1
|
Blanc FEC, Hummer G. Mechanism of proton-powered c-ring rotation in a mitochondrial ATP synthase. Proc Natl Acad Sci U S A 2024; 121:e2314199121. [PMID: 38451940 PMCID: PMC10945847 DOI: 10.1073/pnas.2314199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024] Open
Abstract
Proton-powered c-ring rotation in mitochondrial ATP synthase is crucial to convert the transmembrane protonmotive force into torque to drive the synthesis of adenosine triphosphate (ATP). Capitalizing on recent cryo-EM structures, we aim at a structural and energetic understanding of how functional directional rotation is achieved. We performed multi-microsecond atomistic simulations to determine the free energy profiles along the c-ring rotation angle before and after the arrival of a new proton. Our results reveal that rotation proceeds by dynamic sliding of the ring over the a-subunit surface, during which interactions with conserved polar residues stabilize distinct intermediates. Ordered water chains line up for a Grotthuss-type proton transfer in one of these intermediates. After proton transfer, a high barrier prevents backward rotation and an overall drop in free energy favors forward rotation, ensuring the directionality of c-ring rotation required for the thermodynamically disfavored ATP synthesis. The essential arginine of the a-subunit stabilizes the rotated configuration through a salt bridge with the c-ring. Overall, we describe a complete mechanism for the rotation step of the ATP synthase rotor, thereby illuminating a process critical to all life at atomic resolution.
Collapse
Affiliation(s)
- Florian E. C. Blanc
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main60438, Germany
- Institute for Biophysics, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
2
|
Frasch WD, Bukhari ZA, Yanagisawa S. F1FO ATP synthase molecular motor mechanisms. Front Microbiol 2022; 13:965620. [PMID: 36081786 PMCID: PMC9447477 DOI: 10.3389/fmicb.2022.965620] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
The F-ATP synthase, consisting of F1 and FO motors connected by a central rotor and the stators, is the enzyme responsible for synthesizing the majority of ATP in all organisms. The F1 (αβ)3 ring stator contains three catalytic sites. Single-molecule F1 rotation studies revealed that ATP hydrolysis at each catalytic site (0°) precedes a power-stroke that rotates subunit-γ 120° with angular velocities that vary with rotational position. Catalytic site conformations vary relative to subunit-γ position (βE, empty; βD, ADP bound; βT, ATP-bound). During a power stroke, βE binds ATP (0°–60°) and βD releases ADP (60°–120°). Årrhenius analysis of the power stroke revealed that elastic energy powers rotation via unwinding the γ-subunit coiled-coil. Energy from ATP binding at 34° closes βE upon subunit-γ to drive rotation to 120° and forcing the subunit-γ to exchange its tether from βE to βD, which changes catalytic site conformations. In F1FO, the membrane-bound FO complex contains a ring of c-subunits that is attached to subunit-γ. This c-ring rotates relative to the subunit-a stator in response to transmembrane proton flow driven by a pH gradient, which drives subunit-γ rotation in the opposite direction to force ATP synthesis in F1. Single-molecule studies of F1FO embedded in lipid bilayer nanodisks showed that the c-ring transiently stopped F1-ATPase-driven rotation every 36° (at each c-subunit in the c10-ring of E. coli F1FO) and was able to rotate 11° in the direction of ATP synthesis. Protonation and deprotonation of the conserved carboxyl group on each c-subunit is facilitated by separate groups of subunit-a residues, which were determined to have different pKa’s. Mutations of any of any residue from either group changed both pKa values, which changed the occurrence of the 11° rotation proportionately. This supports a Grotthuss mechanism for proton translocation and indicates that proton translocation occurs during the 11° steps. This is consistent with a mechanism in which each 36° of rotation the c-ring during ATP synthesis involves a proton translocation-dependent 11° rotation of the c-ring, followed by a 25° rotation driven by electrostatic interaction of the negatively charged unprotonated carboxyl group to the positively charged essential arginine in subunit-a.
Collapse
|
3
|
Yanagisawa S, Frasch WD. pH-dependent 11° F 1F O ATP synthase sub-steps reveal insight into the F O torque generating mechanism. eLife 2021; 10:70016. [PMID: 34970963 PMCID: PMC8754430 DOI: 10.7554/elife.70016] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Most cellular ATP is made by rotary F1FO ATP synthases using proton translocation-generated clockwise torque on the FO c-ring rotor, while F1-ATP hydrolysis can force counterclockwise rotation and proton pumping. The FO torque-generating mechanism remains elusive even though the FO interface of stator subunit-a, which contains the transmembrane proton half-channels, and the c-ring is known from recent F1FO structures. Here, single-molecule F1FO rotation studies determined that the pKa values of the half-channels differ, show that mutations of residues in these channels change the pKa values of both half-channels, and reveal the ability of FO to undergo single c-subunit rotational stepping. These experiments provide evidence to support the hypothesis that proton translocation through FO operates via a Grotthuss mechanism involving a column of single water molecules in each half-channel linked by proton translocation-dependent c-ring rotation. We also observed pH-dependent 11° ATP synthase-direction sub-steps of the Escherichia coli c10-ring of F1FO against the torque of F1-ATPase-dependent rotation that result from H+ transfer events from FO subunit-a groups with a low pKa to one c-subunit in the c-ring, and from an adjacent c-subunit to stator groups with a high pKa. These results support a mechanism in which alternating proton translocation-dependent 11° and 25° synthase-direction rotational sub-steps of the c10-ring occur to sustain F1FO ATP synthesis.
