid tissue where the agent replicates. In natural infection, PrP(c) in nonneuronal cells of peripheral extracerebral organs may play a key role as the receptor required to enable the entry of the infectious agent into the host. In the present review we have undertaken a first evaluation of compelling data concerning the PrP(c)-expressing cells of nonneuronal origin present in cerebral and extracerebral tissues. The analysis of tissue, cellular, and subcellular localization of PrP(c) may help us better understand the biological function of PrP(c) and provide some information on physiopathological processes underlying prion diseases.
Collapse
Affiliation(s)
- J G Fournier
- Service de Neurovirologie, CEA-DSV/DRM, Fontenay aux Roses, France
| |
Collapse
|
12
|
Abstract
There exist no methodical studies concerning non-equilibrium systems in cellular biology. This paper is an attempt to partially fill this shortcoming. We have undertaken an extensive data-mining operation in the existing scientific literature to find scattered information about non-equilibrium subcellular systems, in particular concerning fast proteins, i.e. those with short turnover half-time. We have advanced the hypothesis that functionality in fast proteins emerges as a consequence of their intrinsic physical instability that arises due to conformational strains resulting from co-translational folding (the interdependence between chain elongation and chain folding during biosynthesis on ribosomes). Such intrinsic physical instability, a kind of conformon (Klonowski-Klonowska conformon, according to Ji, (Molecular Theories of Cell Life and Death, Rutgers University Press, New Brunswick, 1991)) is probably the most important feature determining functionality and timing in these proteins. If our hypothesis is true, the turnover half-time of fast proteins should be positively correlated with their molecular weight, and some experimental results (Ames et al., J. Neurochem. 35 (1980) 131) indeed demonstrated such a correlation. Once the native structure (and function) of a fast protein macromolecule is lost, it may not be recovered--denaturation of such proteins will always be irreversible; therefore, we searched for information on irreversible denaturation. Only simulation and modeling of protein co-translational folding may answer the questions concerning fast proteins (Ruggiero and Sacile, Med. Biol. Eng. Comp. 37 (Suppl. 1) (1999) 363). Non-equilibrium structures may also be built up of protein subunits, even if each one taken by itself is in thermodynamic equilibrium (oligomeric proteins; sub-cellular sol-gel dissipative network structures).
Collapse
Affiliation(s)
- W Klonowski
- Laboratory of Biosignal Analysis Fundamental, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw.
| |
Collapse
|
13
|
Dolzhanskaya N, Conti J, Schwenk V, Merz G, Denman RB. Self-Cleaving-Ribozyme-Mediated Reduction of βAPP in Human Rhabdomyosarcoma Cells. Arch Biochem Biophys 2001; 387:223-32. [PMID: 11370845 DOI: 10.1006/abbi.2000.2262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A self-cleaving hammerhead ribozyme targeted to codon 47 in beta-amyloid precursor protein (betaAPP) mRNA was cloned as a eucaryotic transcription cassette into the 3' UTR of enhanced green fluorescence protein (EGFP) mRNA, producing a C-terminal fusion mRNA. CMV promotor-driven vectors bearing this construct or a mutationally inactive ribozyme construct were transiently transfected into human embryonic rhabdomyosarcoma (A-204) cells and their effects studied. Ribozyme self-cleavage in vivo was demonstrated by Northern blotting and the site of self-cleavage was delineated using site-specific deoxyoligonucleotide probes and primer extension arrest. Using this ribozyme reporter we demonstrated that ribozyme expression correlated with lower betaAPP levels in the transfected cells. Control studies with the inactive ribozyme construct showed that both ribozyme cleavage and antisense mechanisms combined to produce the observed effect. Furthermore, production of truncated EGFP mRNA via ribozyme self-cleavage reduced EGFP-reporter expression compared to full-length EGFP control mRNAs, indicating that truncation affects the translatability of the reporter. This occurred because of a slight decrease in the stability of the fusion mRNA. The results of these studies suggest that self-cleaving ribozyme vectors may be an effective means of delivering and visualizing the expression of small active ribozymes in vivo.
