1
|
Fu L, Li P, Li H, Gao C, Yang Z, Zhao T, Chen W, Liao Z, Peng Y, Cao F, Sui X, Liu S, Guo Q. The Application of Bioreactors for Cartilage Tissue Engineering: Advances, Limitations, and Future Perspectives. Stem Cells Int 2021; 2021:6621806. [PMID: 33542736 PMCID: PMC7843191 DOI: 10.1155/2021/6621806] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue engineering (TE) has brought new hope for articular cartilage regeneration, as TE can provide structural and functional substitutes for native tissues. The basic elements of TE involve scaffolds, seeded cells, and biochemical and biomechanical stimuli. However, there are some limitations of TE; what most important is that static cell culture on scaffolds cannot simulate the physiological environment required for the development of natural cartilage. Recently, bioreactors have been used to simulate the physical and mechanical environment during the development of articular cartilage. This review aims to provide an overview of the concepts, categories, and applications of bioreactors for cartilage TE with emphasis on the design of various bioreactor systems.
Collapse
Affiliation(s)
- Liwei Fu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Pinxue Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Hao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Cangjian Gao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhen Yang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianyuan Zhao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Wei Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Zhiyao Liao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yu Peng
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Fuyang Cao
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Adjunctive techniques for enhancing mandibular growth in Class II malocclusion. Med Hypotheses 2015; 84:301-4. [PMID: 25648662 DOI: 10.1016/j.mehy.2015.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/11/2015] [Indexed: 01/26/2023]
Abstract
Class II malocclusions are generally characterized by mandible retrusion. For this reason, forward bite jumping appliances, also known as functional appliances were originally designed to enhance mandibular forward projection. However, there is still insufficient evidence to support the effectiveness, predictability and stability of functional appliances in modifying mandibular growth. This article was aimed at presenting evidences and hypotheses that mandibular growth may be enhanced through the use of adjunctive methods in conjunction with functional appliances. In formulating our hypothesis, we considered relevant data, mostly derived from animal studies, concerning alternative methods, such as low-intensity ultrasound and light-emitting diode, as well as their related cellular and molecular mechanisms. According to the evidences covered in this article, we suggest that both methods are potentially effective, and theoretically able to act in synergistic way to enhance functional appliances treatment on mandibular and condylar additional growth. The rationale for the use of these methods as adjunctive therapies for mandibular underdevelopment is attributed to their abilities on stimulating angiogenesis, cell differentiation, proliferation, and hypertrophy, as well as enhancing matrix production and endochondoral bone formation, especially on the condyle of growing animals. This article also proposed a study design which would be able to either prove or refute our hypothesis. If ratified, it would represent a significant scientific accomplishment which provides support for further investigations to be carried out on well-designed clinical trials.
Collapse
|
3
|
Corallo C, Battisti E, Albanese A, Vannoni D, Leoncini R, Landi G, Gagliardi A, Landi C, Carta S, Nuti R, Giordano N. Proteomics of human primary osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF EMFs) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF). Electromagn Biol Med 2013; 33:3-10. [PMID: 23713417 DOI: 10.3109/15368378.2013.782316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30 min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.
Collapse
Affiliation(s)
- Claudio Corallo
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Corallo C, Volpi N, Franci D, Vannoni D, Leoncini R, Landi G, Guarna M, Montella A, Albanese A, Battisti E, Fioravanti A, Nuti R, Giordano N. Human osteoarthritic chondrocytes exposed to extremely low-frequency electromagnetic fields (ELF) and therapeutic application of musically modulated electromagnetic fields (TAMMEF) systems: a comparative study. Rheumatol Int 2012; 33:1567-75. [PMID: 23263545 DOI: 10.1007/s00296-012-2600-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 12/08/2012] [Indexed: 02/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease, characterized by matrix degradation and changes in chondrocyte morphology and metabolism. Literature reported that electromagnetic fields (EMFs) can produce benefits in OA patients, even if EMFs mechanism of action is debated. Human osteoarthritic chondrocytes isolated from femoral heads were cultured in vitro in bidimensional (2-D) flasks and in three-dimensional (3-D) alginate beads to mimic closely cartilage environment in vivo. Cells were exposed 30 min/day for 2 weeks to extremely low-frequency electromagnetic field (ELF) with fixed frequency (100 Hz) and to therapeutic application of musically modulated electromagnetic field (TAMMEF) with variable frequencies, intensities, and waveforms. Cell viability was measured at days 7 and 14, while healthy-cell density, heavily vacuolized (hv) cell density, and cluster density were measured by light microscopy only for 3-D cultures after treatments. Cell morphology was observed for 2-D and 3-D cultures by transmission electron microscopy (TEM). Chondrocyte exposure to TAMMEF enhances cell viability at days 7 and 14 compared to ELF. Light microscopy analysis showed that TAMMEF enhances healthy-cell density, reduces hv-cell density and clustering, compared to ELF. Furthermore, TEM analysis showed different morphology for 2-D (fibroblast-like) and 3-D (rounded shape) cultures, confirming light microscopy results. In conclusion, EMFs are effective and safe for OA chondrocytes. TAMMEF can positively interfere with OA chondrocytes representing an innovative non-pharmacological approach to treat OA.