Collapse
Affiliation(s)
- Seiga Yanagisawa
- 1School of Life Sciences, Arizona State University, Tempe, United States
| | - Wayne D Frasch
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
4
|
Guo H, Suzuki T, Rubinstein JL. Structure of a bacterial ATP synthase. eLife 2019; 8:43128. [PMID: 30724163 PMCID: PMC6377231 DOI: 10.7554/elife.43128] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/02/2019] [Indexed: 01/20/2023] Open
Abstract
ATP synthases produce ATP from ADP and inorganic phosphate with energy from a transmembrane proton motive force. Bacterial ATP synthases have been studied extensively because they are the simplest form of the enzyme and because of the relative ease of genetic manipulation of these complexes. We expressed the Bacillus PS3 ATP synthase in Eschericia coli, purified it, and imaged it by cryo-EM, allowing us to build atomic models of the complex in three rotational states. The position of subunit ε shows how it is able to inhibit ATP hydrolysis while allowing ATP synthesis. The architecture of the membrane region shows how the simple bacterial ATP synthase is able to perform the same core functions as the equivalent, but more complicated, mitochondrial complex. The structures reveal the path of transmembrane proton translocation and provide a model for understanding decades of biochemical analysis interrogating the roles of specific residues in the enzyme.
Collapse
Affiliation(s)
- Hui Guo
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada
| | - Toshiharu Suzuki
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.,Department of Molecular Bioscience, Kyoto-Sangyo University, Kyoto, Japan
| | - John L Rubinstein
- The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, Canada.,Department of Biochemistry, The University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics 2018; 8:5379-5399. [PMID: 30555553 PMCID: PMC6276090 DOI: 10.7150/thno.28391] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vacuolar ATPases (V-ATPases) play a critical role in regulating extracellular acidification of osteoclasts and bone resorption. The deficiencies of subunit a3 and d2 of V-ATPases result in increased bone density in humans and mice. One of the traditional drug design strategies in treating osteoporosis is the use of subunit a3 inhibitor. Recent findings connect subunits H and G1 with decreased bone density. Given the controversial effects of ATPase subunits on bone density, there is a critical need to review the subunits of V-ATPase in osteoclasts and their functions in regulating osteoclasts and bone remodeling. In this review, we comprehensively address the following areas: information about all V-ATPase subunits and their isoforms; summary of V-ATPase subunits associated with human genetic diseases; V-ATPase subunits and osteopetrosis/osteoporosis; screening of all V-ATPase subunits variants in GEFOS data and in-house data; spectrum of V-ATPase subunits during osteoclastogenesis; direct and indirect roles of subunits of V-ATPases in osteoclasts; V-ATPase-associated signaling pathways in osteoclasts; interactions among V-ATPase subunits in osteoclasts; osteoclast-specific V-ATPase inhibitors; perspective of future inhibitors or activators targeting V-ATPase subunits in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, the Fourth Military Medical University, 145 West Changle Road, Xi'an 710032, P. R. China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, P. R. China
| | - Tielin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, 28 West Xianning Road, Xi'an 710049, People's Republic of China
| |
Collapse
|
6
|
Hahn A, Parey K, Bublitz M, Mills DJ, Zickermann V, Vonck J, Kühlbrandt W, Meier T. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology. Mol Cell 2016; 63:445-56. [PMID: 27373333 PMCID: PMC4980432 DOI: 10.1016/j.molcel.2016.05.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 04/21/2016] [Accepted: 05/26/2016] [Indexed: 11/28/2022]
Abstract
We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. Cryo-EM structure of a yeast F1Fo-ATP synthase dimer Inhibitor-free X-ray structure of the F1 head and rotor complex Mechanism of ATP generation by rotary catalysis Structural basis of cristae formation in the inner mitochondrial membrane
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Kristian Parey
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Maike Bublitz
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Deryck J Mills
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Volker Zickermann
- Institute of Biochemistry II, Medical School, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Werner Kühlbrandt
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
8
|
Hilbers F, Eggers R, Pradela K, Friedrich K, Herkenhoff-Hesselmann B, Becker E, Deckers-Hebestreit G. Subunit δ is the key player for assembly of the H(+)-translocating unit of Escherichia coli F(O)F1 ATP synthase. J Biol Chem 2013; 288:25880-25894. [PMID: 23864656 DOI: 10.1074/jbc.m113.484675] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ATP synthase (F(O)F1) of Escherichia coli couples the translocation of protons across the cytoplasmic membrane to the synthesis or hydrolysis of ATP. This nanomotor is composed of the rotor c10γε and the stator ab2α3β3δ. To study the assembly of this multimeric enzyme complex consisting of membrane-integral as well as peripheral hydrophilic subunits, we combined nearest neighbor analyses by intermolecular disulfide bond formation or purification of partially assembled F(O)F1 complexes by affinity chromatography with the use of mutants synthesizing different sets of F(O)F1 subunits. Together with a time-delayed in vivo assembly system, the results demonstrate that F(O)F1 is assembled in a modular way via subcomplexes, thereby preventing the formation of a functional H(+)-translocating unit as intermediate product. Surprisingly, during the biogenesis of F(O)F1, F1 subunit δ is the key player in generating stable F(O). Subunit δ serves as clamp between ab2 and c10α3β3γε and guarantees that the open H(+) channel is concomitantly assembled within coupled F(O)F1 to maintain the low membrane proton permeability essential for viability, a general prerequisite for the assembly of multimeric H(+)-translocating enzymes.