Collapse
Affiliation(s)
- N Dolzhanskaya
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | | | |
Collapse
|
14
|
Dolzhanskaya N, Conti J, Merz G, Denman RB. In vivo ribozyme targeting of betaAPP+ mRNAs. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:239-47. [PMID: 11409919 DOI: 10.1006/mcbr.2001.0287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Alzheimer's disease (AD) and Down's syndrome (DS) patients, posttranscriptional alterations of sequences encoded by exon 9 and exon 10 of the beta-amyloid precursor protein (betaAPP) mRNA result in mutant proteins (betaAPP+) that colocalize with neurofibrillary tangles and senile plaques. These aberrant messages may contribute to the development of sporadic or late-onset Alzheimer's disease; thus, eliminating them or attenuating their expression could significantly benefit AD patients. In the present work, self-cleaving hammerhead ribozymes targeted to betaAPP exon 9 (Rz9) and betaAPP+ mutant exon 10 (Rz10) were examined for their ability to distinguish between betaAPP and betaAPP+ mRNA. In transiently transfected A-204 cells, quantitative confocal fluorescence microscopy showed that Rz9 preferentially lowered endogenous betaAPP. In contrast, in transient cotransfection experiments with betaAPP+ mRNAs containing a wild-type exon 9 and mutant exon 10 (betaAPP-9/betaAPP-10+1), or a mutant exon 9 and wild-type exon 10 (betaAPP-9+1/betaAPP-10) we found that Rz9 and Rz10 preferentially reduced betaAPP+ -mutant exon 10 mRNA in a concentration and a ribozyme-dependent manner.
Collapse
Affiliation(s)
- N Dolzhanskaya
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | | | |
Collapse
|
15
|
Sung YJ, Conti J, Currie JR, Brown WT, Denman RB. RNAs that interact with the fragile X syndrome RNA binding protein FMRP. Biochem Biophys Res Commun 2000; 275:973-80. [PMID: 10973830 DOI: 10.1006/bbrc.2000.3405] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fragile X protein FMRP is an RNA binding protein whose targets are not well known; yet, these RNAs may play an integral role in the disease's etiology. Using a biotinylated-FMRP affinity resin, we isolated RNAs from the parietal cortex of a normal adult that bound FMRP. These RNAs were amplified by differential display (DDRT-PCR) and cloned and their identities determined. Nine candidate RNAs were isolated; five RNAs, including FMR1 mRNA, encoded known proteins. Four others were novel. The specificity of binding was demonstrated for each candidate RNA. The domains required for binding a subset of the RNAs were delineated using FMRP truncation mutant proteins and it was shown that only the KH2 domain was required for binding. Binding occurred independently of homoribopolymer binding to the C-terminal arginine-glycine-rich region (RGG box), suggesting that FMRP may bind multiple RNAs simultaneously.
Collapse
Affiliation(s)
- Y J Sung
- Department of Molecular Biology, Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
We have used differential display to address the question of ribozyme specificity in vivo. Stably transfected PC12 cells bearing either a hairpin ribozyme expression plasmid targeted to betaAPP mRNA or the vector alone were analyzed using nine different primer pairs. One of the few differentially expressed genes obtained from this screen corresponded to rat ribosomal protein L19. Steady-state levels of L19 mRNA were lower in ribozyme-transfected cells compared to either vector-transfected cells or native PC12 cells, and a sequence within the L19 message was cleaved by the betaAPP hairpin ribozyme in vitro. These data imply that sequence-specific unintended cleavage of non-target mRNAs may present a formidable problem to the use of hairpin ribozyme therapeutic agents.
