1
|
Prado FM, Scalfo AC, Miyamoto S, Medeiros MHG, Di Mascio P. Generation of Singlet Molecular Oxygen by Lipid Hydroperoxides and Nitronium Ion †. Photochem Photobiol 2020; 96:560-569. [PMID: 32108956 DOI: 10.1111/php.13236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Abstract
Singlet molecular oxygen is a reactive species involved in biological oxidative processes. The major cellular targets of singlet molecular oxygen are unsaturated fatty acids in the membrane, as well as nucleic acids and proteins. The aim of this study was to investigate whether lipids and commercial hydroperoxides generate singlet molecular oxygen, in presence of nitronium and activated nitronium ion. For this purpose, monomol light emitted in the near-infrared region (λ = 1270 nm) was used to monitor singlet molecular oxygen decay in different solvents, with different hydroperoxides and in the presence of azide. Direct measurements of the singlet molecular oxygen spectrum at 1270 nm recorded during the reaction between lipids and commercial hydroperoxides and nitronium ions unequivocally demonstrated the formation of this excited species.
Collapse
Affiliation(s)
- Fernanda M Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alexsandra C Scalfo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MHG, Cadet J. Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chem Rev 2019; 119:2043-2086. [DOI: 10.1021/acs.chemrev.8b00554] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, 81531-990 Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508-000, São Paulo, SP Brazil
| | - Jean Cadet
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
3
|
Hydrogen Sulfide and Cellular Redox Homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6043038. [PMID: 26881033 PMCID: PMC4736422 DOI: 10.1155/2016/6043038] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/06/2023]
Abstract
Intracellular redox imbalance is mainly caused by overproduction of reactive oxygen species (ROS) or weakness of the natural antioxidant defense system. It is involved in the pathophysiology of a wide array of human diseases. Hydrogen sulfide (H2S) is now recognized as the third “gasotransmitters” and proved to exert a wide range of physiological and cytoprotective functions in the biological systems. Among these functions, the role of H2S in oxidative stress has been one of the main focuses over years. However, the underlying mechanisms for the antioxidant effect of H2S are still poorly comprehended. This review presents an overview of the current understanding of H2S specially focusing on the new understanding and mechanisms of the antioxidant effects of H2S based on recent reports. Both inhibition of ROS generation and stimulation of antioxidants are discussed. H2S-induced S-sulfhydration of key proteins (e.g., p66Shc and Keap1) is also one of the focuses of this review.
Collapse
|
4
|
Mano CM, Prado FM, Massari J, Ronsein GE, Martinez GR, Miyamoto S, Cadet J, Sies H, Medeiros MHG, Bechara EJH, Di Mascio P. Excited singlet molecular O₂(¹Δg) is generated enzymatically from excited carbonyls in the dark. Sci Rep 2014; 4:5938. [PMID: 25087485 PMCID: PMC4120373 DOI: 10.1038/srep05938] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022] Open
Abstract
In mammalian tissues, ultraweak chemiluminescence arising from biomolecule oxidation has been attributed to the radiative deactivation of singlet molecular oxygen [O2 ((1)Δg)] and electronically excited triplet carbonyl products involving dioxetane intermediates. Herein, we describe evidence of the generation of O2 ((1)Δg) in aqueous solution via energy transfer from excited triplet acetone. This involves thermolysis of 3,3,4,4-tetramethyl-1,2-dioxetane, a chemical source, and horseradish peroxidase-catalyzed oxidation of 2-methylpropanal, as an enzymatic source. Both sources of excited carbonyls showed characteristic light emission at 1,270 nm, directly indicative of the monomolecular decay of O2 ((1)Δg). Indirect analysis of O2 ((1)Δg) by electron paramagnetic resonance using the chemical trap 2,2,6,6-tetramethylpiperidine showed the formation of 2,2,6,6-tetramethylpiperidine-1-oxyl. Using [(18)O]-labeled triplet, ground state molecular oxygen [(18)O2 ((3)Σg(-))], chemical trapping of (18)O2 ((1)Δg) with disodium salt of anthracene-9,10-diyldiethane-2,1-diyl disulfate yielding the corresponding double-[(18)O]-labeled 9,10-endoperoxide, was detected through mass spectrometry. This corroborates formation of O2 ((1)Δg). Altogether, photoemission and chemical trapping studies clearly demonstrate that chemically and enzymatically nascent excited carbonyl generates (18)O2 ((1)Δg) by triplet-triplet energy transfer to ground state oxygen O2 ((3)Σg(-)), and supports the long formulated hypothesis of O2 ((1)Δg) involvement in physiological and pathophysiological events that might take place in tissues in the absence of light.
