1
|
Klumpe I, Savvatis K, Westermann D, Tschöpe C, Rauch U, Landmesser U, Schultheiss HP, Dörner A. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J Mol Med (Berl) 2016; 94:645-53. [PMID: 27080394 DOI: 10.1007/s00109-016-1413-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 11/29/2022]
Abstract
UNLABELLED Ischemia impairs the adenine nucleotide translocase (ANT), which transports ADP and ATP across the inner mitochondrial membrane. We investigated whether ANT1 overexpression has protective effects on ischemic hearts. Myocardial infarction was induced in wild-type (WT) and heart-specific ANT1-transgenic (ANT1-TG) rats, and hypoxia was set in isolated cardiomyocytes. ANT1 overexpression reduced the myocardial infarct area and increased the survival rate of infarcted rats. Reduced ANT1 expression and increased 4-hydroxynonenal modification of ANT paralleled to impaired ANT function in infarcted WT hearts. ANT1 overexpression improved ANT expression and function. This was accompanied by reduced mitochondrial cytochrome C release and caspase-3 activation. ANT1-TG hearts suffered less from oxidative stress, as shown by lower protein carbonylation and 4-hydroxynonenal modification of ANT. ANT1 overexpression also increased cell survival of hypoxic cardiomyocytes and attenuated reactive oxygen species (ROS) production. This was linked to higher stability of mitochondrial membrane potential and lower activity of ROS detoxifying catalase. ANT1-TG cardiomyocytes also showed higher resistance against H2O2 treatment, which was independent of catalase activity. In conclusion, ANT1 overexpression compensates impaired ANT activity under oxygen-restricted conditions. It reduces ROS production and oxidative stress, stabilizes mitochondrial integrity, and increases survival, making ANT1 a component in ROS management and heart protection during ischemia. KEY MESSAGES ANT1 overexpression reduces infarct size and increases survival after infarction. ANT1 overexpression compensates restricted ANT expression and function in infarcted hearts. Increased ANT1 expression enhances mitochondrial integrity. ANT1-overexpressing hearts reduce oxidative stress by decreasing ROS generation. ANT1 is a component in ROS management and heart protection.
Collapse
Affiliation(s)
- Inga Klumpe
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany.,Institute of Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Konstantinos Savvatis
- Berlin-Brandenburg Centre for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Centre, Hamburg, Germany
| | - Carsten Tschöpe
- Berlin-Brandenburg Centre for Regenerative Therapies, Charité, Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ursula Rauch
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany. .,Department of Cardiology, Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
2
|
Winter J, Klumpe I, Heger J, Rauch U, Schultheiss HP, Landmesser U, Dörner A. Adenine nucleotide translocase 1 overexpression protects cardiomyocytes against hypoxia via increased ERK1/2 and AKT activation. Cell Signal 2015; 28:152-9. [PMID: 26548633 DOI: 10.1016/j.cellsig.2015.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/28/2015] [Accepted: 11/03/2015] [Indexed: 11/16/2022]
Abstract
The influence of mitochondrial function on intracellular signalling is currently under intense investigation. In this regard, we analysed the effect of adenine nucleotide translocase 1 (ANT1), which facilitates the exchange of ADP and ATP across the mitochondrial membrane, on cell-protective survival signalling under hypoxia. ANT1 overexpression enhanced the survival rate in hypoxic cardiomyocytes. The effect was related to stabilization of the mitochondrial membrane potential, suppression of caspase 3 activity, and a reduction in DNA fragmentation. Activation of the cell-protective signalling proteins extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (AKT) was substantially higher in hypoxic ANT1-transgenic (ANT1-TG) cardiomyocytes than in wild-type cardiomyocytes. Kinase activation was associated with significantly higher expression of hypoxia-inducible factor 1α, which induces glycolytic pathway to stabilize ATP production. Accordingly, ANT1-TG cardiomyocytes exhibited earlier and stronger activation of lactate dehydrogenase and a higher ATP content. Treatment with PD980559 and triciribine, inhibitors of ERK1/2 and AKT activation, respectively, abolished cell protection in hypoxic ANT1-TG cardiomyocytes. Inhibition of ANT by carboxyatractyloside prevented the increase in ERK1/2 and AKT phosphorylation and eliminated the cell protective program in hypoxic ANT1-TG cardiomyocytes. In conclusion, the cytoprotective effect observed in hypoxic ANT1-overexpressing cardiomyocytes involves an interdependence between ANT1, activation of ERK1/ERK2 and AKT, and induction of the survival processes regulated by these kinases.