Collapse
Affiliation(s)
- R B Denman
- Laboratory of Molecular Neurobiology, Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York, 10314, USA.
| |
Collapse
|
17
|
Denman RB, Smedman M, Abraham M, Chen-Hwang MC, Currie JR. Facilitated reduction of beta-amyloid peptide precursor by synthetic oligonucleotides in COS-7 cells expressing a hammerhead ribozyme. Arch Biochem Biophys 1997; 348:82-90. [PMID: 9390177 DOI: 10.1006/abbi.1997.0383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Synthetic deoxyoligonucleotides and phosphorothioate-capped oligonucleotides targeted to bases 112-128 of beta-amyloid peptide precursor (beta APP) mRNA were analyzed for their ability to reduce steady-state beta APP in COS-7 cells and in pMEP4-Rz1 cells that express a hammerhead ribozyme targeted to bases beta APP mRNA 133-148. Cells, incubated in the presence of 10 or 25 microM oligonucleotide, remained viable and morphologically identical to untreated control cells for up to 5 days. Antisense deoxyoligonucleotides beta 112C, beta 114C, and beta 116C specifically lowered beta APP in pMEP4-Rz1 cells compared to noncognate and scrambled oligonucleotide controls. The extent of the beta APP reduction did not depend on oligonucleotide length, although it did depend on the presence and proximity of the ribozyme to the oligonucleotides. beta 117N, a phosphorothioate-capped antisense oligonucleotide, also reduced beta APP levels in pMEP4-Rz1 cells; however, in this case the sense control, beta 117S, affected beta APP similarly, indicating that the observed reduction may be nonspecific. These data imply that deoxyoligonucleotides targeted immediately upstream of a ribozyme binding site can work cooperatively in vivo. Localizing the oligonucleotides and ribozyme and substrate targets to the same cellular pools further confirmed this possibility.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA.
| | | | | | | | | |
Collapse
|
18
|
Komori N, Kittel A, Kang D, Shackelford D, Masliah E, Zivin JA, Saitoh T. Reversible ischemia increases levels of Alzheimer amyloid protein precursor without increasing levels of mRNA in the rabbit spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:103-12. [PMID: 9387869 DOI: 10.1016/s0169-328x(97)00133-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a rabbit spinal cord ischemia model (RSCIM), the time courses of neuropathological damage of the spinal cord and neurological impairment of the motor functions are well established, demonstrating that the extent of neuropathological damage and the severity of neurological impairment are closely correlated. We used the RSCIM to elucidate the effects of reversible (15 min) and irreversible (60 min) ischemia on the endogenous levels of amyloid protein precursors (APPs) at both the mRNA and protein levels in the caudolumbar/sacral region of the spinal cord. We speculate that endogenous APPs are induced by ischemia as either trophic factors or stress-induced proteins in the RSCIM. A 15-min occlusion transiently increased the APP protein levels in neurons, which returned to the original levels by the end of 60 min occlusion. The increase in APP protein levels during 15-min ischemic insult does not appear to involve regulation at the mRNA level. The increased level of APPs, particularly of the soluble form, could support the possibility that APPs play a neuroprotective role in the RSCIM as stress-induced proteins. In contrast, failure to maintain the increased APP protein levels or to increase the mRNA, as seen in the 60-min ischemia samples, may be one of the causal factors that induce necrosis and neuronal cell death leading to irreversible neurological impairment.
Collapse
Affiliation(s)
- N Komori
- Department of Neurosciences, University of California at San Diego, La Jolla 92093-0624, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Smedman M, Potempska A, Rubenstein R, Ju W, Ramakrishna N, Denman RB. Effects of cadmium, copper, and zinc and beta APP processing and turnover in COS-7 and PC12 cells. Relationship to Alzheimer disease pathology. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1997; 31:13-28. [PMID: 9271002 DOI: 10.1007/bf02815157] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of cadmium, copper, and zinc on beta APP metabolism were investigated in COS-7 and PC12 cells. Cadmium chloride (CdCl2) increased beta APP steady-state protein levels and decreased beta APP posttranslational processing. These changes were not accompanied by alterations in beta APP mRNA levels or splicing. In addition, cytosolic alpha-actin and G3PDH levels were not affected. Further, neither zinc (ZnCl2) nor copper (CuSO4) altered beta APP levels or affected its normal processing. Pulse-chase studies revealed that the rate of beta APP maturation decreased twofold in the presence of 25 microM CdCl2 compared to untreated controls. beta APP secretion from the cell also dramatically slowed. These two factors result in the accumulation of partially processed beta APP inside cells. The presence of CdCl2 also decreased the amount of an 8-kDa beta APP C-terminal fragment, indicating that the cellular compartment in which beta APP accumulates is not accessible to alpha-secretase. Studies using Brefeldin A suggest that this compartment may be the cis or medial Golgi. However, A beta production was proportionately increased. These data show that CdCl2 can modulate the beta APP cleavage to favor A beta. Finally, beta APP mis- metabolism was shown to be unrelated to the hsp70 induction elicited by CdCl2; both heat shock and CuSO4 induced hsp70 but had no effect on steady-state levels of beta APP, although heat shock did slow beta APP maturation. These data indicate that hsp70 alone cannot chaperone beta APP through an alternate processing pathway leading to A beta production.