Collapse
Affiliation(s)
- Camila M. Mano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Fernanda M. Prado
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Júlio Massari
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Glaucia R. Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Jean Cadet
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| | - Helmut Sies
- Institute of Biochemistry and Molecular Biology I, and Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| | - Etelvino J. H. Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CEP 05513-970, CP 26077, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Muthukrishnan N, Donovan S, Pellois JP. The photolytic activity of poly-arginine cell penetrating peptides conjugated to carboxy-tetramethylrhodamine is modulated by arginine residue content and fluorophore conjugation site. Photochem Photobiol 2014; 90:1034-42. [PMID: 24815901 DOI: 10.1111/php.12288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/05/2014] [Indexed: 12/16/2022]
Abstract
Upon light irradiation, Fluorophore-cell-penetrating peptide (Fl-CPP) conjugates can disrupt the integrity of biological membranes. This activity can in turn be used to photoinduce the disruption of endocytic organelles and promote the delivery of entrapped macromolecules such as proteins or RNAs into live cells. Recent mechanistic studies have shown that ROS production by the fluorophore and a latent lytic ability of CPPs act in synergy to elicit photolysis. However, how the structure of fluorophore-CPP conjugates impacts this synergistic activity remains unclear. Herein, using red blood cells (RBCs) as a model of biological membranes, we show that the number of arginine residues in a CPP as well as the position of fluorophore with respect to the CPP dramatically affect the photolytic activity of a fluorophore-CPP conjugate. These factors should therefore be considered for the development of effective photoinducible delivery agents.
Collapse
|
6
|
Miyamoto S, Martinez GR, Medeiros MHG, Di Mascio P. Singlet molecular oxygen generated by biological hydroperoxides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 139:24-33. [PMID: 24954800 DOI: 10.1016/j.jphotobiol.2014.03.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/19/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022]
Abstract
The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| | - Glaucia R Martinez
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba-PR, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP26077, CEP 05513-970 São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Tafur J, Van Wijk EPA, Van Wijk R, Mills PJ. Biophoton detection and low-intensity light therapy: a potential clinical partnership. Photomed Laser Surg 2010; 28:23-30. [PMID: 19754267 DOI: 10.1089/pho.2008.2373] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Low-intensity light therapy (LILT) is showing promise in the treatment of a wide variety of medical conditions. Concurrently, our knowledge of LILT mechanisms continues to expand. We are now aware of LILT's potential to induce cellular effects through, for example, accelerated ATP production and the mitigation of oxidative stress. In clinical use, however, it is often difficult to predict patient response to LILT. It appears that cellular reduction/oxidation (redox) state may play a central role in determining sensitivity to LILT and may help explain variability in patient responsiveness. In LILT, conditions associated with elevated reactive oxygen species (ROS) production, e.g. diabetic hyperglycemia, demonstrate increased sensitivity to LILT. Consequently, assessment of tissue redox conditions in vivo may prove helpful in identifying responsive tissues. A noninvasive redox measure may be useful in advancing investigation in LILT and may one day be helpful in better identifying responsive patients. The detection of biophotons, the production of which is associated with cellular redox state and the generation of ROS, represents just such an opportunity. In this review, we will present the case for pursuing further investigation into the potential clinical partnership between biophoton detection and LILT.
Collapse
Affiliation(s)
- Joseph Tafur
- Department of Psychiatry, Behavioral Medicine Laboratory, University of California at San Diego, San Diego, CA, USA.
| | | | | | | |
Collapse
|
8
|
Nishizawa C, Takeshita K, Ueda JI, Mizuno M, Suzuki KT, Ozawa T. Hydroxyl Radical Generation Caused by the Reaction of Singlet Oxygen with a Spin Trap, DMPO, Increases Significantly in the Presence of Biological Reductants. Free Radic Res 2009; 38:385-92. [PMID: 15190935 DOI: 10.1080/1071576042000191772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (*OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of *OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its *OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of *OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of *OH from 1O2, and that spin trap-mediated *OH generation hardly occurs with DEPMPO.
Collapse
Affiliation(s)
- Chiho Nishizawa
- Redox Regulation Research Group, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Tyrosinase [EC 1.14.18.1] isolated from mouse melanoma was inactivated during the dopa-tyrosinase reaction. When ascorbate was added to the reaction system, in which dopa-quinone is immediately converted back to dopa by ascorbate thus preventing the formation of melanin, tyrosinase inactivation similarly occurred. If superoxide anions (O2-) or singlet oxygens (1O2), are generated during the reaction they can attack the enzyme protein to be inactivated. Therefore an estimate was made with scavengers for oxygen radicals and with a liquid scintillation counter but neither was detectable. Thus the inactivation involved is not due to reaction products nor oxygen
Collapse
Affiliation(s)
- Y Tomita
- Department of Dermatology, Tohoku University School of Medicine, Sendai, Miyagi 980, Japan
| | | |
Collapse
|
10
|
Lee BC, Johng HM, Lim JK, Jeong JH, Baik KY, Nam TJ, Lee JH, Kim J, Sohn UD, Yoon G, Shin S, Soh KS. Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 73:43-8. [PMID: 14732250 DOI: 10.1016/j.jphotobiol.2003.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the putative mechanisms, by which extremely low frequency (ELF) magnetic field (MF) may affect biological systems is that of increasing free radical life span in organisms. To test this hypothesis, we investigated whether ELF (60 Hz) MF can modulate antioxidant system in mouse brain by detecting chemiluminescence and measuring superoxide dismutase (SOD) activity in homogenates of the organ. Compared to sham exposed control group, lucigenin-initiated chemiluminescence in exposed group was not significantly increased. However, lucigenin-amplified t-butyl hydroperoxide (TBHP)-initiated brain homogenates chemiluminescence, was significantly increased in mouse exposed to 60 Hz, MF, 12 G for 3 h compared to sham exposed group. We also measured SOD activity, that plays a critical role of the antioxidant defensive system in brain. In the group exposed to 60 Hz, MF, 12 G for 3 h, brain SOD activity was significantly increased. These results suggest that 60 Hz, MF could deteriorate antioxidant defensive system by reactive oxygen species (ROS), other than superoxide radicals. Further studies are needed to identify the kind of ROS generated by the exposure to 60 Hz, MF and elucidate how MF can affect biological system in connection with oxidative stress.
