1
|
Carrasco C, Naziroǧlu M, Rodríguez AB, Pariente JA. Neuropathic Pain: Delving into the Oxidative Origin and the Possible Implication of Transient Receptor Potential Channels. Front Physiol 2018; 9:95. [PMID: 29491840 PMCID: PMC5817076 DOI: 10.3389/fphys.2018.00095] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/29/2018] [Indexed: 12/25/2022] Open
Abstract
Currently, neuropathic pain is an underestimated socioeconomic health problem affecting millions of people worldwide, which incidence may increase in the next years due to chronification of several diseases, such as cancer and diabetes. Growing evidence links neuropathic pain present in several disorders [i.e., spinal cord injury (SCI), cancer, diabetes and alcoholism] to central sensitization, as a global result of mitochondrial dysfunction induced by oxidative and nitrosative stress. Additionally, inflammatory signals and the overload in intracellular calcium ion could be also implicated in this complex network that has not yet been elucidated. Recently, calcium channels namely transient receptor potential (TRP) superfamily, including members of the subfamilies A (TRAP1), M (TRPM2 and 7), and V (TRPV1 and 4), have demonstrated to play a role in the nociception mediated by sensory neurons. Therefore, as neuropathic pain could be a consequence of the imbalance between reactive oxygen species and endogen antioxidants, antioxidant supplementation may be a treatment option. This kind of therapy would exert its beneficial action through antioxidant and immunoregulatory functions, optimizing mitochondrial function and even increasing the biogenesis of this vital organelle; on balance, antioxidant supplementation would improve the patient's quality of life. This review seeks to deepen on current knowledge about neuropathic pain, summarizing clinical conditions and probable causes, the relationship existing between oxidative stress, mitochondrial dysfunction and TRP channels activation, and scientific evidence related to antioxidant supplementation.
Collapse
Affiliation(s)
- Cristina Carrasco
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - Mustafa Naziroǧlu
- Neuroscience Research Center, Suleyman Demirel University, Isparta, Turkey
| | - Ana B Rodríguez
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| | - José A Pariente
- Department of Physiology, Faculty of Sciences, University of Extremadura, Badajoz, Spain
| |
Collapse
|
2
|
Leite LN, do Vale GT, Simplicio JA, De Martinis BS, Carneiro FS, Tirapelli CR. Ethanol-induced erectile dysfunction and increased expression of pro-inflammatory proteins in the rat cavernosal smooth muscle are mediated by NADPH oxidase-derived reactive oxygen species. Eur J Pharmacol 2017; 804:82-93. [DOI: 10.1016/j.ejphar.2017.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/09/2023]
|
3
|
Tiwari V, Chopra K. Resveratrol abrogates alcohol-induced cognitive deficits by attenuating oxidative-nitrosative stress and inflammatory cascade in the adult rat brain. Neurochem Int 2013; 62:861-9. [PMID: 23422878 DOI: 10.1016/j.neuint.2013.02.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/03/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Chronic alcohol intake is known to induce permanent cognitive deficits along with enhanced oxidative-nitrosative stress and activation of neuroinflammatory cascade. In the present study, we investigated the protective effect of resveratrol, a natural polyphenolic phytoalexin against chronic alcohol-induced cognitive dysfunction and neuroiflammatory cascade in the brain of adult rats chronically administered ethanol. Male Wistar rats were adminstered ethanol (10g/kg; oral gavage) for ten weeks and treated with resveratrol (5, 10 and 20mg/kg) for the same duration. Ethanol-exposed rats showed impaired spatial navigation in the Morris water maze test and poor retention in the elevated plus maze task which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, cytokines (TNF-alpha and IL-1beta), NF-kappa β and caspase-3 levels in different brain regions (cerebral cortex and hippocampus) of ethanol-treated rats. Co-administration with resveratrol significantly and dose-dependently prevented all the behavioral, biochemical and molecular deficits. Correlatively, the results of the present study revealed that treatment with resveratrol significantly prevented cognitive deficits induced by chronic ethanol exposure not only by modulating oxido-nitrosative stress but also by attenuating the enhanced levels of pro-inflammatory cytokines (TNF-α and IL-1β), NF-kβ and caspase-3 in different brain regions of ethanol treated rats. Therefore, mechanism underlying the neuroprotective effects of resveratrol observed in our study may be due to its antioxidant, anti-inflammatory and neuromodulating activities.