Collapse
Affiliation(s)
- Florian Hilbers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Ruth Eggers
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kamila Pradela
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Kathleen Friedrich
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | | | - Elisabeth Becker
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany
| | - Gabriele Deckers-Hebestreit
- From the Department of Microbiology, University of Osnabrück, Barbarastrasse 11, D-49069 Osnabrück, Germany.
| |
Collapse
|
9
|
Moore KJ, Fillingame RH. Obstruction of transmembrane helical movements in subunit a blocks proton pumping by F1Fo ATP synthase. J Biol Chem 2013; 288:25535-25541. [PMID: 23864659 DOI: 10.1074/jbc.m113.496794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a plays a key role in promoting H(+) transport-coupled rotary motion of the subunit c ring in F1Fo ATP synthase. H(+) binding and release occur at Asp-61 in the middle of the second transmembrane helix (TMH) of Fo subunit c. H(+) are thought to reach cAsp61 via aqueous half-channels formed by TMHs 2-5 of subunit a. Movements of TMH4 and TMH5 have been proposed to facilitate protonation of cAsp61 from a half channel centered in a four helix bundle at the periplasmic side of subunit a. The possible necessity of these proposed TMH movements was investigated by assaying ATP driven H(+) pumping function before and after cross-linking paired Cys substitutions at the center of TMHs within subunit a. The cross-linking of the Cys pairs aG218C/I248C in TMH4 and TMH5, and aL120C/H245C in TMH2 and TMH5, inhibited H(+) pumping by 85-90%. H(+) pumping function was largely unaffected by modification of the same Cys residues in the absence of cross-link formation. The inhibition is consistent with the proposed requirement for TMH movements during the gating of periplasmic H(+) access to cAsp61. The cytoplasmic loops of subunit a have been implicated in gating H(+) release to the cytoplasm, and previous cross-linking experiments suggest that the chemically reactive regions of the loops may pack as a single domain. Here we show that Cys substitutions in these domains can be cross-linked with retention of function and conclude that these domains need not undergo large conformational changes during enzyme function.
Collapse
Affiliation(s)
- Kyle J Moore
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert H Fillingame
- From the Department of Biomolecular Chemistry, School of Medicine, and Public Health, University of Wisconsin, Madison, Wisconsin 53706.
| |
Collapse
|
10
|
Time-delayed in vivo assembly of subunit a into preformed Escherichia coli FoF1 ATP synthase. J Bacteriol 2013; 195:4074-84. [PMID: 23836871 DOI: 10.1128/jb.00468-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli F(O)F(1) ATP synthase, a rotary nanomachine, is composed of eight different subunits in a α3β3γδεab2c10 stoichiometry. Whereas F(O)F(1) has been studied in detail with regard to its structure and function, much less is known about how this multisubunit enzyme complex is assembled. Single-subunit atp deletion mutants are known to be arrested in assembly, thus leading to formation of partially assembled subcomplexes. To determine whether those subcomplexes are preserved in a stable standby mode, a time-delayed in vivo assembly system was developed. To establish this approach, we targeted the time-delayed assembly of membrane-integrated subunit a into preformed F(O)F(1) lacking subunit a (F(O)F(1)-a) which is known to form stable subcomplexes in vitro. Two expression systems (araBADp and T7p-laco) were adjusted to provide compatible, mutually independent, and sufficiently stringent induction and repression regimens. In detail, all structural atp genes except atpB (encoding subunit a) were expressed under the control of araBADp and induced by arabinose. Following synthesis of F(O)F(1)-a during growth, expression was repressed by glucose/d-fucose, and degradation of atp mRNA controlled by real-time reverse transcription-PCR. A time-delayed expression of atpB under T7p-laco control was subsequently induced in trans by addition of isopropyl-β-d-thiogalactopyranoside. Formation of fully assembled, and functional, F(O)F(1) complexes was verified. This demonstrates that all subunits of F(O)F(1)-a remain in a stable preformed state capable to integrate subunit a as the last subunit. The results reveal that the approach presented here can be applied as a general method to study the assembly of heteromultimeric protein complexes in vivo.
Collapse
|
11
|
Qin A, Cheng TS, Pavlos NJ, Lin Z, Dai KR, Zheng MH. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 2012; 44:1422-35. [PMID: 22652318 DOI: 10.1016/j.biocel.2012.05.014] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/18/2012] [Accepted: 05/18/2012] [Indexed: 01/06/2023]
Abstract
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- A Qin
- Centre for Orthopaedic Research, School of Surgery, The University of Western Australia, Crawley, Australia.
| | | | | | | | | | | |
Collapse
|
12
|
Nakanishi-Matsui M, Sekiya M, Nakamoto RK, Futai M. The mechanism of rotating proton pumping ATPases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1343-52. [PMID: 20170625 DOI: 10.1016/j.bbabio.2010.02.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 02/08/2010] [Accepted: 02/11/2010] [Indexed: 11/27/2022]
Abstract
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (>400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the beta subunits, or between the beta and gamma subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.
Collapse
Affiliation(s)
- Mayumi Nakanishi-Matsui
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Yahaba, Iwate 028-3694, Japan.
| | | | | | | |
Collapse
|
13
|
Pogoryelov D, Yildiz Ö, Faraldo-Gómez JD, Meier T. High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 2009; 16:1068-73. [DOI: 10.1038/nsmb.1678] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/21/2009] [Indexed: 11/09/2022]
|
14
|
Schwem BE, Fillingame RH. Cross-linking between helices within subunit a of Escherichia coli ATP synthase defines the transmembrane packing of a four-helix bundle. J Biol Chem 2006; 281:37861-7. [PMID: 17035244 DOI: 10.1074/jbc.m607453200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a of F(1)F(0) ATP synthase is required in the H(+) transport driven rotation of the c-ring of F(0), the rotation of which is coupled to ATP synthesis in F(1). The three-dimensional structure of subunit a is unknown. In this study, Cys substitutions were introduced into two different transmembrane helices (TMHs) of subunit a, and the proximity of the thiol side chains was tested via attempted oxidative cross-linking to form the disulfide bond. Pairs of Cys substitutions were made in TMHs 2/3, 2/4, 2/5, 3/4, 3/5, and 4/5. Cu(+2)-catalyzed oxidation led to cross-link formation between Cys pairs L120C(TMH2) and S144C(TMH3), L120C(TMH2) and G218C(TMH4), L120C(TMH2) and H245C(TMH5), L120C(TMH2) and I246C(TMH5), N148C(TMH3) and E219C(TMH4), N148C(TMH3) and H245C(TMH5), and G218C(TMH4) and I248C(TMH5). Iodine, but not Cu(+2), was found to catalyze cross-link formation between D119C(TMH2) and G218C(TMH4). The results suggest that TMHs 2, 3, 4, and 5 form a four-helix bundle with one set of key functional residues in TMH4 (Ser-206, Arg-210, and Asn-214) located at the periphery facing subunit c. Other key residues in TMHs 2, 4, and 5, which were concluded previously to compose a possible aqueous access pathway from the periplasm, were found to locate to the inside of the four-helix bundle.