Collapse
Affiliation(s)
- Byung-Cheon Lee
- School of Physics, College of Natural Sciences, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-742, South Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dmitriev LF. Bacterial luminescence: luminescence mechanism with cyclic peroxide participation and dependence on reactive oxygen species (a hypothesis). Biochimie 2000; 82:237-44. [PMID: 10863007 DOI: 10.1016/s0300-9084(00)00211-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chemically initiated exchange (CIEE) luminescence reactions were reviewed and a new mechanism of luminescence with peracid as an intermediate is proposed; bacterial luminescence is generally considered to be a case of dioxetane luminescence, or, to be more precise, CIEE-luminescence which includes the generation of a cyclic peroxide. In the hypothesis the monooxygenase reaction (aldehyde -->fatty acid) should not be coupled with emitter generation as is usually believed, but only with the generation of peracid. As to the generation of the emitter, excited flavin, it is likely to occur later, during the interaction of flavin with cyclic peroxide. Its consequence is the breaking of two chemical bonds (O-O and C-C) in the cyclic peroxide and simultaneous generation of 4alpha-hydroxyflavin in exited state. In general, the generation of light includes three stages: 1) the monooxygenase reaction and the concurrent production of peracid; 2) the conversion of peracid to cyclic peroxide; and 3) the interaction of cyclic peroxide with flavin (through the CIEE mechanism).
Collapse
Affiliation(s)
- L F Dmitriev
- Department of Microbiology, School of Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
12
|
Abstract
Nitric oxide can both promote and inhibit lipid peroxidation. By itself, nitric oxide acts as a potent inhibitor of the lipid peroxidation chain reaction by scavenging propagatory lipid peroxyl radicals. In addition, nitric oxide can also inhibit many potential initiators of lipid peroxidation, such as peroxidase enzymes. However, in the presence of superoxide, nitric oxide forms peroxynitrite, a powerful oxidant capable of initiating lipid peroxidation and oxidizing lipid soluble antioxidants. The role of nitric oxide in vascular pathology is discussed.
Collapse
Affiliation(s)
- N Hogg
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
13
|
Lai YL, Chiou WY, Lu FJ, Chiang LY. Roles of oxygen radicals and elastase in citric acid-induced airway constriction of guinea-pigs. Br J Pharmacol 1999; 126:778-84. [PMID: 10188991 PMCID: PMC1565858 DOI: 10.1038/sj.bjp.0702352] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Antioxidants attenuate noncholinergic airway constriction. To further investigate the relationship between tachykinin-mediated airway constriction and oxygen radicals, we explored citric acid-induced bronchial constriction in 48 young Hartley strain guinea-pigs, divided into six groups: control; citric acid; hexa(sulphobutyl)fullerenes + citric acid; hexa(sulphobutyl)fullerenes + phosphoramidon + citric acid; dimethylthiourea (DMTU) + citric acid; and DMTU + phosphoramidon + citric acid. Hexa(sulphobutyl)fullerenes and DMTU are scavengers of oxygen radicals while phosphoramidon is an inhibitor of the major degradation enzyme for tachykinins. Animals were anaesthetized, paralyzed, and artificially ventilated. Each animal was given 50 breaths of 4 ml saline or citric acid aerosol. We measured dynamic respiratory compliance (Crs), forced expiratory volume in 0.1 (FEV0.1), and maximal expiratory flow at 30% total lung capacity (Vmax30) to evaluate the degree of airway constriction. Citric acid, but not saline, aerosol inhalation caused marked decreases in Crs, FEV0.1 and Vmax30, indicating marked airway constriction. This constriction was significantly attenuated by either hexa(sulphobutyl)fullerenes or by DMTU. In addition, phosphoramidon significantly reversed the attenuating action of hexa(sulphobutyl)fullerenes, but not that of DMTU. Citric acid aerosol inhalation caused increases in both lucigenin- and t-butyl hydroperoxide-initiated chemiluminescence counts, indicating citric acid-induced increase in oxygen radicals and decrease in antioxidants in bronchoalveolar lavage fluid. These alterations were significantly suppressed by either hexa(sulphobutyl)fullerenes or DMTU. An elastase inhibitor eglin-c also significantly attenuated citric acid-induced airway constriction, indicating the contributing role of elastase in this type of constriction. We conclude that both oxygen radicals and elastase play an important role in tachykinin-mediated, citric acid-induced airway constriction.