Collapse
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh 160 014, India
| | | |
Collapse
|
4
|
Kandhare AD, Ghosh P, Ghule AE, Bodhankar SL. Elucidation of molecular mechanism involved in neuroprotective effect of Coenzyme Q10 in alcohol-induced neuropathic pain. Fundam Clin Pharmacol 2012; 27:603-22. [DOI: 10.1111/fcp.12003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/30/2012] [Accepted: 09/11/2012] [Indexed: 12/26/2022]
Affiliation(s)
- Amit D. Kandhare
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Pinaki Ghosh
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Arvindkumar E. Ghule
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| | - Subhash L. Bodhankar
- Department of Pharmacology; Poona College of Pharmacy; Bharati Vidyapeeth Deemed University; Pune Maharashtra 411038 India
| |
Collapse
|
5
|
Chopra K, Tiwari V. Alcoholic neuropathy: possible mechanisms and future treatment possibilities. Br J Clin Pharmacol 2012; 73:348-62. [PMID: 21988193 DOI: 10.1111/j.1365-2125.2011.04111.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic alcohol consumption produces painful peripheral neuropathy for which there is no reliable successful therapy, mainly due to lack of understanding of its pathobiology. Alcoholic neuropathy involves coasting caused by damage to nerves that results from long term excessive drinking of alcohol and is characterized by spontaneous burning pain, hyperalgesia and allodynia. The mechanism behind alcoholic neuropathy is not well understood, but several explanations have been proposed. These include activation of spinal cord microglia after chronic alcohol consumption, oxidative stress leading to free radical damage to nerves, activation of mGlu5 receptors in the spinal cord and activation of the sympathoadrenal and hypothalamo-pituitary-adrenal (HPA) axis. Nutritional deficiency (especially thiamine deficiency) and/or the direct toxic effect of alcohol or both have also been implicated in alcohol-induced neuropathic pain. Treatment is directed towards halting further damage to the peripheral nerves and restoring their normal functioning. This can be achieved by alcohol abstinence and a nutritionally balanced diet supplemented by all B vitamins. However, in the setting of ongoing alcohol use, vitamin supplementation alone has not been convincingly shown to be sufficient for improvement in most patients. The present review is focused around the multiple pathways involved in the development of peripheral neuropathy associated with chronic alcohol intake and the different therapeutic agents which may find a place in the therapeutic armamentarium for both prevention and management of alcoholic neuropathy.
Collapse
Affiliation(s)
- Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study, Panjab University, Chandigarh-160 014, India.