Collapse
Affiliation(s)
- Julia Winter
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany; Institute of Chemistry and Biochemistry, Structural Biochemistry, Free University Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Inga Klumpe
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany; Institute of Biochemistry, Free University Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Jacqueline Heger
- Institute of Physiology, Justus-Liebig-University, Aulweg 129, 35392 Giessen, Germany
| | - Ursula Rauch
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Heinz-Peter Schultheiss
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany
| | - Andrea Dörner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
3
|
Andrews DT, Royse C, Royse AG. The mitochondrial permeability transition pore and its role in anaesthesia-triggered cellular protection during ischaemia-reperfusion injury. Anaesth Intensive Care 2012; 40:46-70. [PMID: 22313063 DOI: 10.1177/0310057x1204000106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review summarises the most recent data in support of the role of the mitochondrial permeability transition pore (mPTP) in ischaemia-reperfusion injury, how anaesthetic agents interact with this molecular channel, and the relevance this holds for current anaesthetic practice. Ischaemia results in damage to the electron transport chain of enzymes and sets into play the assembly of a non-specific mega-channel (the mPTP) that transgresses the inner mitochondrial membrane. During reperfusion, uncontrolled opening of the mPTP causes widespread depolarisation of the inner mitochondrial membrane, hydrolysis of ATP, mitochondrial rupture and eventual necrotic cell death. Similarly, transient opening of the mPTP during less substantial ischaemia leads to differential swelling of the intermembrane space compared to the mitochondrial matrix, rupture of the outer mitochondrial membrane and release of pro-apoptotic factors into the cytosol. Recent data suggests that cellular protection from volatile anaesthetic agents follows specific downstream interactions with this molecular channel that are initiated early during anaesthesia. Intravenous anaesthetic agents also prevent the opening of the mPTP during reperfusion. Although by dissimilar mechanisms, both volatiles and propofol promote cell survival by preventing uncontrolled opening of the mPTP after ischaemia. It is now considered that anaesthetic-induced closure of the mPTP is the underlying effector mechanism that is responsible for the cytoprotection previously demonstrated in clinical studies investigating anaesthetic-mediated cardiac and neuroprotection. Manipulation of mPTP function offers a novel means of preventing ischaemic cell injury. Anaesthetic agents occupy a unique niche in the pharmacological armamentarium available for use in preventing cell death following ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- David T Andrews
- Department of Anaesthesia, Mater Misericordiae Health Services, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
4
|
Cardiolipin and mitochondrial carriers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2048-58. [PMID: 19539604 DOI: 10.1016/j.bbamem.2009.06.007] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 06/04/2009] [Accepted: 06/04/2009] [Indexed: 12/16/2022]
Abstract
Members of the mitochondrial carrier family interact with cardiolipin (CL) as evident from a variety of functional and structural effects. CL stabilises carrier proteins on isolation with detergents, with the P(i) carrier as the prime example. CL is required for transport in reconstituted vesicles, prime examples are the P(i)- and ADP/ATP carrier (AAC). CL binds to the AAC in a graded manner; 6 CL/AAC dimer bind tightly as measured on the (31)P NMR time scale. 2 additional CL/dimer bind reversibly and a fast exchanging envelope of phospholipids includes CL as measured on the ESR time scale. In the crystal structure of the CAT-AAC complex 3 CL bind to the periphery of the AAC in a three-fold pseudo-symmetry. The binding of CL is implicated to contribute lowering the high transition energy barriers in the AAC. Para-functions of the AAC, as in the mitochondrial pore transition (MPT) and in cell death are linked to the CL binding of the AAC. Ca(++) or oxidants can sequester or destroy AAC bound CL, rendering AAC labile, allowing pore formation and degradation. Thus AAC, by being vital for energy transfer, constitutes an Achilles heel in the eukaryotic cell. AAC together with CL is also engaged in respiratory supercomplexes. Different from AAC the similarly structured uncoupling protein (UCP1) has no tightly bound CL, but CL addition lowers affinity of the inhibitory nucleotide binding that may contribute to the physiological regulation of the uncoupling activity by ATP.