Collapse
Affiliation(s)
- Y L Lai
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, ROC.
| | | | | | | |
Collapse
|
14
|
Affiliation(s)
- J E Thompson
- Department of Biology, University of Waterloo, Ontario, Canada
| | | | | | | | | |
Collapse
|
15
|
Sun JS, Tsuang YH, Chen IJ, Huang WC, Hang YS, Lu FJ. An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns 1998; 24:225-31. [PMID: 9677025 DOI: 10.1016/s0305-4179(97)00115-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is not easy to detect oxygen free radicals directly because of their very short half-life. In the present study, a sensitive ultra-weak chemiluminescence detector was used to detect the generation of oxygen free radicals following thermal injury. Twelve New Zealand white rabbits were used in this study. After anesthesia, the bilateral hind-limbs were exposed to 100 degrees C water for 30 s. Six control animals were exposed to 22 degrees C water to act as a control. The chemiluminescence of whole blood and visceral organs were measured with both luminol-amplified t-butyl hydroperoxide-initiated and lucigenin-initiated methods. The results showed that chemiluminescence of blood was affected significantly by acute thermal injury. The chemiluminescence of blood increased significantly at 1 h following acute thermal injury, reached a peak at 2 h, then decreased but still remained above the control level at 4 h following thermal injury. The results for TBHP-initiated chemiluminescence from visceral organs following acute thermal injury were much higher than that of the control rabbits. The effects of lucigenin-initiated tissue chemiluminescence following acute thermal injury were not statistically significant. It is suggested that the decreased vascular antioxidant activity following local thermal injury is partially contributed by the superoxide pathway; while, the remote pathophysiologic events are mediated by the defective scavenging defenses.
Collapse
Affiliation(s)
- J S Sun
- Department of Orthopedic Surgery, National Taiwan University Hospital, Taipei, Republic of China.
| | | | | | | | | | | |
Collapse
|
16
|
Ando T, Yoshikawa T, Tanigawa T, Kohno M, Yoshida N, Kondo M. Quantification of singlet oxygen from hematoporphyrin derivative by electron spin resonance. Life Sci 1997; 61:1953-9. [PMID: 9364200 DOI: 10.1016/s0024-3205(97)00835-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism of the generation and the quantitative analysis of singlet oxygen (1O2) formed by the exposure of a hematoporphyrin derivative (HpD) to light was re-evaluated by electron spin resonance (ESR) combined with 2,2,6,6,-tetramethyl-4-piperidine (TMPD). The change from TMPD to 2,2,6,6,-tetramethyl-4-piperidine-N-oxide (TAN) has been reported to depend on singlet oxygen. However, we confirmed that this reagent also react with superoxide anion (O2-) and hydroxyl radicals (OH). Therefore, the reactions between TMPD and 1O2, O2- and OH were re-examined using a kinetic approach. We found that the generation of TAN was proportional to the concentration of TMPD and HpD, as well as to the duration and strength of the illumination. The generation of TAN was not inhibited by dimethyl-sulfoxide (DMSO) or superoxide dismutase (SOD). The reaction rate between TMPD and 1O2 was determined to be 5.0 x 10(-7) M min-1. The generation of 1O2 from HpD was 2.7 x 10(-7) M min-1 under our conditions. The competitive reaction observed between 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and TMPD for O2- or OH shows that TMPD reacts with both forms of active oxygen, but gave no ESR signal. The second-order reaction rate constant of TMPD between O2- and OH was calculated as 73 M-1 s-1 and 1.5 x 10(9) M-1 s-1, respectively. The photochemical generation of 1O2 from methylene blue, another sensitizer, was also demonstrated by this method. These results show that ESR signal of TAN can be used for the highly selective monitoring of 1O2.
Collapse
Affiliation(s)
- T Ando
- Second Department of Internal Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Liu Y, Stolze K, Dadak A, Nohl H. Light emission resulting from hydroxylamine-induced singlet oxygen formation of oxidizing LDL particles. Photochem Photobiol 1997; 66:443-9. [PMID: 9337615 DOI: 10.1111/j.1751-1097.1997.tb03171.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oxidation of low-density lipoprotein (LDL) by low amounts of cupric ions resulted in the formation of singlet oxygen (1O2, 1 delta g) when hydroxylamine (NH2OH) was added. Direct evidence on this excited species came from partial spectral resolution of the emitted light in the red spectral region (634 nm and 703 nm), which can be attributed to the dimol decay of singlet oxygen. Additional evidence for the existence of singlet oxygen came from the enhancing effect of deuterium oxide buffer (D2O) on chemiluminescence intensity and the quenching effect of sodium azide. A linear correlation between NH2OH-dependent chemiluminescence intensity and the amount of diene conjugates (DC) formed in this reaction was observed. Removal of adventitious transition metals by adequate chelators prevented chemiluminescence in this system; NH2OH was also found to efficiently decrease metabolites of lipid peroxidation (LPO). Our findings are consistent with a sequence of reactions in which NH2OH first converts transition metals to their reduced state, thereby stimulating the formation of alkoxy- and peroxyradicals. Peroxyradicals decompose in a bimolecular Russel reaction to hydroxyl compounds and singlet oxygen while the majority of alkoxy radicals are eliminated by a secondary reaction with NH2OH. Identical effects were observed when reducing antioxidants such as ascorbic acid or trolox C were used instead of hydroxylamine.