| | | |
Collapse
|
6
|
Tiwari V, Kuhad A, Chopra K. Neuroprotective Effect of Vitamin E Isoforms Against Chronic Alcohol-induced Peripheral Neurotoxicity: Possible Involvement of Oxidative-Nitrodative Stress. Phytother Res 2012; 26:1738-45. [DOI: 10.1002/ptr.4635] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Revised: 04/21/2011] [Accepted: 01/25/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory; University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study; Panjab University; Chandigarh- 160 014 India
| |
Collapse
|
7
|
Amelioration of functional, biochemical and molecular deficits by epigallocatechin gallate in experimental model of alcoholic neuropathy. Eur J Pain 2012; 15:286-92. [DOI: 10.1016/j.ejpain.2010.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/01/2010] [Accepted: 07/14/2010] [Indexed: 01/13/2023]
|
8
|
KAVIARASAN S, SIVAKUMAR A, BARIK A, KUNWAR A, NAIK G, PRIYADARSINI K. POTENT RADICAL SCAVENGING ABILITY OF SUNPHENON: A GREEN TEA EXTRACT. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00404.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Seiva FRF, Amauchi JF, Rocha KKR, Ebaid GX, Souza G, Fernandes AAH, Cataneo AC, Novelli ELB. Alcoholism and alcohol abstinence: N-acetylcysteine to improve energy expenditure, myocardial oxidative stress, and energy metabolism in alcoholic heart disease. Alcohol 2009; 43:649-56. [PMID: 20004343 DOI: 10.1016/j.alcohol.2009.09.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/21/2009] [Accepted: 09/09/2009] [Indexed: 01/19/2023]
Abstract
Alcoholism has been associated with a wide range of pathologic conditions, including alcoholic heart disease (AHD). Because AHD may be associated with oxidative stress, antioxidant compounds, such as N-acetylcysteine (NAC) could be useful to control the damage done by alcohol (ethanol) consumption. To investigate the NAC effects on alcoholism and alcohol abstinence, initially, 30 male Wistar rats were divided into two groups: (C, N=6) given standard chow and water; (E, N=24) receiving standard chow and aqueous ethanol solution in semi-voluntary research. After 30 days of ethanol-exposure, (E) group was divided into four subgroups (N=6/group):(E-E) continued drinking 30% ethanol-solution; (E-NAC) drinking ethanol-solution containing 2g/L NAC; (AB) changed ethanol solution to water; (AB-NAC) changed ethanol to aqueous solution of 2g/L NAC. After 15 days of the E-group division, E-E rats had lower body weight and feed efficiency, as well as higher energy-expenditure resting metabolic rate (RMR)/body weight and VO(2) consumption/surface area. These calorimetric changes were reflected on the cardiac tissue. E-E rats had higher heart weight/body weight ratio and myocardial lipid hydroperoxide (LH), indicating AHD with hypertrophy and oxidative stress. Myocardial superoxide dismutase was higher, whereas glutathione-peroxidase (GSH-peroxidase) was lower in E-E rats than in C. The higher myocardial hydroxyacyl coenzyme-A dehydrogenase (OHADH), OHADH/citrate synthase (CS), and lactate dehydrogenase (LDH)/CS in E-E rats indicated higher fatty acid degradation relative to aerobic metabolism predisposing the lipotoxicity. AB rats had lower RMR/body weight than E-E, normalized myocardial oxidative stress, and energy metabolism. E-NAC and AB-NAC had lower RMR/body weight, myocardial LH, LDH/CS, and higher GSH-peroxidase than E-E and AB, respectively, demonstrating lower oxidative stress and higher myocardial carbohydrate oxidation. In conclusion, the present study brought new insights on alcohol consumption and AHD because ethanol-exposure enhanced energy-expenditure and induced a number of calorimetric changes, which were reflected in body weight and myocardial lipotoxicity. NAC preventing ethanol-induced calorimetric changes and reducing myocardial oxidative stress enhanced carbohydrate oxidation, thus optimizing myocardial energy metabolism in both alcoholic and abstinence condition.
Collapse
|
10
|
Tocotrienol ameliorates behavioral and biochemical alterations in the rat model of alcoholic neuropathy. Pain 2009; 145:129-35. [PMID: 19541419 DOI: 10.1016/j.pain.2009.05.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/21/2022]
Abstract
Chronic alcohol consumption produces a painful peripheral neuropathy for which there is no reliable successful therapy, which is mainly due to lack of understanding of its pathobiology. Alcoholic neuropathy is characterized by spontaneous burning pain, hyperalgesia (an exaggerated pain in response to painful stimuli) and allodynia (a pain evoked by normally innocuous stimuli). Chronic alcohol intake is known to decrease the nociceptive threshold with increased oxidative-nitrosative stress and release of proinflammatory cytokines coupled with activation of protein kinase C. The aim of the present study is to investigate the effect of both isoforms of vitamin E, alpha-tocopherol (100mg/kg; oral gavage) and tocotrienol (50, 100 and 200mg/kg; oral gavage) against alcohol-induced neuropathic pain in rats. Male Wistar rats, were administered 35% v/v ethanol (10 g/kg; oral gavage) for 10 weeks, and were treated with alpha-tocopherol and tocotrienol for the same duration. Ethanol-treated animals showed a significant decrease in nociceptive threshold as evident from decreased tail flick latency (thermal hyperalgesia) and decreased paw-withdrawal threshold in Randall-Sellito test (mechanical hyperalgesia) and von-Frey hair test (mechanical allodynia) along with the reduction in nerve glutathione and superoxide dismutase levels. TNF-alpha and IL-1beta levels were also significantly increased in both serum and sciatic nerve of ethanol-treated rats. Treatment with alpha-tocopherol and tocotrienol for 10 weeks significantly improved all the above-stated functional and biochemical deficits in a dose-dependent manner with more potent effects observed with tocotrienol. The study demonstrates the effectiveness of tocotrienol in attenuation of alcoholic neuropathy.