Collapse
Affiliation(s)
- M Smedman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | | | | | |
Collapse
|
20
|
Ramakrishna N, Smedman M, Ramakrishna V, Gillam B. Upregulation of actin gene expression in cells expressing exogenous beta-amyloid precursor protein. Biochem Biophys Res Commun 1997; 231:615-8. [PMID: 9070857 DOI: 10.1006/bbrc.1997.6137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the effects of beta-amyloid peptide precursor (APP) overexpression upon the levels of other mRNAs. Using quantitative slot-blot hybridization and immunoblot analysis we observed that enhanced levels of APP elevated the levels of beta-actin and beta-actin mRNA. Our results also suggest that the cytoplasmic domain of APP is crucial for the elevation in beta-actin gene expression.
Collapse
Affiliation(s)
- N Ramakrishna
- NYS Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| | | | | | | |
Collapse
|
21
|
Rogalski-Wilk AA, Cohen RS. Glyceraldehyde-3-phosphate dehydrogenase activity and F-actin associations in synaptosomes and postsynaptic densities of porcine cerebral cortex. Cell Mol Neurobiol 1997; 17:51-70. [PMID: 9118209 DOI: 10.1023/a:1026377004261] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
1. Glyceraldehyde-3-phosphate dehydrogenase (G3PD) is a glycolytic enzyme that has also been implicated in a wide variety of functions within neurons. Because of the well-documented role of G3PD as an actin-binding protein, we sought evidence for a G3PD-actin complex in synaptosomes and postsynaptic densities (PSDs). 2. We have shown G3PD association with 0.5-microgram synaptosomal particles by immunofluorescence as similarly demonstrated for actin (Toh et al., Nature 264:648-650, 1976). An immunoblot analysis also showed G3PD and actin to be enriched in synaptosomes. Further analysis of subcellular fractions from synaptosomes showed the PSD but not the synaptosomal plasma membranes to be enriched in G3PD and actin. 3. Highest levels of G3PD catalytic activity were found in synaptosomes and PSDs. Although synaptosomes showed significant activity for phosphoglycerate kinase (PGK), an enzyme in sequence with G3PD for ATP production in the glycolytic pathway, no such activity was detected in the PSD fraction. 4. Our studies indicate that a G3PD-actin complex may exist at the synapse. A physical association of G3PD with endogenous F-actin in synaptosomes and PSDs was demonstrated by combined phalloidin shift velocity sedimentation/immunoblot studies. By this approach, synaptosomal G3PD-actin complexes were also found to be significantly less dense than the PSD G3PD-actin complexes. 5. G3PD and PGK catalytic activity in synaptosomes suggests a role in glycolysis, as well as actin binding, in the presynaptic terminals. On the other hand, the high levels of G3PD activity in PSDs but lack of PGK activity suggests that G3PD is involved in nonglycolytic functions, such as actin binding and actin filament network organization.