Collapse
Affiliation(s)
- Y Liu
- Institute of Pharmacology and Toxicology, Veterinary University of Vienna, Austria
| | | | | | | |
Collapse
|
18
|
Hug G, Marciniak B, Bobrowski K. Sensitized photo-oxidation of sulfur-containing amino acids and peptides in aqueous solution. J Photochem Photobiol A Chem 1996. [DOI: 10.1016/1010-6030(95)04230-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Yokoyama H, Horie T, Awazu S. Oxidative stress in isolated rat hepatocytes during naproxen metabolism. Biochem Pharmacol 1995; 49:991-6. [PMID: 7741771 DOI: 10.1016/0006-2952(94)00542-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Naproxen, a non-steroidal anti-inflammatory drug, induced lipid peroxidation in isolated hepatocytes of rats. The viability of the hepatocytes decreased upon lipid peroxidation, and this effect was accompanied by the formation of high molecular weight protein aggregates in the hepatocytes. Protein aggregation occurred slowly compared with the formation of thiobarbituric acid reactive substances (TBARS). The increase of TBARS was strongly correlated with the decrease of intracellular glutathione. Chemiluminescence was produced from the hepatocyte suspension during naproxen metabolism, and was correlated with the formation of TBARS. These results indicate that lipid peroxidation in the hepatocytes was provoked by reactive oxygens produced in the process of naproxen metabolism.
Collapse
Affiliation(s)
- H Yokoyama
- Department of Biopharmaceutics, Tokyo College of Pharmacy, Japan
| | | | | |
Collapse
|
20
|
Mitsuo K, Toshiharu H, Shoji A. Chemiluminescence associated with doxorubicin-induced lipid peroxidation in rat heart mitochondria. Biochem Pharmacol 1994. [DOI: 10.1016/0006-2952(94)90228-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Hiramitsu T, Arimoto T, Ito T, Nakano M. A new method for detecting lipid peroxidation by using dye sensitized chemiluminescence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 366:401-2. [PMID: 7771268 DOI: 10.1007/978-1-4615-1833-4_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- T Hiramitsu
- Photon Medical Research Center, Hamamatsu University School of Medicine, Japan
| | | | | | | |
Collapse
|
22
|
Retèl J, Hoebee B, Braun JE, Lutgerink JT, van den Akker E, Wanamarta AH, Joenje H, Lafleur MV. Mutational specificity of oxidative DNA damage. Mutat Res 1993; 299:165-82. [PMID: 7683085 DOI: 10.1016/0165-1218(93)90094-t] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this paper we describe our studies on the mutagenic consequences of oxidative DNA damage introduced by radiation-induced OH radicals (.OH) and by exposure to singlet oxygen (1O2), released by thermo-dissociation of the endoperoxide 3,3'-(1,4-naphthalidene) dipropionate (NDPO2). We have made use of M13mp10 bacteriophage and pUC18 plasmid DNA, containing a 144 base pair (bp) insert in the lacZ alpha gene. This 144 bp insert was used as a mutational target sequence. When dilute aqueous solutions of double-stranded (ds) M13mp10 (plus 144 bp insert) were gamma-irradiated in the presence of oxygen (O2; 100% .OH) or nitrous oxide (N2O; 90% .OH, 10% .H), very specific mutation spectra were found. Mainly bp substitutions were observed, of which C/G to G/C transversions are the predominant type. Moreover, the mutations are for the most part concentrated into two mutational hot spots: a minor and major one. Differences between the oxic (O2) and anoxic (N2O) mutation spectra could also be observed. Under N2O-1 bp deletions were detected, which are absent in the presence of O2, and in the anoxic spectrum more C/G to A/T transversions are present. To investigate whether these differences were due to the small amount of H radicals, which are formed under N2O, ds M13mp10 (plus 144 bp insert) was exposed to gamma-rays in phosphate buffer under nitrogen (55% .H, 45% .OH). Under these conditions a remarkable shift was observed from C/G-->G/C to C/G-->A/T transversions, while the mutations were far more scattered along the 144 bp sequence and no -1 bp deletions were detected. These results strongly suggest that H radicals do not cause -1 bp deletions, but may be responsible for the observed C/G to A/T transversions. The kind of bp substitution not only appeared to be dependent on the type of the water radicals, but also appeared to be strongly influenced by the replicon in which the target sequence is incorporated. When an oxygenated solution of pUC18 plasmid DNA (plus 144 bp insert) is irradiated, mainly C/G to A/T transversions were found at the same major hot spot instead of C/G to G/C transversions when the 144 bp sequence is part of M13mp10 DNA. Finally, in agreement with the observation that 1O2 reacts preferentially with guanine in DNA, a guanine is involved in most of the mutations scored after exposure of single-stranded (ss) M13mp10 DNA to NDPO2-generated 1O2.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Retèl
- Department of Oncology, Free University, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Yokoyama H, Horie T, Awazu S. Lipid peroxidation in rat liver microsomes during naproxen metabolism. Biochem Pharmacol 1993; 45:1721-4. [PMID: 8484810 DOI: 10.1016/0006-2952(93)90315-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Naproxen, a non-steroidal anti-inflammatory drug, is known to be highly effective and relatively safe, but some side-effects in the liver have been reported. In the present study, the effect of naproxen metabolism on rat liver microsomes was studied by determining lipid peroxidation in terms of thiobarbituric acid reactive substances (TBA-RS), high molecular weight protein aggregates and fluorescent substances formed in the microsomal suspension containing naproxen, NADPH and MgCl2. Lipid peroxidation was found to occur at 10 mM naproxen. Production of chemiluminescence from the microsomal suspension was observed during naproxen metabolism. The time course of 6-demethyl-naproxen formation by O-demethylation of naproxen appeared to be comparable to that of the chemiluminescence production in their initial periods of production. These results suggest that the lipid peroxidation was provoked through the reactive oxygen species generated during the oxidative metabolism of naproxen.