Collapse
|
11
|
Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res 2009; 203:296-303. [PMID: 19464322 DOI: 10.1016/j.bbr.2009.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 05/10/2009] [Accepted: 05/14/2009] [Indexed: 01/30/2023]
Abstract
Chronic alcohol intake is known to induce the selective neuronal damage associated with increase oxidative-nitrosative stress and activation of inflammatory cascade finally resulting in neuronal apoptosis and thus dementia. In the present study, we investigated the comparative effect of both the isoforms of vitamin E, alpha-tocopherol and tocotrienol against chronic alcohol-induced cognitive dysfunction in rats. Male Wistar rats were given ethanol (10g/kg; oral gavage) for 10 weeks, and treated with alpha-tocopherol and tocotrienol for the same duration. The learning and memory behavior was assessed using Morris water maze and elevated plus maze test. The rats were sacrificed at the end of 10th week and cytoplasmic fractions of cerebral cortex and hippocampus were prepared for the quantification of acetylcholinesterase activity, oxidative-nitrosative stress parameters, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). From the 6th week onwards, ethanol-treated rats showed significant increase in transfer latency in both the behavioral paradigms which was coupled with enhanced acetylcholinesterase activity, increased oxidative-nitrosative stress, TNF-alpha and IL-1beta levels in different brain regions of ethanol-treated rats. Co-administration of alpha-tocopherol as well as tocotrienol significantly and dose-dependently prevented these behavioral, biochemical and molecular changes in the brains of ethanol-treated rats. However, the effects were more pronounced with tocotrienol. The current study thus demonstrates the possible involvement of oxidative-nitrosative stress mediated activation of inflammatory cascade in chronic alcohol-induced cognitive dysfunction and also suggests the effectiveness of vitamin E isoforms, of which tocotrienol being more potent, in preventing the cognitive deficits associated with chronic alcohol consumption.
Collapse
Affiliation(s)
- Vinod Tiwari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences UGC Center of Advanced Study, Panjab University, Chandigarh 160 014, India
| | | | | |
Collapse
|
12
|
Ferreira Seiva FR, Amauchi JF, Ribeiro Rocha KK, Souza GA, Ebaid GX, Burneiko RM, Novelli ELB. Effects of N-acetylcysteine on alcohol abstinence and alcohol-induced adverse effects in rats. Alcohol 2009; 43:127-35. [PMID: 19251114 DOI: 10.1016/j.alcohol.2008.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2008] [Revised: 12/07/2008] [Accepted: 12/08/2008] [Indexed: 12/15/2022]
Abstract
Alcoholism is rampant in modern society and some antioxidant compound could perhaps be useful to reduce the damage done by alcohol consumption and abstinence. The present study was undertaken to investigate the association of N-acetylcysteine (NAC) intake, alcoholism, and alcohol abstinence on lipid profile, in vivo low-density lipoprotein (LDL) oxidation, oxidative stress, and antioxidant status in serum and liver of rats. Initially, male Wistar 30 rats were divided into two groups: (C, N=6) given standard chow and water; (E, N=24) receiving standard chow and aqueous ethanol solution in semi-voluntary research. After 30 days of ethanol exposure, (E) group was divided into four subgroups (N=6/group): (E-E) continued drinking 30% ethanol