Collapse
Affiliation(s)
- Brian E Schwem
- Department of Biomolecular Chemistry, School of Medicine and Public Health University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
15
|
Hosokawa H, Nakanishi-Matsui M, Kashiwagi S, Fujii-Taira I, Hayashi K, Iwamoto-Kihara A, Wada Y, Futai M. ATP-dependent rotation of mutant ATP synthases defective in proton transport. J Biol Chem 2005; 280:23797-801. [PMID: 15849185 DOI: 10.1074/jbc.m502650200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During ATP hydrolysis, the gammaepsilon c10 complex (gamma and epsilon subunits and a c subunit ring formed from 10 monomers) of F0F1 ATPase (ATP synthase) rotates relative to the alpha3beta3delta ab2 complex, leading to proton transport through the interface between the a subunit and the c subunit ring. In this study, we replaced the two pertinent residues for proton transport, cAsp-61 and aArg-210 of the c and a subunits, respectively. The mutant enzymes exhibited lower ATPase activities than that of the wild type but exhibited ATP-dependent rotation in planar membranes, in which their original assemblies are maintained. The mutant enzymes were defective in proton transport, as shown previously. These results suggest that proton transport can be separated from rotation in ATP hydrolysis, although rotation ensures continuous proton transport by bringing the cAsp-61 and aArg-210 residues into the correct interacting positions.
Collapse
Affiliation(s)
- Hiroyuki Hosokawa
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun-Wada GH, Wada Y, Futai M. Vacuolar H+ pumping ATPases in luminal acidic organelles and extracellular compartments: common rotational mechanism and diverse physiological roles. J Bioenerg Biomembr 2004; 35:347-58. [PMID: 14635780 DOI: 10.1023/a:1025780932403] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytoplasmic organelles with an acidic luminal pH include vacuoles, coated vesicles, lysosomes, the Golgi apparatus, and synaptic vesicles. Acidic compartments are also known outside specialized cells such as osteoclasts. The unique acidic pH is formed by V-ATPase (Vacuolar type ATPase), other ion transporters, and the buffering action of proteins inside the organelles. V-ATPase hydrolyzes ATP and transports protons inside an organelle or extracellular compartment. We have summarized recent progress on mouse V-ATPases and their varying localizations together with their mechanism emphasizing similarities with F-type ATPases.
Collapse
Affiliation(s)
- Ge-Hong Sun-Wada
- Division of Biological Sciences and Nanoscience, and Nanotechnology Center, Japan Science and Technology Cooperation, Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | | | |
Collapse
|
17
|
Futai M, Sun-Wada GH, Wada Y. Proton pumping ATPases and diverse inside-acidic compartments. YAKUGAKU ZASSHI 2004; 124:243-60. [PMID: 15118237 DOI: 10.1248/yakushi.124.243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proton-translocating ATPases are essential cellular energy converters that transduce the chemical energy of ATP hydrolysis into transmembrane proton electrochemical potential differences. The structures, catalytic mechanism, and cellular functions of three major classes of ATPases including the F-type, V-type, and P-type ATPase are discussed in this review. Physiological roles of the acidic organelles and compartments contained are also discussed.
Collapse
Affiliation(s)
- Masamitsu Futai
- Division of Biological Sciences, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki City, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
18
|
DeLeon-Rangel J, Zhang D, Vik SB. The role of transmembrane span 2 in the structure and function of subunit a of the ATP synthase from Escherichia coli. Arch Biochem Biophys 2003; 418:55-62. [PMID: 13679083 DOI: 10.1016/s0003-9861(03)00391-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The importance of the second transmembrane span of subunit a of the ATP synthase from Escherichia coli has been established by two approaches. First, biochemical analysis of five cysteine-substitution mutants, four of which were previously constructed for labeling experiments, revealed that only D119C, found within the second transmembrane span, was deleterious to ATP synthase function. This mutant had a greatly reduced growth yield, indicating inefficient ATP synthesis, but it retained a significant level of ATP-driven proton translocation and sensitivity to N,N(')-dicyclohexyl-carbodiimide, indicating more robust function in the direction of ATP hydrolysis. Second, the entire second transmembrane span was probed by alanine-insertion mutagenesis at six different positions, from residues 98 to 122. Insertions at the central four positions from residues 107 to 117 resulted in the inability to grow on succinate minimal medium, although normal levels of membrane-bound ATPase activity and significant levels of subunit a were detected. Double mutants were constructed with a mutation that permits cross-linking to the b subunit. Cross-linked products in the mutant K74C/114iA were seen, indicating no major disruption of the a-b interface due to the insertion at 114. Analysis of the K74C/110iA double mutant indicated that K74C is a partial suppressor of 110iA. In summary, the results support a model in which the amino-terminal, cytoplasmic end of the second transmembrane span has close contact with subunit b, while the carboxy-terminal, periplasmic end is important for proton translocation.