Collapse
Affiliation(s)
- H Yokoyama
- Department of Biopharmaceutics, Tokyo College of Pharmacy, Japan
| | | | | |
Collapse
|
24
|
Horakova L, Briviba K, Sies H. Antioxidant activity of the pyridoindole stobadine in liposomal and microsomal lipid peroxidation. Chem Biol Interact 1992; 83:85-93. [PMID: 1643671 DOI: 10.1016/0009-2797(92)90094-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stobadine, a pyridoindole derivative, is an efficient inhibitor of lipid peroxidation in phosphatidylcholine liposomes and in rat liver microsomes treated with iron/ADP/NADPH as pro-oxidant. Accumulation of thiobarbituric acid-reactive substances (TBARS) or low-level chemiluminescence were taken as a measure of lipid peroxidation and 5 microM stobadine doubled the duration of the lag phase preceding the onset of rapidly increasing chemiluminescence. Inhibition of lipid peroxidation was not observed with tocopherol-deficient microsomes, suggesting that the antioxidant effect of stobadine depends on vitamin E in the membrane. The cis(-) isomer was most effective, with the cis(+) and trans(rac) as well as dehydro- or acetyl derivatives being less active. In liposomes, the presence of reductant (NADPH or ascorbate) protects from the loss of stobadine.
Collapse
Affiliation(s)
- L Horakova
- Institut für Physiologische Chemie I, Universität Düsseldorf, Germany
| | | | | |
Collapse
|
25
|
Antonenkov VD. On the role of rat liver cytosol in suppression of low-level chemiluminescence during nonenzymatic lipid peroxidation. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:675-9. [PMID: 1516739 DOI: 10.1016/0020-711x(92)90346-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The effect of normal rat liver cytosol on the level of Fe/ADP-ascorbate-induced lipid peroxidation in the total particulate fraction (mitochondria plus microsomes) has been studied. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde (MDA) formation. 2. Dialysed cytosol significantly decreased the level of chemiluminescence, and to a much lesser extent, the rate of MDA production. 3. Gel filtration on a Sephadex G-200 column led to appearance of at least three cytosolic fractions which suppressed the low-level chemiluminescence. 4. The discovered components differed from each other by their molecular masses, kinetics of chemiluminescence inhibition and effects on intensity of MDA formation. 5. The putative functional role of antioxidative defence factors from rat liver cytosol is discussed.
Collapse
Affiliation(s)
- V D Antonenkov
- All-Union Research Center for Medico-Biological Problems of Narcology, Moscow, Russia
| |
Collapse
|
26
|
Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/0005-2728(91)90005-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Meijer AE. The pentose phosphate pathway in skeletal muscle under patho-physiological conditions. A combined histochemical and biochemical study. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1991; 22:1-118. [PMID: 2011653 DOI: 10.1016/s0079-6336(11)80052-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last 30 years, research into the neuromuscular apparatus, has expanded greatly. Multidisciplinary investigations have rapidly advanced our understanding both of diseases and of the basic neuromuscular mechanisms. The mode of pathological reaction of the neuromuscular apparatus is now quite well understood. The most notable aspect of the reaction of the injured neuromuscular apparatus is the remarkably stereotyped character of the resulting pathological changes as demonstrated by a wide variety of harmful causes, producing surprisingly similar effects. The findings of our combined histochemical and biochemical investigations presented in this monograph, are in complete harmony with the stereotyped character of the pathological changes. For example, it is particularly striking that many affected muscle fibres of patients with muscular dystrophies, congenital myopathies, inflammatory myopathies, metabolic myopathies, endocrine myopathies, or with diseases of the lower motor neuron, display an enhanced activity of both oxidative enzymes of the pentose phosphate pathway. Likewise, we found that experimental animals with disordered skeletal muscles, provoked by different types of agents or treatments, reveal the same marked rise in activity of GPDH and PGDH in the muscle fibres, with a positive correlation between the activity of both enzymes. Other findings of our investigations point to a positive correlation between the activity of GPDH and PGDH on the one hand and that of the non-oxidative enzymes of the pentose phosphate pathway, the enzymes TA, TK, RPI and RPE on the other hand. The rise in activity of PGDH and, in particular, of GPDH is regulated by two different mechanisms. The first represents a rapid control mechanism based on the stimulation of both oxidative enzymes of the pentose phosphate pathway by NADP+ and on their inhibition by NADPH. The other mechanism represents a long-term effect directed at the synthesis of the enzymes. It is this type of mechanism which is responsible for the rise in activity of GPDH and PGDH we observed. The findings obtained with the applied enzyme histochemical techniques clearly demonstrated that the rise in activity of both enzymes is not homogeneously distributed in the disordered skeletal muscles of man and experimental animals. For that reason, in order to obtain reliable quantitative information about enzyme activities in the muscle fibres themselves, the application of biochemical assays on a micro-scale was indispensable. The biochemical assay of enzyme activities was performed on histologically and histochemically selected dissected muscle specimens.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A E Meijer
- Department of Neurology, University of Amsterdam, The Netherlands
| |
Collapse
|
28
|
Török B. Chemiluminescence as a marker of myocardial ischemia. Basic Res Cardiol 1991; 86 Suppl 3:115-21. [PMID: 1781762 DOI: 10.1007/978-3-662-30769-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dog experiments were performed using the measurement of tissue chemiluminescence to clarify the peculiar role of reactive oxygen species in ischemic heart damage. Following left thoracotomy and pericardiotomy, the left anterior descending coronary artery (LAD) was ligated for 2 h and 24 h. Epicardial and endocardial muscle specimens were excised, homogenized, and centrifuged to detect chemiluminescent difference in the supernatants after t-butyl hydroperoxide induction at each time interval. Characteristic alterations were found between the infarcted region, border zone, and intact area. The induced photoemission differs in an altered kinetic as well as in intensity values. It is assumed that interrelations exist between the observed light burst and the actual scavenger state. Antioxidant application advantageously modifies the chemiluminescence effect, especially at the border zone. Induced chemiluminescence is a good method to characterize ischemically altered myocardial cellular metabolism.