solution; (E-NAC) drinking ethanol solution containing 2 g/L NAC; (AB) changed ethanol solution to water; (AB-NAC) changed ethanol to aqueous solution 2 g/L NAC. After 15 days of the E-group division, E-E rats had higher serum alanine transaminase, lower body weight, and surface area, despite higher energy intake than C. E-E rats had also lower feed efficiency, dyslipidemia with enhanced triacylglycerol, very low-density lipoprotein (VLDL), lipid hydroperoxide (LH) and in vivo oxidized-LDL (ox-LDL). AB, E-NAC, and AB-NAC rats ameliorated serum oxidative stress markers and normalized serum lipids. E-E rats had higher hepatic LH and lower reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio than C, indicating hepatic oxidative stress. AB and E-NAC rats normalized hepatic LH, GSSG, and the GSH/GSSG ratio, compared to E-E. AB-NAC rats had the lowest serum ox-LDL, hepatic LH levels, and the highest GSH reductase activity in hepatic tissue. In conclusion, the present study brought new insights into alcohol consumption, because ethanol exposure enhanced serum in vivo ox-LDL, as well as serum and hepatic oxidative stress. N-acetylcysteine offers promising therapeutic value to inhibit ethanol-induced adverse effects. Ethanol withdrawal had beneficial effects on serum lipids, but was more effective when coupled with NAC supplementation. Ethanol abstinence and NAC intake interact synergistically, improving serum lipids and hepatic antioxidant defenses.
Collapse
Affiliation(s)
- Fábio Rodrigues Ferreira Seiva
- Department of Clinical and Cardiology, School of Medicine, São Paulo State University, UNESP, 18618-000, Botucatu, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
13
|
Mandrekar P. Signaling mechanisms in alcoholic liver injury: Role of transcription factors, kinases and heat shock proteins. World J Gastroenterol 2007; 13:4979-85. [PMID: 17854141 PMCID: PMC4434622 DOI: 10.3748/wjg.v13.i37.4979] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver injury comprises of interactions of various intracellular signaling events in the liver. Innate immune responses in the resident Kupffer cells of the liver, oxidative stress-induced activation of hepatocytes, fibrotic events in liver stellate cells and activation of liver sinusoidal endothelial cells all contribute to alcoholic liver injury. The signaling mechanisms associated with alcoholic liver injury vary based on the cell type involved and the extent of alcohol consumption. In this review we will elucidate the oxidative stress and signaling pathways affected by alcohol in hepatocytes and Kupffer cells in the liver by alcohol. The toll-like receptors and their down-stream signaling events that play an important role in alcohol-induced inflammation will be discussed. Alcohol-induced alterations of various intracellular transcription factors such as NFκB, PPARs and AP-1, as well as MAPK kinases in hepatocytes and macrophages leading to induction of target genes that contribute to liver injury will be reviewed. Finally, we will discuss the significance of heat shock proteins as chaperones and their functional regulation in the liver that could provide new mechanistic insights into the contributions of stress-induced signaling mechanisms in alcoholic liver injury.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Liver Center, Department of Medicine, University of Massachusetts Medical School, LRB 213, 364 Plantation Street, Worcester, MA 01605-2324, USA.