Collapse
|
5
|
Dörner A, Schultheiss HP. Adenine nucleotide translocase in the focus of cardiovascular diseases. Trends Cardiovasc Med 2008; 17:284-90. [PMID: 18021939 DOI: 10.1016/j.tcm.2007.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 02/03/2023]
Abstract
Adenine nucleotide translocase (ANT) facilitates the exchange of extramitochondrial adenosine diphosphate and intramitochondrial adenosine triphosphate across the inner mitochondrial membrane and appears to be a member of the mitochondrial permeability transition pore whose opening induces apoptosis. Genetically or physiologically restricted ANT function associated with insufficient energy supply and induced apoptosis leads to severe cardiac disturbance. In contrast, to counter myocardial stress, heart tissue developed cell protecting gene programs including ANT1 up-regulation to stabilize energy supply and concurrently suppress apoptotic processes. This review describes characteristics of ANT function and expression in cardiovascular diseases and ANT's role in cardioprotection.
Collapse
Affiliation(s)
- Andrea Dörner
- Charité-University Medicine, Campus Benjamin Franklin, Berlin, Germany.
| | | |
Collapse
|
6
|
Echtay KS, Pakay JL, Esteves TC, Brand MD. Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage. Biofactors 2005; 24:119-30. [PMID: 16403971 DOI: 10.1002/biof.5520240114] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In this mini review we summarize recent studies from our laboratory that show the involvement of superoxide and the lipid peroxidation product 4-hydroxynonenal in the regulation of mitochondrial uncoupling. Superoxide produced during mitochondrial respiration is a major cause of the cellular oxidative damage that may underlie degenerative diseases and ageing. Superoxide production is very sensitive to the magnitude of the mitochondrial protonmotive force, so can be strongly decreased by mild uncoupling. Superoxide is able to give rise to other reactive oxygen species, which elicit deleterious effects primarily by oxidizing intracellular components, including lipids, DNA and proteins. Superoxide-induced lipid peroxidation leads to the production of reactive aldehydes, including 4-hydroxynonenal. These aldehydic lipid peroxidation products are in turn able to modify proteins such as mitochondrial uncoupling proteins and the adenine nucleotide translocase, converting them into active proton transporters. This activation induces mild uncoupling and so diminishes mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of energy production.
Collapse
Affiliation(s)
- Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon.