Collapse
Affiliation(s)
- B Török
- Institute of Experimental Surgery, University School of Medicine Pécs, Hungary
| |
Collapse
|
29
|
Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 1990; 186:1-85. [PMID: 2172697 DOI: 10.1016/0076-6879(90)86093-b] [Citation(s) in RCA: 2948] [Impact Index Per Article: 84.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Seed JL, Specht KG, Dahl TA, Midden WR. Singlet oxygen induced mutagenesis of benzo[a]pyrene derivatives. Photochem Photobiol 1989; 50:625-32. [PMID: 2695948 DOI: 10.1111/j.1751-1097.1989.tb04318.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Singlet oxygen activates the mutagenicity of several benzo[a]pyrene (BP) derivatives in the absence of mammalian metabolic action. This has been demonstrated using a separated-surface-sensitizer system for generating chemically pure singlet oxygen, eliminating most of the complications that arise with singlet oxygen generation by conventional photosensitization. Salmonella typhimurium bacteria were exposed to singlet oxygen in the presence of certain BP derivatives and the mutation frequency determined with an azaguanine forward mutation assay. The mutation frequency was increased by exposure to singlet oxygen compared to light-only controls for those BP derivatives that were saturated at either the 7,8 or 9,10 positions but not both. The increase in mutation frequency depends on both the concentration of BP derivative and on the dose of singlet oxygen. Mutation frequency was also significantly increased when bacteria were treated with a solution of trans-7,8-dihydrodiol-BP that had been separately exposed to singlet oxygen, unequivocally demonstrating that the mutagenicity is due to the formation of a product of BP derivative oxidation by singlet oxygen and that this product has a lifetime at least on the order of minutes in acetonitrile. The requirement for singlet oxygen rather than some other form of reactive oxygen was confirmed by determination of the gas phase lifetime of the intermediate responsible for activating mutagenicity. This was performed by measuring the dependence of the mutation frequency on the distance separating the sensitizer from the target. This gives a value of 88 +/- 35 ms, which is in excellent agreement with the mean value of 89 ms calculated from previous independent determinations of the gas phase lifetime of singlet oxygen reported in the literature.
Collapse
|
31
|
Yasuda H, Miki M, Takenaka Y, Tamai H, Mino M. Changes in membrane constituents and chemiluminescence in vitamin E-deficient red blood cells induced by the xanthine oxidase reaction. Arch Biochem Biophys 1989; 272:81-7. [PMID: 2544145 DOI: 10.1016/0003-9861(89)90197-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The oxidation of vitamin E-deficient rat red blood cells (RBCs) induced by the hypoxanthine-xanthine oxidase (HX-XOD) system has been performed in an aqueous suspension. The generation of chemiluminescence and the accumulation of thiobarbituric acid-reactive substances (TBARS) were observed initially and were followed by hemolysis. Interestingly, the total counts of chemiluminescence were closely related to the amount of TBARS. The predominant change of membrane proteins induced by the reaction was the depletion of spectrin bands in gel electrophoresis. When RBC ghosts were oxidized with HX-XOD, the sulfhydryl (SH) groups of membrane proteins decreased at an early stage of the incubation, which was coincident with the above protein alteration. Membrane alpha-tocopherol suppressed not only the formation of TBARS but also chemiluminescence and hemolysis; nevertheless, it did not inhibit the protein damage and the loss of SH groups. Moreover, it was concluded that the chemiluminescence observed during the oxidation of RBC membranes was associated mainly with the peroxidation of lipids and only to a minor extent with the oxidation of proteins.
Collapse
Affiliation(s)
- H Yasuda
- Department of Pediatrics, Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
32
|
Encinas MV, Lissi EA, Vasquez M, Olea AF, Silva E. Photointeraction of benzophenone triplet with lysozyme. Photochem Photobiol 1989; 49:557-63. [PMID: 2755990 DOI: 10.1111/j.1751-1097.1989.tb08424.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The quenching of the benzophenone triplet by lysozyme and its constituent amino acids in aqueous solutions have been studied. Native lysozyme quenches the benzophenone triplet with a high rate constant, 4 x 10(9) M-1 s-1. The quenching process takes place with production of significant amounts of free ketyl radicals, phi ketyl = 0.56, but with a very low benzophenone consumption yield (0.022). The consumption yield is considerably smaller than that observed for the free amino acids. This difference can be explained in terms of a dominant back hydrogen transfer to the protein in the disproportionation of the free radicals produced. Reduced and carboxymethylated lysozyme shows a higher quenching rate (7.8 x 10(9) M-1 s-1) and a larger benzophenone consumption yield (0.07). The deactivation of the benzophenone triplet by the native protein leads to its inactivation, with a quantum yield of 0.01. Tryptophan and arginine residues are destroyed with a quantum yield of 0.01. In the modified enzyme tyrosine and methionine groups are also consumed.