| |
Collapse
|
14
|
Kaviarasan S, Naik G, Gangabhagirathi R, Anuradha C, Priyadarsini K. In vitro studies on antiradical and antioxidant activities of fenugreek (Trigonella foenum graecum) seeds. Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.05.064] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Jung ME, Gatch MB, Simpkins JW. Estrogen neuroprotection against the neurotoxic effects of ethanol withdrawal: potential mechanisms. Exp Biol Med (Maywood) 2005; 230:8-22. [PMID: 15618121 DOI: 10.1177/153537020523000102] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ethanol withdrawal (EW) produces substantial neurotoxic effects, whereas estrogen is neuroprotective. Given observations that both human and nonhuman female subjects often show less impairment following EW, it is reasonable to hypothesize that estrogens may protect females from the neurotoxic effects of ethanol. This article is based on the assumption that the behavioral deficits seen following EW are produced in part by neuronal death triggered by oxidative insults produced by EW. The EW leads to activation of protein kinase C, especially PKCepsilon, which subsequently triggers apoptotic downstream events such as phosphorylation of nuclear factor-kappaB (NFkappaB) complex. On phosphorylation, active NFkappaB translocates to the nucleus, binds to DNA, and activates caspases, which trigger DNA fragmentation and apoptosis. In contrast, estrogens are antioxidant, inhibit overexpression of PKCepsilon, and suppress expression of NFkappaB and caspases. Estrogen treatment reduces the behavioral deficits seen during EW and attenuates molecular signals of apoptosis. The effects of ethanol and estrogen on each step in the signaling cascade from ethanol exposure to apoptosis are reviewed, and potential mechanisms by which estrogen could produce neuronal protection against the neurotoxicity produced by EW are identified. These studies serve as a guide for continuing research into the mechanisms of the neuroprotective effects of estrogen during EW and for the development of potential estrogen-based treatments for male and female alcoholics.
Collapse
Affiliation(s)
- M E Jung
- Department of Pharmacology and Neuroscience, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | | | | |
Collapse
|
16
|
Jung ME, Rewal M, Perez E, Wen Y, Simpkins JW. Estrogen protects against brain lipid peroxidation in ethanol-withdrawn rats. Pharmacol Biochem Behav 2004; 79:573-86. [PMID: 15582030 DOI: 10.1016/j.pbb.2004.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 09/09/2004] [Accepted: 09/10/2004] [Indexed: 11/18/2022]
Abstract
This study examined whether 17beta-estradiol (E2) administration protects against ethanol withdrawal (EW)-associated oxidative insults by assessing oxidative markers thiobarbituric-acid-reacting-substances (TBARS). Ovariectomized rats implanted with E2 (EW/E2) or oil pellets (EW/Oil) received chronic ethanol (7.5% wt./vol., 5 weeks) or control dextrin diet (Dextrin/Oil). At 24 or 48 h of EW, rats were tested for overt EW signs and the cerebellum, hippocampus, and cortex were prepared for TBARS assessment in the presence and absence of FeCl3. For control experiments, we assessed E2 effects on blood ethanol concentrations and TBARS levels during ethanol exposure prior to EW. The EW/Oil group showed enhanced endogenous- and FeCl3-stimulated membrane TBARS levels in the cerebellum and hippocampus in a manner inhibited by E2 treatment. There was a relationship between the severity of EW and elevation of TBARS levels, particularly in the cerebellum. The enhanced TBARS levels at 24 h of EW appeared to diminish at 48 h in the hippocampus, but persisted in the cerebellum. E2 treatment did not alter blood ethanol concentrations and ethanol exposure alone did not enhance TBARS levels. These data suggest that EW rather than ethanol enhances brain lipid peroxidation that is transient and brain-region specific. Estrogens protect against the brain lipid peroxidation in a manner independent of blood ethanol concentrations.