| | | | | | | |
Collapse
|
7
|
Brand MD, Affourtit C, Esteves TC, Green K, Lambert AJ, Miwa S, Pakay JL, Parker N. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic Biol Med 2004; 37:755-67. [PMID: 15304252 DOI: 10.1016/j.freeradbiomed.2004.05.034] [Citation(s) in RCA: 762] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Revised: 05/24/2004] [Accepted: 05/28/2004] [Indexed: 01/04/2023]
Abstract
Mitochondria are potent producers of cellular superoxide, from complexes I and III of the electron transport chain, and mitochondrial superoxide production is a major cause of the cellular oxidative damage that may underlie degradative diseases and aging. This superoxide production is very sensitive to the proton motive force, so it can be strongly decreased by mild uncoupling. Superoxide and the lipid peroxidation products it engenders, including hydroxyalkenals such as hydroxynonenal, are potent activators of proton conductance by mitochondrial uncoupling proteins such as UCP2 and UCP3, although the mechanism of activation has yet to be established. These observations suggest a hypothesis for the main, ancestral function of uncoupling proteins: to cause mild uncoupling and so diminish mitochondrial superoxide production, hence protecting against disease and oxidative damage at the expense of a small loss of energy. We review the growing evidence for this hypothesis, in mitochondria, in cells, and in vivo. More recently evolved roles of uncoupling proteins are in adaptive thermogenesis (UCP1) and perhaps as part of a signaling pathway to regulate insulin secretion in pancreatic beta cells (UCP2).
Collapse
|
8
|
Kagan T, Davis C, Lin L, Zakeri Z. Coenzyme Q10 can in some circumstances block apoptosis, and this effect is mediated through mitochondria. Ann N Y Acad Sci 2000; 887:31-47. [PMID: 10668462 DOI: 10.1111/j.1749-6632.1999.tb07920.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mitochondrial component coenzyme Q10 (CoQ10) has been used for many years as a dietary supplement intended to promote good health by trapping free radicals, thus preventing lipid peroxidation and DNA damage. We have tested its use as a generic anti-apoptotic compound and have found that its ability to protect against apoptosis varies depending on both cell type and mode of cell death induction. We have further established that this protection may be mediated by its effect on mitochondrial function and viability. We provide additional evidence that CoQ10's protective effect on mitochondrial membrane potential does not always result in altered mitochondrial enzyme activity and neither does it guarantee survival. These observations open the way for further investigations into the mechanisms involved in mitochondrial control of apoptosis.
Collapse
Affiliation(s)
- T Kagan
- Department of Biology, Queens College, Flushing, New York 11367, USA
| | | | | | | |
Collapse
|
9
|
Landi P, Genchi G. Changes of mitochondrial properties in maize seedlings associated with selection for germination at low temperature. Fatty acid composition, cytochrome c oxidase, and adenine nucleotide translocase activities. PLANT PHYSIOLOGY 1999; 119:743-54. [PMID: 9952471 PMCID: PMC32152 DOI: 10.1104/pp.119.2.743] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/1998] [Accepted: 11/05/1998] [Indexed: 05/22/2023]
Abstract
Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5 degreesC. When seedlings of the two populations were grown at 14 degreesC (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.
Collapse
|
10
|
Photodynamic Tumor Therapy: Mitochondrial Benzodiazepine Receptors as a Therapeutic Target. Mol Med 1998. [DOI: 10.1007/bf03401728] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
11
|
Halestrap AP, Woodfield KY, Connern CP. Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 1997; 272:3346-54. [PMID: 9013575 DOI: 10.1074/jbc.272.6.3346] [Citation(s) in RCA: 446] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Stimulation of the mitochondrial permeability transition (MPT) in de-energized mitochondria by phenylarsine oxide (PheArs) is greater than that by diamide and t-butylhydroperoxide (TBH), yet the increase in CyP binding to the inner mitochondrial membrane (Connern, C. P. and Halestrap, A. P. (1994) Biochem. J. 302, 321-324) is less. From a range of nucleotides tested only ADP, deoxy-ADP, and ATP inhibited the MPT. ADP inhibition involved two sites with Ki values of about 1 and 25 microM which were independent of [Ca2+] and CyP binding. Carboxyatractyloside (CAT) abolished the high affinity site. Following pretreatment of mitochondria with TBH or diamide, the Ki for ADP increased to 50-100 microM, whereas pretreatment with PheArs or eosin maleimide increased the Ki to >500 microM; only one inhibitory site was observed in both cases. Eosin maleimide is known to attack Cys159 of the adenine nucleotide translocase (ANT) in a CAT-sensitive manner (Majima, E., Shinohara, Y., Yamaguchi, N., Hong, Y. M., and Terada, H. (1994) Biochemistry 33, 9530-9536), and here we demonstrate CAT-sensitive binding of the ANT to a PheArs affinity column. In adenine nucleotide-depleted mitochondria, no stimulation of the MPT by uncoupler was observed in the presence or absence of thiol reagents, suggesting that membrane potential may inhibit the MPT by increasing adenine nucleotide binding through an effect on the ANT conformation. We conclude that CsA and ADP inhibit pore opening in distinct ways, CsA by displacing bound CyP and ADP by binding to the ANT. Both mechanisms act to decrease the Ca2+ sensitivity of the pore. Thiol reagents and oxidative stress may modify two thiol groups on the ANT and thus stimulate pore opening by both means.