Collapse
Affiliation(s)
- A A Rogalski-Wilk
- Department of Anatomy and Cell Biology, University of Illinois at Chicago 60612, USA
| | | |
Collapse
|
22
|
Denman RB. Ribozyme and antisense RNAs inhibit coupled transcription translation by binding to rabbit polyribosomes. Biochem Biophys Res Commun 1997; 230:226-31. [PMID: 9020052 DOI: 10.1006/bbrc.1996.5926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The behavior of ribozyme and antisense RNAs was analyzed in a coupled rabbit reticulocyte transcription translation system. Both ribozyme and antisense RNAs were efficiently produced and bound tightly to polyribosomes at 30 degrees C, but did not produce a protein product. Antisense and ribozyme RNA binding depended upon the presence of intact ribosomes, was specific since, plasmid DNA did not associate with either ribosomes or polyribosomes, and was temperature dependent. Ribozyme-specific mRNA cleavage in the coupled system was inferred from translation inhibition studies and was confirmed by primer extension analysis. Thus, ribozyme RNA can inhibit target protein production in the coupled transcription translation system by competing out cellular mRNAs and via targeted message degradation.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314, USA
| |
Collapse
|
23
|
Jin LW, Masliah E, Iimoto D, Deteresa R, Mallory M, Sundsmo M, Mori N, Sobel A, Saitoh T. Neurofibrillary tangle-associated alteration of stathmin in Alzheimer's disease. Neurobiol Aging 1996; 17:331-41. [PMID: 8725893 DOI: 10.1016/0197-4580(96)00021-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Stathmin (p19), a 19-kDa cytosolic phosphorotein, plays a key role in converting extracellular signals into intracellular biochemical changes. Antibodies and cDNA specific for stathmin were used to study its levels and localization in normal and Alzheimer's disease (AD) brain tissue. The stathmin protein concentration was reduced in AD neocortex as assessed by Western blotting, whereas the concentration of its mRNA detected by both in situ hybridization and slot blot were increased in AD. The alteration of the stathmin protein concentration was negatively correlated with neurofibrillary tangle numbers but not with plaque numbers. Immunoreactivity was evenly localized to the cytoplasm of neurons in control cortical sections, whereas in AD it was preferentially localized to some of the neurofibrillary tangle-bearing neurons. Numbers of stathmin-positive neurons were inversely correlated with tangle numbers but not with plaque numbers in the frontal cortex of AD patients.
Collapse
Affiliation(s)
- L W Jin
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Denman RB. Facilitator oligonucleotides increase ribozyme RNA binding to full-length RNA substrates in vitro. FEBS Lett 1996; 382:116-20. [PMID: 8612731 DOI: 10.1016/0014-5793(96)00125-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primer extension arrest (PEA) studies have demonstrated that antisense oligonucleotides (beta 112C, beta 114C), which lie upstream of a ribozyme targeted to beta-amyloid peptide precursor (beta APP) mRNA, but not sense oligonucleotides (beta 112S, beta 116S) or a scrambled oligonucleotide, beta 116 M, affect ribozyme-mediated cleavage in vitro. Substrate dissociation experiments revealed that the ribozyme binding site in this mRNA was masked; PEA kinetics showed the association of the ribozyme and substrate was enhanced by antisense oligonucleotide binding. These studies suggest that masked ribozyme cleavage sites that may occur in disease-causing mRNAs can be targeted for degradation using "facilitator" oligonucleotides.
Collapse
Affiliation(s)
- R B Denman
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314, USA
| |
Collapse
|
25
|
Timmusk T, Persson H, Metsis M. Analysis of transcriptional initiation and translatability of brain-derived neurotrophic factor mRNAs in the rat brain. Neurosci Lett 1994; 177:27-31. [PMID: 7824176 DOI: 10.1016/0304-3940(94)90036-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rat brain-derived neurotrophic factor (BDNF) gene consists of four 5' exons linked to separate promoters and one 3' exon encoding the prepro-BDNF protein. In the present study, using RNase protection analysis, we show that the same major transcription initiation sites are used for each BDNF exon mRNA in different brain regions and that in addition to hippocampus and cerebral cortex, kainate differentially induces the expression of BDNF exon mRNAs in thalamus, cerebellum and striatum. The 4.2 kb transcripts, are less enriched in the polysomal fraction of rat brain than the shorter 1.6 kb transcripts suggesting their translational discrimination.