Collapse
Affiliation(s)
- Marianna E Jung
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center at Fort Worth, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | |
Collapse
|
17
|
Kiechl S, Willeit J, Rungger G, Egger G, Oberhollenzer F, Bonora E. Alcohol consumption and atherosclerosis: what is the relation? Prospective results from the Bruneck Study. Stroke 1998; 29:900-7. [PMID: 9596232 DOI: 10.1161/01.str.29.5.900] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Potential effects of regular alcohol consumption on atherogenesis are still controversial mainly due to the lack of prospective population-based studies. METHODS The Bruneck Study is a prospective population-based survey of atherosclerosis and its risk factors. The study population comprises a sex- and age-stratified random sample of men and women aged 40 to 79 years. Participation and follow-up were more than 90% complete. Changes in carotid atherosclerosis between the 1990 baseline and the first follow-up in 1995 were monitored by high-resolution duplex ultrasonography. Alcohol intake was quantified with a standardized questionnaire and prospective diet records. RESULTS Alcohol consumption less than once a week (occasional drinking) had no effect on atherogenesis. The association between regular alcohol intake and incident carotid atherosclerosis (early atherogenesis) was J-shaped, with light drinkers facing a lower risk than either heavy drinkers or abstainers. Protection offered by alcohol consumption of <50 g/d appeared to act through inhibition of the injurious action of high levels of low-density lipoprotein (LDL) cholesterol. Excess risk of incident atherosclerosis observed among heavy alcohol consumers (> or =100 g/d) clearly surpassed the risk burden afforded by heavy smoking. The association between regular alcohol intake and incident carotid stenosis (advanced atherogenesis) was U-shaped. Odds ratios were generally shifted toward protection and did not rely on LDL cholesterol levels. We failed to find any differential effects of alcohol from various sources. All associations remained independently significant when we adjusted for lifestyle, coincidental smoking, and the metabolic complex associated with drinking. CONCLUSIONS Our findings support the view that adverse and beneficial effects of alcohol on arterial disease are mediated in part by a dose-dependent promotion or deceleration of atherogenesis. The protection afforded by light drinking may possibly be attributed to antithrombotic effects and inhibition of the atherogenic action of high levels of LDL cholesterol.
Collapse
Affiliation(s)
- S Kiechl
- Department of Neurology, Innsbruck University Clinic, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Roy S, Sen CK, Tritschler HJ, Packer L. Modulation of cellular reducing equivalent homeostasis by alpha-lipoic acid. Mechanisms and implications for diabetes and ischemic injury. Biochem Pharmacol 1997; 53:393-9. [PMID: 9065743 DOI: 10.1016/s0006-2952(96)00764-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The therapeutic potential of alpha-lipoic acid (thioctic acid) was evaluated with respect to its influence on cellular reducing equivalent homeostasis. The requirement of NADH and NADPH as cofactors in the cellular reduction of alpha-lipoic acid to dihydrolipoate has been reported in various cells and tissues. However, there is no direct evidence describing the influence of such reduction of alpha-lipoate on the levels of cellular reducing equivalents and homeostasis of the NAD(P)H/NAD(P) ratio. Treatment of the human Wurzburg T-cell line with 0.5 mM alpha-lipoate for 24 hr resulted in a 30% decrease in cellular NADH levels. alpha-Lipoate treatment also decreased cellular NADPH, but this effect was relatively less and slower compared with that of NADH. A concentration-dependent increase in glucose uptake was observed in Wurzburg cells treated with alpha-lipoate. Parallel decreases (30%) in cellular NADH/NAD+ and in lactate/pyruvate ratios were observed in alpha-lipoate-treated cells. Such a decrease in the NADH/NAD+ ratio following treatment with alpha-lipoate may have direct implications in diabetes, ischemia-reperfusion injury, and other pathologies where reductive (high NADH/NAD+ ratio) and oxidant (excess reactive oxygen species) imbalances are considered as major factors contributing to metabolic disorders. Under conditions of reductive stress, alpha-lipoate decreases high NADH levels in the cell by utilizing it as a co-factor for its own reduction process, whereas in oxidative stress both alpha-lipoate and its reduced form, dihydrolipoate, may protect by direct scavenging of free radicals and recycling other antioxidants from their oxidized forms.
Collapse
Affiliation(s)
- S Roy
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3200, U.S.A.