Collapse
Affiliation(s)
- Jessica DeLeon-Rangel
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | | | |
Collapse
|
19
|
Wehrle F, Kaim G, Dimroth P. Molecular mechanism of the ATP synthase's F(o) motor probed by mutational analyses of subunit a. J Mol Biol 2002; 322:369-81. [PMID: 12217697 DOI: 10.1016/s0022-2836(02)00731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The most prominent residue of subunit a of the F(1)F(o) ATP synthase is a universally conserved arginine (aR227 in Propionigenium modestum), which was reported to permit no substitution with retention of ATP synthesis or H(+)-coupled ATP hydrolysis activity. We show here that ATP synthases with R227K or R227H mutations in the P.modestum a subunit catalyse ATP-driven Na(+) transport above or below pH 8.0, respectively. Reconstituted F(o) with either mutation catalysed 22Na(+)(out)/Na(+)(in) exchange with similar pH profiles as found in ATP-driven Na(+) transport. ATP synthase with an aR227A substitution catalysed Na(+)-dependent ATP hydrolysis, which was completely inhibited by dicyclohexylcarbodiimide, but not coupled to Na(+) transport. This suggests that in the mutant the dissociation of Na(+) becomes more difficult and that the alkali ions remain therefore permanently bound to the c subunit sites. The reconstituted mutant enzyme was also able to synthesise ATP in the presence of a membrane potential, which stopped at elevated external Na(+) concentrations. These observations reinforce the importance of aR227 to facilitate the dissociation of Na(+) from approaching rotor sites. This task of aR227 was corroborated by other results with the aR227A mutant: (i) after reconstitution into liposomes, F(o) with the aR227A mutation did not catalyse 22Na(+)(out)/Na(+)(in) exchange at high internal sodium concentrations, and (ii) at a constant (Delta)pNa(+), 22Na(+) uptake was inhibited at elevated internal Na(+) concentrations. Hence, in mutant aR227A, sodium ions can only dissociate from their rotor sites into a reservoir of low sodium ion concentration, whereas in the wild-type the positively charged aR227 allows the dissociation of Na(+) even into compartments of high Na(+) concentration.
Collapse
Affiliation(s)
- Franziska Wehrle
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Wada Y, Sambongi Y, Futai M. Biological nano motor, ATP synthase F(o)F(1): from catalysis to gammaepsilonc(10-12) subunit assembly rotation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:499-505. [PMID: 11004468 DOI: 10.1016/s0005-2728(00)00189-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Proton translocating ATPase (ATP synthase), a chemiosmotic enzyme, synthesizes ATP from ADP and phosphate coupling with the electrochemical ion gradient across the membrane. This enzyme has been studied extensively by combined genetic, biochemical and biophysical approaches. Such studies revealed a unique mechanism which transforms an electrochemical ion gradient into chemical energy through the rotation of a subunit assembly. Thus, this enzyme can be defined as a nano motor capable of coupling a chemical reaction and ion translocation, or more simply, as a protein complex carrying out rotational catalysis. In this article, we briefly discuss our recent work, emphasizing the rotation of subunit assembly (gammaepsilonc(10-12)) which is formed from peripheral and intrinsic membrane subunits.
Collapse
Affiliation(s)
- Y Wada
- Division of Biological Sciences, The Institute of Scientific and Industrial Research, Osaka University, CREST of Japan Science and Technology Corporation, Ibaraki, 567-0047, Japan
| | | | | |
Collapse
|
21
|
Abstract
The a and b subunits constitute the stator elements in the F0 sector of F1F0-ATP synthase. Both subunits have been difficult to study by physical means, so most of the information on structure and function relationships in the a and b subunits has been obtained using mutagenesis in combination with biochemical methods. These approaches were used to demonstrate that the a subunit in association with the ring of c subunits houses the proton channel through F1F0-ATP synthase. The map of the amino acids contributing to the proton channel is probably complete. The two b subunits dimerize, forming an extended flexible unit in the peripheral stalk linking the F1 and F0 sectors. The unique characteristics of specific amino acid substitutions affecting the a and b subunits suggested differential effects on rotation during F1F0-ATPase activity.
Collapse
Affiliation(s)
- B D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610, USA.
| |
Collapse
|
22
|
Abstract
Recently, a novel molecular mechanism of torque generation in the F(0) portion of ATP synthase was proposed [Rohatgi, Saha and Nath (1998) Curr. Sci. 75, 716-718]. In this mechanism, rotation of the c-subunit was conceived to take place in 12 discrete steps of 30 degrees each due to the binding and unbinding of protons to/from the leading and trailing Asp-61 residues of the c-subunit, respectively. Based on this molecular mechanism, a kinetic scheme has been developed in this work. The scheme considers proton transport driven by a concentration gradient of protons across the proton half-channels, and the rotation of the c-subunit by changes in the electrical potential only. This kinetic scheme has been analyzed mathematically and an expression has been obtained to explain the pH dependence of the rate of ATP synthesis by ATP synthase under steady state operating conditions. For a single set of three enzymological kinetic parameters, this expression predicts the rates of ATP synthesis which agree well with the experimental data over a wide range of pH(in) and pH(out). A logical consequence of our analysis is that DeltapH and Deltapsi are kinetically inequivalent driving forces for ATP synthesis.
Collapse
Affiliation(s)
- S Jain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, 110 016, New Delhi, India
| | | |
Collapse
|
23
|
Vik SB, Long JC, Wada T, Zhang D. A model for the structure of subunit a of the Escherichia coli ATP synthase and its role in proton translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:457-66. [PMID: 10838058 DOI: 10.1016/s0005-2728(00)00094-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most of what is known about the structure and function of subunit a, of the ATP synthase, has come from the construction and isolation of mutations, and their analysis in the context of the ATP synthase complex. Three classes of mutants will be considered in this review. (1) Cys substitutions have been used for structural analysis of subunit a, and its interactions with subunit c. (2) Functional residues have been identified by extensive mutagenesis. These studies have included the identification of second-site suppressors within subunit a. (3) Disruptive mutations include deletions at both termini, internal deletions, and single amino acid insertions. The results of these studies, in conjunction with information about subunits b and c, can be incorporated into a model for the mechanism of proton translocation in the Escherichia coli ATP synthase.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA.