Collapse
Affiliation(s)
- T Timmusk
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Denman RB, Smedman M, Ju W, Rubenstein R, Potempska A, Miller DL. Ribozyme mediated degradation of beta-amyloid peptide precursor mRNA in COS-7 cells. Nucleic Acids Res 1994; 22:2375-82. [PMID: 8036167 PMCID: PMC523698 DOI: 10.1093/nar/22.12.2375] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Two sets of eucaryotic expression vectors encoding trans-acting hammerhead ribozymes and trans-acting hairpin ribozymes were constructed. In one set of vectors ribozyme RNA transcription was placed under the control of a mouse mammary tumor virus long terminal repeat (MMTV-LTR). In the other set ribozyme expression was controlled by a metallothionein IIA (Mt-IIA) promoter. Each ribozyme was directed to the first target sequence in the Alzheimer amyloid peptide precursor mRNA (beta APP mRNA), 5' decreases GUC decreases 3'. Ribozyme RNA transcribed from these vectors, which should cleave all six alternatively spliced forms of beta APP mRNA as well as beta APP pre-mRNA, was shown to cleave a beta APP RNA substrate analog in vitro. Stably transfected COS-7 cell lines bearing both vector types were prepared. Steady-state levels of beta APP mRNA were reduced 25-30% in cells containing either active or mutant hammerhead ribozyme vectors driven by the MMTV-LTR promoter grown in the presence of glucocorticoids. In cell lines bearing Mt-IIA driven ribozymes steady-state levels of beta APP mRNA were reduced 67-80% in both hammerhead and hairpin ribozyme containing cell lines following promoter induction by glucocorticoids. These levels correlate with the appearance of low levels of induced ribozyme RNA. In contrast, steady-state alpha-actin mRNA and G3PDH mRNA levels in these cells remained constant. Western blotting of cell extracts revealed that all forms of beta APP were correspondingly reduced. Neither the RNA nor protein decreases observed in ribozyme transfected cell lines were observed in stably transfected control cells bearing the vector alone. These results suggest that ribozyme-mediated degradation of beta APP mRNA in COS-7 cells does not depend on ribozyme cleavage.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | | | | | |
Collapse
|
27
|
Monteggia LM, Arneric SP, Giordano T. Nicotine effects on the regulation of amyloid precursor protein splicing, neurotrophin and glucose transporter RNA levels in aged rats. Int J Dev Neurosci 1994; 12:133-41. [PMID: 7942088 DOI: 10.1016/0736-5748(94)90006-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has been reported that an inverse relationship exists between nicotine intake and the incidence of Alzheimer's Disease (AD). Although nicotine has been reported to induce c-fos, in the present study it was shown that this induction does not alter the accumulation of a number of transcripts associated with AD. Altered splicing patterns of Amyloid Precursor Protein (APP) and changes in neurotrophin and glucose transporter expression have been implicated in AD and behavioral deficits in rats. The effects of subacute administration of nicotine (12 mg/ml at 2.3 microliters/hr for 14 days) on the abundance levels of APP, glucose transporter (GLUT) and neurotrophin transcripts were determined by rtPCR in the hippocampus, cortex, and striatum of aged (22-24 months) male Wistar rats. No significant differences between saline and nicotine infused rats were detected for APP abundance levels or ratio of the various isoforms. However, both groups had a higher level of APP transcripts containing the Kunitz Protease Inhibitor (KPI) domain in the hippocampus than in either the cortex or striatum. The mean percentages of APP 695 for the two groups were 75% in the hippocampus and 82 and 81% in the cortex and striatum, respectively (P < 0.01). No changes in the abundance of GLUT1, GLUT3, nerve growth factor (NGF) or brain derived neurotrophic factor (BDNF) transcripts were detected. However, since both APP and GLUT1 are thought to be regulated post-transcriptionally, the present results do not rule out a change at the protein level. Further work will be required to determine whether nicotine can influence the expression of these proteins which affect neuronal function.