Collapse
Affiliation(s)
- Claudio Corallo
- Department of Internal Medicine, Endocrine and Metabolic Sciences and Biochemistry, University of Siena, Ospedale S. Maria alle Scotte, Viale Bracci, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Peroz I, Chun YH, Karageorgi G, Schwerin C, Bernhardt O, Roulet JF, Freesmeyer WB, Meyer G, Lange KP. A multicenter clinical trial on the use of pulsed electromagnetic fields in the treatment of temporomandibular disorders. J Prosthet Dent 2004; 91:180-7. [PMID: 14970765 DOI: 10.1016/j.prosdent.2003.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
STATEMENT OF THE PROBLEM Pulsed electromagnetic fields have shown therapeutic benefit in the treatment of numerous forms of osteoarthritis but have not been evaluated for their effects on the temporomandibular joint (TMJ). PURPOSE The aim of this study was to examine the effects of pulsed electromagnetic fields in the treatment of patients with temporomandibular disorders (TMD). MATERIALS AND METHODS A multicenter clinical trial compared active treatment of 36 patients using pulsed electromagnetic fields to placebo treatment of 42 patients with TMD with pain in 1 or both TMJs and/or limited opening of less than 40 mm. Subjective parameters including pain intensity, pain frequency, degree of limitation, restriction of daily life, and intensity and frequency of joint noises were evaluated using a visual analog scale. Trained, blinded examiners assessed the clinical parameters according to Research Diagnostic Criteria for temporomandibular disorders before treatment (baseline), directly after nine 1-hour treatments on consecutive working days, 6 weeks after treatment, and 4 months after treatment. Statistical evaluation was done using the Friedman test, and by paired comparison between baseline and follow-up examinations using the U test (P < .05). RESULTS Seventy-six patients completed the study. For both the active and placebo treatment, significant improvements were seen in the subjective data (P < .01). Patients with anterior disk displacement without reduction also showed significant improvements in active mouth opening (P = .015), patients with ostheoarthritis only showed improvements in some of the subjective parameters (P < .03), and patients with anterior disk displacement with reduction showed no improvement at all. CONCLUSIONS Pulsed electromagnetic fields had no specific treatment effects in patients with temporomandibular disorders.
Collapse
Affiliation(s)
- Ingrid Peroz
- Department of Prosthetic Dentistry and Oral Gerontology, Humboldt University, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
De Mattei M, Caruso A, Pezzetti F, Pellati A, Stabellini G, Sollazzo V, Traina GC. Effects of pulsed electromagnetic fields on human articular chondrocyte proliferation. Connect Tissue Res 2002; 42:269-79. [PMID: 11913771 DOI: 10.3109/03008200109016841] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Low-energy, low-frequency pulsed electromagnetic fields (PEMFs) can induce cell proliferation in several cell culture models. In this work we analysed the proliferative response of human articular chondrocytes, cultured in medium containing 10% FBS, following prolonged exposure to PEMFs (75 Hz, 2.3 mT), currently used in the treatment of some orthopaedic pathologies. In particular, we investigated the dependence of the proliferative effects on the cell density, the availability of growth factors and the exposure lengths. We observed that PEMFs can induce cell proliferation of low density chondrocyte cultures for a long time (6 days), when fresh serum is added again in the culture medium. In the same conditions, in high density cultures, the PEMF-induced increase in cell proliferation was observed only in the first three days of exposure. The data presented in this study show that the availability of growth factors and the environmental constrictions strongly condition the cellular proliferative response to PEMFs.
Collapse
Affiliation(s)
- M De Mattei
- Dipartimento di Morfologia ed Embriologia, Università di Ferrara, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Landry PS, Sadasivan KK, Marino AA, Albright JA. Electromagnetic fields can affect osteogenesis by increasing the rate of differentiation. Clin Orthop Relat Res 1997:262-70. [PMID: 9170389 DOI: 10.1097/00003086-199705000-00035] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Electromagnetic fields of various kinds can alter osteogenesis in animals with osteotomies and patients with nonunions, but the underlying cellular mechanisms are unknown. The aims of this study were to determine whether I gauss at 60 Hz affected periosteal proliferation and differentiation in either the normal rat tibia or 1 to 14 days after a surgically induced defect. In the injured rats, using histologic study, autoradiography, and morphometry, it was found that exposure for 1 or 3 days had no effect on proliferation but that it produced an increase in osteoblasts 3 days after the injury. Proliferation and differentiation were unaffected by exposure in the absence of injury. The results suggest that the primary effect of the fields was to promote differentiation but not proliferation. Because fields can stimulate proliferation of osteoblastlike cells in vitro, the results of this study may indicate the presence of an in vivo factor that antagonizes the tendency of fields to increase mitotic activity.
Collapse
Affiliation(s)
- P S Landry
- Department of Orthopaedic Surgery, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | |
Collapse
|