| | | | | | | |
Collapse
|
24
|
Deckers-Hebestreit G, Greie J, Stalz W, Altendorf K. The ATP synthase of Escherichia coli: structure and function of F(0) subunits. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:364-73. [PMID: 10838051 DOI: 10.1016/s0005-2728(00)00087-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this review we discuss recent work from our laboratory concerning the structure and/or function of the F(0) subunits of the proton-translocating ATP synthase of Escherichia coli. For the topology of subunit a a brief discussion gives (i) a detailed picture of the C-terminal two-thirds of the protein with four transmembrane helices and the C terminus exposed to the cytoplasm and (ii) an evaluation of the controversial results obtained for the localization of the N-terminal region of subunit a including its consequences on the number of transmembrane helices. The structure of membrane-bound subunit b has been determined by circular dichroism spectroscopy to be at least 75% alpha-helical. For this purpose a method was developed, which allows the determination of the structure composition of membrane proteins in proteoliposomes. Subunit b was purified to homogeneity by preparative SDS gel electrophoresis, precipitated with acetone, and redissolved in cholate-containing buffer, thereby retaining its native conformation as shown by functional coreconstitution with an ac subcomplex. Monoclonal antibodies, which have their epitopes located within the hydrophilic loop region of subunit c, and the F(1) part are bound simultaneously to the F(0) complex without an effect on the function of F(0), indicating that not all c subunits are involved in F(1) interaction. Consequences on the coupling mechanism between ATP synthesis/hydrolysis and proton translocation are discussed.
Collapse
Affiliation(s)
- G Deckers-Hebestreit
- Abteilung Mikrobiologie, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069, Osnabrück, Germany.
| | | | | | | |
Collapse
|
25
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
26
|
Hatch LP, Cox GB, Howitt SM. Glutamate residues at positions 219 and 252 in the a-subunit of the Escherichia coli ATP synthase are not functionally equivalent. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:217-23. [PMID: 9518621 DOI: 10.1016/s0005-2728(97)00101-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The role of glutamate-219 in the a-subunit of the Escherichia coli F0F1-ATPase was examined using site-directed mutagenesis. The replacement of Glu-219 by lysine, alanine or glycine resulted in a partially functional F0F1-ATPase. Combining any of these mutations with the substitution of glutamate for Gln-252 did not result in any increase in function. These findings rule out a proposal that glutamate at position 252 can functionally replace glutamate at position 219 [S.B. Vik, B.J. Antonio, J. Biol. Chem. 269 (1994) 30364-30369]. All the single and double mutants grew better at 25 degrees C than at 37 degrees C, suggesting a role for Glu-219 in maintaining the structure of the F0.
Collapse
Affiliation(s)
- L P Hatch
- Membrane Biochemistry Group, Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra, ACT 0200, Australia. lundall.hatch.anu.edu.au
| | | | | |
Collapse
|
27
|
Valiyaveetil FI, Fillingame RH. On the role of Arg-210 and Glu-219 of subunit a in proton translocation by the Escherichia coli F0F1-ATP synthase. J Biol Chem 1997; 272:32635-41. [PMID: 9405480 DOI: 10.1074/jbc.272.51.32635] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A strain of Escherichia coli was constructed which had a complete deletion of the chromosomal uncB gene encoding subunit a of the F0F1-ATP synthase. Gene replacement was facilitated by a selection protocol that utilized the sacB gene of Bacillus subtilis cloned in a kanamycin resistance cartridge (Ried, J. L., and Collmer, A. (1987) Gene (Amst.) 57, 239-246). F0 subunits b and c inserted normally into the membrane in the DeltauncB strain. This observation confirms a previous report (Hermolin, J., and Fillingame, R. H. (1995) J. Biol. Chem. 270, 2815-2817) that subunit a is not required for the insertion of subunits b and c. The DeltauncB strain has been used to characterize mutations in Arg-210 and Glu-219 of subunit a, residues previously postulated to be essential in proton translocation. The aE219G and aE219K mutants grew on a succinate carbon source via oxidative phosphorylation and membranes from these mutants exhibited ATPase-coupled proton translocation (i.e. ATP driven 9-amino-6-chloromethoxyacridine quenching responses that were 60-80% of wild type membranes). We conclude that the aGlu-219 residue cannot play a critical role in proton translocation. The aR210A mutant did not grow on succinate and membranes exhibited no ATPase-coupled proton translocation. However, on removal of F1 from membrane, the aR210A mutant F0 was active in passive proton translocation, i.e. in dissipating the DeltapH normally established by NADH oxidation with these membrane vesicles. aR210A membranes with F1 bound were also proton permeable. Arg-210 of subunit a may play a critical role in active H+ transport that is coupled to ATP synthesis or hydrolysis, but is not essential for the translocation of protons across the membranes.
Collapse
Affiliation(s)
- F I Valiyaveetil
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
28
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
29
|
Deckers-Hebestreit G, Altendorf K. The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol 1996; 50:791-824. [PMID: 8905099 DOI: 10.1146/annurev.micro.50.1.791] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Membrane-bound ATP synthases (F0F1-ATPases) of bacteria serve two important physiological functions. The enzyme catalyzes the synthesis of ATP from ADP and inorganic phosphate utilizing the energy of an electrochemical ion gradient. On the other hand, under conditions of low driving force, ATP synthases function as ATPases, thereby generating a transmembrane ion gradient at the expense of ATP hydrolysis. The enzyme complex consists of two structurally and functionally distinct parts: the membrane-integrated ion-translocating F0 complex and the peripheral F1 complex, which carries the catalytic sites for ATP synthesis and hydrolysis. The ATP synthase of Escherichia coli, which has been the most intensively studied one, is composed of eight different subunits, five of which belong to F1, subunits alpha, beta, gamma, delta, and epsilon (3:3:1:1:1), and three to F0, subunits a, b, and c (1:2:10 +/- 1). The similar overall structure and the high amino acid sequence homology indicate that the mechanism of ion translocation and catalysis and their mode of coupling is the same in all organisms.