Collapse
|
28
|
|
29
|
Abstract
The sequences surrounding the first 5'GUC3' in the mRNA encoding the Alzheimer amyloid peptide precursor (beta APP) were used to construct a pair of transacting hammerhead ribozymes. Each ribozyme contained the conserved core bases of the hammerhead motif found in the positive strand of satellite RNA of tobacco ringspot virus [(+)sTRSV] and two stems, 7 and 8 bases long, complementary to the target, beta APP mRNA. However, one of the ribozyme cleaving strands was lengthened at its 3' end to include the early splicing and polyadenylation signal sequences of SV40 viral RNA. This RNA, therefore, more closely mimics transcripts produced by RNA polymerase II from eucaryotic expression vectors in vivo. RNA, prepared by run-off transcription of cDNA oligonucleotide or plasmid constructs containing a T7 RNA polymerase promoter was used to characterize several properties of the cleavage reaction. In the presence of both ribozyme cleaving strands magnesium-ion dependent cleavage of a model 26 base beta APP substrate RNA or full-length beta APP-751 mRNA was observed at the hammerhead consensus cleavage site. Neither ribozyme was active against non-message homologs of beta APP mRNA, nor was cleavage detected when point mutations were made in the conserved core sequences. However, the kcat/Km at 37 degrees C in 10 mM Mg+2 of the longer ribozyme was reduced twenty-fold when model and full-length substrates were compared. The use of short deoxyoligonucleotides (13-17 mers) that bind upstream of the ribozyme was found to enhance the rate of cleavage of the full-length but not beta APP model substrate RNAs. The rate of enhancement depended on both the length of the deoxyoligonucleotide used as well as its site of binding with respect to the ribozyme. These data demonstrate the utility of ribozymes to cleave target RNAs in a catalytic, site-specific fashion in vitro. Direct comparison of the efficiency of different ribozyme constructs and different modulating activities provide an experimental strategy for designing more effective ribozymes for therapeutic purposes.
Collapse
Affiliation(s)
- R B Denman
- New York Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| |
Collapse
|
30
|
Willoughby DA, Johnson SA, Pasinetti GM, Tocco G, Najm I, Baudry M, Finch CE. Amyloid precursor protein mRNA encoding the Kunitz protease inhibitor domain is increased by kainic acid-induced seizures in rat hippocampus. Exp Neurol 1992; 118:332-9. [PMID: 1306490 DOI: 10.1016/0014-4886(92)90191-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A 168-nucleotide exon, found in alternatively spliced amyloid precursor protein (APP) mRNAs, encodes a Kunitz protease inhibitor (KPI) domain. Kainic acid (ip) caused a selective increase of KPI mRNA in rat hippocampus. By in situ hybridization, KPI mRNA was induced in the neuronal layers of the hippocampus 11-12 h after the onset of kainate-induced seizures. The kainate-induced elevation of the KPI-containing APP-770 mRNA was blocked by pretreatment with the anticonvulsant pentobarbital. These data suggest that kainate-induced seizures cause alterations in APP RNA stability and/or processing in rat hippocampal neurons.
Collapse
Affiliation(s)
- D A Willoughby
- Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | | | | | |
Collapse
|
31
|
Denman RB, Purow B, Rubenstein R, Miller DL. Hammerhead ribozyme cleavage of hamster prion pre-mRNA in complex cell-free model systems. Biochem Biophys Res Commun 1992; 186:1171-7. [PMID: 1379801 DOI: 10.1016/0006-291x(92)90870-q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cleavage properties of a trans-acting hammerhead ribozyme targeted 51 bases upstream of the putative splicing branch point in the hamster prion pre-mRNA intron were investigated in cell-free model systems in vitro. The specificity of cleavage was demonstrated by the inability of this ribozyme to cleave a non-homologous synthetic message encoding part of the beta amyloid peptide precursor, beta APP, and by the inability of the prion pre-mRNA to be cleaved by a ribozyme targeted to beta amyloid peptide precursor mRNA. Also, the addition of total RNA isolated from rat brain had only a minimal effect on the cleavage of the prion substrate pre-mRNA by the ribozyme. Finally neither the presence of 100 ng of nuclear or cytoplasmic proteins were found to affect the rate of cleavage in vitro.
Collapse
Affiliation(s)
- R B Denman
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island 10314
| | | | | | | |
Collapse
|