Collapse
Affiliation(s)
- A P Halestrap
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom.
| | | | | |
Collapse
|
12
|
Forsmark-Andrée P, Lee CP, Dallner G, Ernster L. Lipid peroxidation and changes in the ubiquinone content and the respiratory chain enzymes of submitochondrial particles. Free Radic Biol Med 1997; 22:391-400. [PMID: 8981030 DOI: 10.1016/s0891-5849(96)00330-9] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The relationship between, lipid peroxidation induced by ascorbate and adenosine ADP/Fe3+, and its effect on the respiratory chain activities of beef heart submitochondrial particles has been investigated. Lipid peroxidation, measured as thiobarbituric acid reactive substance formation, resulted in an inhibition of the NADH and succinate oxidase activities. Examination of several partial reactions of the respiratory chain revealed inactivation primarily of those involving endogenous ubiquinone, i.e., NADH- and succinate-ubiquinone1 and cytochrome c reductases. Ubiquinol-cytochrome c reductase, measured with reduced ubiquinone2 as electron donor, was unaffected. The amount of NADH- or succinate-reducible cytochrome b in the presence of cyanide was strongly decreased, but could be recovered by the addition of antimycin. There occurred a substantial decrease of the ubiquinone content in the course of lipid peroxidation, with a linear relationship between this decrease and the NADH and succinate oxidase activities. The results are consistent with the conclusion that the ubiquinone pool undergoes an oxidative modification during lipid peroxidation, to a form that can no longer function as a component of the respiratory chain. Lipid peroxidation also led to a partial inhibition of the succinate dehydrogenase and cytochrome c oxidase activities and a minor decrease of the cytochrome c and cytochrome a contents. Reduction of endogenous ubiquinone prevented lipid peroxidation as well as the concomitant modification of ubiquinone and inactivation of the respiratory chain. These observations suggest that the destruction of ubiquinone through lipid peroxidation is the primary cause of inactivation of the respiratory chain, and emphasize the antioxidant role of ubiquinol in preventing these effects. The possible implications of these findings for regulation of the cellular turnover of ubiquinone by the prevailing oxidative stress are discussed.
Collapse
Affiliation(s)
- P Forsmark-Andrée
- Division for Medical Cell Biology, NOVUM, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
13
|
Ullrich O, Henke W, Grune T, Siems WG. The effect of the lipid peroxidation product 4-hydroxynonenal and of its metabolite 4-hydroxynonenoic acid on respiration of rat kidney cortex mitochondria. Free Radic Res 1996; 24:421-7. [PMID: 8804985 DOI: 10.3109/10715769609088041] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In rat kidney cortex mitochondria, 4-hydroxynonenal inhibits state 3 respiration as well as uncoupled respiration at micromolar concentrations. The inhibition is more distinct for NAD-linked than for FAD-linked respiration. 4-Hydroxynonenal increases the state 4 respiration. It is assumed that 4-hydroxynonenal behaves like a decoupling agent. 4-Hydroxynonenal augments the inhibitory effect of 2,4-dinitrophenol observed at superoptimal concentrations. 4-Hydroxynonenal is metabolised by renal mitochondria, and 4-hydroxynonenoic acid is one of the metabolites generated. This metabolite is without effect on respiration at concentrations up to 50 microM. Therefore, the effect of 4-hydroxynonenal on respiration is not mediated by this fatty acid derivative formed during respiratory measurements.