Collapse
Affiliation(s)
- G Deckers-Hebestreit
- Universität Osnabrück, Fachbereich Biologie/Chemie, Arbeitsgruppe Mikrobiologie, Germany
| | | |
Collapse
|
30
|
Yamada H, Moriyama Y, Maeda M, Futai M. Transmembrane topology of Escherichia coli H(+)-ATPase (ATP synthase) subunit a. FEBS Lett 1996; 390:34-8. [PMID: 8706824 DOI: 10.1016/0014-5793(96)00621-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Escherichia coli H(+)-ATPase subunit a is a hydrophobic F0 subunit. To investigate the topology of the subunit in the membrane, we prepared site-specific polyclonal antibodies against amino-terminal (Ser-3 to Leu-16), middle loop (Lys-167 to Gln-181), and carboxyl-terminal (Thr-259 to His-271) peptide segments. Enzyme-linked immunosorbent assay revealed that these antibodies specifically reacted with subunit a of inside-out membrane vesicles, but not with that of right-side-out spheroplasts. Full reactivity appeared when spheroplasts were disrupted with Triton X-100 (0.5%) or by sonication. These results suggest that at least parts of the three peptide segments of subunit a face the cytoplasm. Based on these observations, we propose a novel transmembrane topology of subunit a.
Collapse
Affiliation(s)
- H Yamada
- Department of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Japan
| | | | | | | |
Collapse
|
31
|
Hatch LP, Cox GB, Howitt SM. The essential arginine residue at position 210 in the alpha subunit of the Escherichia coli ATP synthase can be transferred to position 252 with partial retention of activity. J Biol Chem 1995; 270:29407-12. [PMID: 7493977 DOI: 10.1074/jbc.270.49.29407] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The substitution of arginine at position 210 in the alpha subunit of Escherichia coli F0F1-ATPase by either lysine or alanine causes dominance in complementation tests with a chromosomal c subunit mutation. Reversal of dominance was achieved for the alpha R210K mutation but not for the alpha R210A mutation by the presence of an aspartic acid residue at position 50 or at position 252 in the alpha subunit. It was concluded that position 210 in putative helix 4 of a previously proposed model of the alpha subunit is close to position 252 in putative helix 5 and to position 50 in putative helix 1. The juxtaposition of residues 252 and 210 was also indicated by the observation that the double mutant alpha R210Q/Q252R was partially functional. A revertant of the partially functional double mutant, isolated on succinate medium, was found to contain a third mutation resulting in Pro-204 in the alpha subunit being replaced by threonine. That the revertant phenotype was due to the alpha P204T change was confirmed by site-directed mutagenesis. ATP synthesis in the revertant strain was at near normal levels as judged by growth yield experiments, but the revertant strain was unable to pump protons in response to ATP hydrolysis.
Collapse
Affiliation(s)
- L P Hatch
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra City, Australia
| | | | | |
Collapse
|
32
|
Hermolin J, Fillingame RH. Assembly of F0 sector of Escherichia coli H+ ATP synthase. Interdependence of subunit insertion into the membrane. J Biol Chem 1995; 270:2815-7. [PMID: 7852354 DOI: 10.1074/jbc.270.6.2815] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The F0 sector of the Escherichia coli H+ transporting ATP synthase is composed of a complex of three subunits, each of which traverses the inner membrane. We have studied the interdependence of subunit insertion into the membrane in a series of chromosomal mutants in which the primary mutation prevented insertion of one of the F0 subunits. Subunit insertion was assessed using Western blots of mutant membrane preparations. Subunit b and subunit c were found to insert into the membrane independently of the other two F0 subunits. On the other hand, subunit a was not inserted into membranes that lacked either subunit b or subunit c. The conclusion that subunit a insertion is dependent upon the co-insertion of subunits b and c differs from the conclusion of several studies, where subunits were expressed from multicopy plasmids.
Collapse
Affiliation(s)
- J Hermolin
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706
| | | |
Collapse
|
33
|
Second-site suppressor mutations at glycine 218 and histidine 245 in the alpha subunit of F1F0 ATP synthase in Escherichia coli. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31637-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Vik SB, Antonio BJ. A mechanism of proton translocation by F1F0 ATP synthases suggested by double mutants of the a subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43822-7] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
35
|
Mukhopadhyay A, Uh M, Mueller DM. Level of ATP synthase activity required for yeast Saccharomyces cerevisiae to grow on glycerol media. FEBS Lett 1994; 343:160-4. [PMID: 8168623 DOI: 10.1016/0014-5793(94)80310-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two independent cold-sensitive pet mutants in the gene (ATP5) coding for the oligomycin sensitivity conferring protein (OSCP) have been isolated in the yeast Saccharomyces cerevisiae. The mutations in both strains alter the initiating methionine codon in the ATP5 gene: ATG to ATA (Ile) and AAG (Lys). Western blot analysis of total yeast protein after the cells were grown at 18 degrees C, 30 degrees C, and 37 degrees C, indicates that the level of OSCP decreased 80% relative to the wild type strain. In addition, the level of the oligomycin-sensitive ATPase decreased 85% relative to the wild type strain, after growth at 30 degrees C. These findings indicate that for S. cerevisiae, the level of oxidative phosphorylation can decrease 85% without showing a large growth defect on media containing glycerol at 30 degrees C, but not at 18 degrees C.