| | | | | | | |
Collapse
|
19
|
Croft KD, Puddey IB, Rakic V, Abu-Amsha R, Dimmitt SB, Beilin LJ. Oxidative susceptibility of low-density lipoproteins--influence of regular alcohol use. Alcohol Clin Exp Res 1996; 20:980-4. [PMID: 8892515 DOI: 10.1111/j.1530-0277.1996.tb01934.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In population studies, a low-to-moderate intake of alcohol has been consistently linked to a lower risk of coronary artery disease. The recent suggestion that alcoholic beverages may be conferring this decrease in risk because they contain antioxidant phenolic compounds that reduce the oxidizability of low-density lipoprotein (LDL) has to be reconciled with the possible counteracting influence of a pro-oxidant effect of alcohol. In a controlled crossover study, we have now measured the oxidizability of LDL in 27 regular beer drinkers during consecutive 4-week periods, wherein they consumed a high versus low alcohol beer (4.9 vs. 0.9% alcohol v/v, respectively), with the two beers being similar in phenolic content. This resulted in a decrease in alcohol consumption by approximately 80% (408 +/- 25 ml/week vs. 75 +/- 11 ml/week). During the low alcohol period, there was no change in LDL vitamin E or its cholesterol or protein content. Analysis of LDL oxidation kinetics revealed an increase in oxidizability during the high alcohol phase. This was despite a decrease in arachidonic acid content of LDL and a corresponding increase in palmitic acid during high alcohol intake--a change in fatty acid composition that has the potential to favor a decrease in oxidizability. Our results suggest that alcohol ingestion increases LDL oxidation, despite reducing the polyunsaturated fatty acid composition. The overall effect of alcoholic beverages on LDL oxidation may be a balance between the pro-oxidant and antioxidant activity of its various constituents. The predominant pro-oxidant effect demonstrated in these beer drinkers, although not relevant to any potential decrease in coronary artery disease, may be important in the pathogenesis of alcohol-related disease in other organ systems.
Collapse
Affiliation(s)
- K D Croft
- Department of Medicine, Royal Perth Hospital, University of Western Australia
| | | | | | | | | | | |
Collapse
|
20
|
Kukielka E, Cederbaum AI. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment. Biochem J 1994; 302 ( Pt 3):773-9. [PMID: 7945202 PMCID: PMC1137298 DOI: 10.1042/bj3020773] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There is increasing interest in the role of reactive oxygen radicals in the hepatotoxicity associated with ethanol consumption. Reactive oxygen intermediates interact with DNA and can cause single-strand breaks of supercoiled DNA. Experiments were carried out to evaluate the utility of this system as a sensitive assay for the detection of potent oxidants generated by rat liver microsomes isolated from pair-fed control rats and rats treated chronically with ethanol. DNA strand cleavage was assayed by monitoring the migration of the supercoiled and open circular forms in agarose. Microsomes catalysed DNA strand breakage with either NADPH or NADH as cofactors; iron was required to catalyse the reaction and various ferric complexes were effective in promoting the reaction. DNA strand cleavage was prevented by catalase, superoxide dismutase, GSH and hydroxyl-radical-scavenging agents, suggesting that a hydroxyl-radical-like species was the oxidant responsible for the breakage. This assay system proved to be much more sensitive in detecting hydroxyl radicals than are other methods, such as e.s.r. spectroscopy or oxidation of chemical scavenging agents with respect to the amount of microsomal protein and the nature and concentration of the iron catalyst required. Microsomes from ethanol-treated rats were more reactive than control microsomes in catalysing the DNA strand cleavage with either NADPH or NADH; increased catalytic activity was observed with various ferric complexes and was sensitive to the above antioxidants. Compared with preimmune IgG, anti-(cytochrome P4502E1) IgG had no effect on DNA strand cleavage by the control microsomes, but completely prevented the NADPH- and the NADH-dependent increased activity found with microsomes from the ethanol-treated rats. Inhibitors of cytochrome P4502E1, such as diethyl dithiocarbamate and tryptamine, also lowered the extent of increase of DNA strand cleavage produced by microsomes from the ethanol-treated rats. These results indicate that DNA strand cleavage is a very sensitive assay for detecting the production of hydroxyl radicals by microsomes and to demonstrate increased activity by microsomes after chronic ethanol treatment. This increased activity with NADPH and NADH is due, at least in part, to induction of cytochrome P4502E1.
Collapse
Affiliation(s)
- E Kukielka
- Department of Biochemistry, Mount Sinai School of Medicine, New York, NY 10029
| | | |
Collapse
|