Collapse
Affiliation(s)
- O Ullrich
- Clinics of Physical Therapy, University Hospital Charité, Medical Faculty, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Slyshenkov VS, Moiseenok AG, Wojtczak L. Noxious effects of oxygen reactive species on energy-coupling processes in Ehrlich ascites tumor mitochondria and the protection by pantothenic acid. Free Radic Biol Med 1996; 20:793-800. [PMID: 8728026 DOI: 10.1016/0891-5849(95)02210-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Irradiation of Ehrlich ascites tumor cells with ultraviolet light or exposure to the Fenton reaction results in lesions in the mitochondrial energy-coupling system. Formation of the membrane potential and its utilization for ATP synthesis are more affected than the respiratory chain. Preincubation of the cells with pantothenic acid or its derivatives which can serve as precursors of CoA largely protects against the damage of mitochondrial energetics by oxygen reactive species formed by UV light or the Fenton reaction. Incubation of Ehrlich ascites tumor cells with pantothenic acid increases their content of glutathione (most of which is present in the reduced form) by 40%. It is concluded that the protective effect of precursors of CoA against lesions of the mitochondrial energy-coupling system by oxygen reactive species is mainly due to removal of free radicals and peroxides by glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase.
Collapse
Affiliation(s)
- V S Slyshenkov
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | |
Collapse
|
15
|
Forsmark-Andrée P, Dallner G, Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med 1995; 19:749-57. [PMID: 8582647 DOI: 10.1016/0891-5849(95)00076-a] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe3+ and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered.
Collapse
Affiliation(s)
- P Forsmark-Andrée
- Division for Medical Cell Biology, Clinical Research Centre at NOVUM, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
16
|
Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1271:195-204. [PMID: 7599208 DOI: 10.1016/0925-4439(95)00028-3] [Citation(s) in RCA: 832] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This presentation is a brief review of current knowledge concerning some biochemical, physiological and medical aspects of the function of ubiquinone (coenzyme Q) in mammalian organisms. In addition to its well-established function as a component of the mitochondrial respiratory chain, ubiquinone has in recent years acquired increasing attention with regard to its function in the reduced form (ubiquinol) as an antioxidant. Ubiquinone, partly in the reduced form, occurs in all cellular membranes as well as in blood serum and in serum lipoproteins. Ubiquinol efficiently protects membrane phospholipids and serum low-density lipoprotein from lipid peroxidation, and, as recent data indicate, also mitochondrial membrane proteins and DNA from free-radical induced oxidative damage. These effects of ubiquinol are independent of those of exogenous antioxidants, such as vitamin E, although ubiquinol can also potentiate the effect of vitamin E by regenerating it from its oxidized form. Tissue ubiquinone levels are regulated through the mevalonate pathway, increasing upon various forms of oxidative stress, and decreasing during aging. Drugs inhibiting cholesterol biosynthesis via the mevalonate pathway may inhibit or stimulate ubiquinone biosynthesis, depending on their site of action. Administration of ubiquinone as a dietary supplement seems to lead primarily to increased serum levels, which may account for most of the reported beneficial effects of ubiquinone intake in various instances of experimental and clinical medicine.
Collapse
Affiliation(s)
- L Ernster
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | |
Collapse
|
17
|
Forsmark-Andrée P, Ernster L. Evidence for a protective effect of endogenous ubiquinol against oxidative damage to mitochondrial protein and DNA during lipid peroxidation. Mol Aspects Med 1994; 15 Suppl:s73-81. [PMID: 7752847 DOI: 10.1016/0098-2997(94)90015-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|