Collapse
Affiliation(s)
- A Mukhopadhyay
- Department of Biological Chemistry, Chicago Medical School, North Chicago, IL 60064
| | | | | |
Collapse
|
36
|
Fraga D, Hermolin J, Fillingame R. Transmembrane helix-helix interactions in F0 suggested by suppressor mutations to Ala24–>Asp/Asp61–>Gly mutant of ATP synthase subunit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41981-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Hartzog PE, Cain BD. Mutagenic analysis of the a subunit of the F1F0 ATP synthase in Escherichia coli: Gln-252 through Tyr-263. J Bacteriol 1993; 175:1337-43. [PMID: 8383111 PMCID: PMC193219 DOI: 10.1128/jb.175.5.1337-1343.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The a subunit of F1F0 ATP synthase contains a highly conserved region near its carboxyl terminus which is thought to be important in proton translocation. Cassette site-directed mutagenesis was used to study the roles of four conserved amino acids Gln-252, Phe-256, Leu-259, and Tyr-263. Substitution of basic amino acids at each of these four sites resulted in marked decreases in enzyme function. Cells carrying a subunit mutations Gln-252-->Lys, Phe-256-->Arg, Leu-259-->Arg, and Tyr-263-->Arg all displayed growth characteristics suggesting substantial loss of ATP synthase function. Studies of both ATP-driven proton pumping and proton permeability of stripped membranes indicated that proton translocation through F0 was affected by the mutations. Other mutations, such as the Phe-256-->Asp mutation, also resulted in reduced enzyme activity. However, more conservative amino acid substitutions generated at these same four positions produced minimal losses of F1F0 ATP synthase. The effects of mutations and, hence, the relative importance of the amino acids for enzyme function appeared to decrease with proximity to the carboxyl terminus of the a subunit. The data are most consistent with the hypothesis that the region between Gln-252 and Tyr-263 of the a subunit has an important structural role in F1F0 ATP synthase.
Collapse
Affiliation(s)
- P E Hartzog
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville 32610
| | | |
Collapse
|
38
|
Howitt SM, Cox GB. Second-site revertants of an arginine-210 to lysine mutation in the a subunit of the F0F1-ATPase from Escherichia coli: implications for structure. Proc Natl Acad Sci U S A 1992; 89:9799-803. [PMID: 1409702 PMCID: PMC50220 DOI: 10.1073/pnas.89.20.9799] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Arg-210 of the a subunit of the Escherichia coli F0F1-ATPase has been proposed previously as a component of the proton pore. A mutant in which lysine was substituted for Arg-210 was generated and was found to be unable to translocate protons. A plasmid carrying this mutation, along with wild-type genes encoding the c and b subunits, was unusual in that it failed to complement a chromosomal c-subunit mutation on succinate minimal medium. Three revertants on succinate minimal medium contained plasmids that showed complementation with chromosomal c-subunit but not with a-subunit mutations. One of these had a deletion in the a subunit. The other two were point mutations, resulting in the substitution of aspartic acid by Gly-53 and of arginine for Leu-211. The Gly-53 to aspartic acid change implied that Gly-53 and Arg-210 are normally in close proximity. To test this idea further, a series of mutants in which aspartic acid was placed in helix I at positions ranging from 42 to 57 was generated. Full complementation was regained only when the aspartic acid residue was present on the same side of a putative helix as Gly-53 over a span of three turns of the alpha-helix. These results and others suggest modifications of a previously proposed model for the transmembrane helices of the F0 portion of the F0F1-ATPase. The implications of these modifications for the mechanism of proton translocation are discussed.
Collapse
Affiliation(s)
- S M Howitt
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | | |
Collapse
|
39
|
Jounouchi M, Takeyama M, Chaiprasert P, Noumi T, Moriyama Y, Maeda M, Futai M. Escherichia coli H(+)-ATPase: role of the delta subunit in binding Fl to the Fo sector. Arch Biochem Biophys 1992; 292:376-81. [PMID: 1530999 DOI: 10.1016/0003-9861(92)90005-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The roles of the Escherichia coli H(+)-ATPase (FoFl) delta subunit (177 amino acid residues) was studied by analyzing mutants. The membranes of nonsense (Gln-23----end, Gln-29----end, Gln-74----end) and missense (Gly-150----Asp) mutants had very low ATPase activities, indicating that the delta subunit is essential for the binding of the Fl portion to Fo. The Gln-176----end mutant had essentially the same membrane-bound activity as the wild type, whereas in the Val-174----end mutant most of the ATPase activity was in the cytoplasm. Thus Val-174 (and possibly Leu-175 also) was essential for maintaining the structure of the subunit, whereas the two carboxyl terminal residues Gln-176 and Ser-177 were dispensable. Substitutions were introduced at various residues (Thr-11, Glu-26, Asp-30, Glu-42, Glu-82, Arg-85, Asp-144, Arg-154, Asp-161, Ser-163), including apparently conserved hydrophilic ones. The resulting mutants had essentially the same phenotypes as the wild type, indicating that these residues do not have any significant functional role(s). Analysis of mutations (Gly-150----Asp, Pro, or Ala) indicated that Gly-150 itself was not essential, but that the mutations might affect the structure of the subunit. These results suggest that the overall structure of the delta subunit is necessary, but that individual residues may not have strict functional roles.
Collapse
Affiliation(s)
- M Jounouchi
- Department of Organic Chemistry and Biochemistry, Osaka University, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Lewis M, Simoni R. Deletions in hydrophilic domains of subunit a from the Escherichia coli F1F0-ATP synthase interfere with membrane insertion or F0 assembly. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50756-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Cox G, Devenish R, Gibson F, Howitt S, Nagley P. Chapter 12 The structure and assembly of ATP synthase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
42
|
Vik SB, Lee D, Marshall PA. Temperature-sensitive mutations at the carboxy terminus of the alpha subunit of the Escherichia coli F1F0 ATP synthase. J Bacteriol 1991; 173:4544-8. [PMID: 1829729 PMCID: PMC208122 DOI: 10.1128/jb.173.14.4544-4548.1991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutations were constructed in the a subunit of the F1F0 ATP synthase from Escherichia coli. Truncated forms of this subunit showed a temperature sensitivity phenotype. We conclude that the carboxy terminus of the a subunit is not involved directly with proton translocation but that it has an important structural role.
Collapse
Affiliation(s)
- S B Vik
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376
| | | | | |
Collapse
|