Collapse
|
33
|
Di Mascio P, Wefers H, Do-Thi HP, Lafleur MV, Sies H. Singlet molecular oxygen causes loss of biological activity in plasmid and bacteriophage DNA and induces single-strand breaks. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1007:151-7. [PMID: 2920171 DOI: 10.1016/0167-4781(89)90033-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Damage of plasmid and bacteriophage DNA inflicted by singlet molecular oxygen (1O2) includes loss of the biological activity measured as transforming capacity in E. coli and single-strand break formation. Three different sources of 1O2 were employed: (i) photosensitization with Rose bengal immobilized on a glass plate physically separated from the solution; (ii) thermal decomposition of the water-soluble endoperoxide 3,3'-(1,4-naphthylidene) dipropionate (NDPO2); and (iii) microwave discharge. Loss of transforming activity was documented after exposing bacteriophage M13 DNA to 1O2 generated by photosensitization employing immobilized Rose bengal, and with bacteriophage luminal diameter X174 DNA, using the thermodissociable endoperoxide (NDPO2) as a source of 1O2. These findings are in agreement with experiments in which plasmid DNA pBR322 was exposed to a gas stream of 1O2 generated by microwave discharge. The effects of 1O2 quenchers and of 2H2O indicate 1O2 to be the species responsible. Strand-break formation in pBR322 and luminal diameter X174, measured as an increase of the open circular form at the expense of the closed circular supercoiled form, was observed without alkaline treatment after exposing the DNA to 1O2, using either agarose gel electrophoresis or sucrose gradient separation. The effect of quenchers and 2H2O indicate the involvement of 1O2 in DNA damage. We conclude that singlet oxygen can cause loss of biological activity and DNA strand breakage.
Collapse
Affiliation(s)
- P Di Mascio
- Institut für Physiologische Chemie I, Universität Düsseldorf, F.R.G
| | | | | | | | | |
Collapse
|
34
|
Puntarulo S, Cederbaum AI. Chemiluminescence from acetaldehyde oxidation by xanthine oxidase involves generation of and interactions with hydroxyl radicals. Alcohol Clin Exp Res 1989; 13:84-90. [PMID: 2538093 DOI: 10.1111/j.1530-0277.1989.tb00288.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of acetaldehyde to generate free radicals is often ascribed to its oxidation by xanthine oxidase, with the subsequent production of reactive oxygen intermediates. Chemiluminescence associated with the oxidation of acetaldehyde by xanthine oxidase was inhibited by superoxide dismutase, catalase, or several hydroxyl radical scavenging agents, and was stimulated by the addition of EDTA or ferric-EDTA. This suggests that the light emission is primarily due to the production of hydroxyl radicals via an iron-catalyzed Haber-Weiss type of reaction. Chemiluminescence with hypoxanthine as substrate for xanthine oxidase was much lower than that found with acetaldehyde, yet rates of hydroxyl radical production were greater with hypoxanthine. Acetaldehyde increased light emission in the presence of hypoxanthine by a greater than additive effect. These results suggest a complex role for acetaldehyde in catalyzing xanthine oxidase-dependent chemiluminescence. It appears that besides being a substrate for xanthine oxidase, acetaldehyde also reacts with the generated hydroxyl radical to produce acetaldehyde radicals, which yield chemiluminescence upon their decay. Further studies will be required to evaluate whether the production of such species contributes to or plays a role in the generation of reactive oxygen intermediates and toxicity associated with acetaldehyde metabolism.
Collapse
Affiliation(s)
- S Puntarulo
- Department of Biochemistry, Mount Sinai School of Medicine, New York, New York 10029
| | | |
Collapse
|
35
|
Scholz W, Staszkiewicz U, Popp FA, Nagl W. Light-stimulated ultraweak photon reemission of human amnion cells and Wish cells. CELL BIOPHYSICS 1988; 13:55-63. [PMID: 2456152 DOI: 10.1007/bf02797365] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Photon reemission in the ultraweak intensity range that is observed after irradiation of cell suspensions with light, reveals characteristic differences between normal human amnion cells and transformed Wish cells from the same parental tissue. The reemission kinetics, approximated best by a hyperbolical process, were studied as a function of cell density, showing that: malignant Wish cells have a photon storage capacity that is not improved by increasing the cell density; and that normal amnion cells exhibit a photon storage capacity that strongly increases with increasing cell density. The interpretation of this effect and the nature of the emitter are discussed.
Collapse
Affiliation(s)
- W Scholz
- German Cancer Research Center, Institute of Biochemistry, Heidelberg
| | | | | | | |
Collapse
|
36
|
Van Wijk R, Schamhart DH. Regulatory aspects of low intensity photon emission. EXPERIENTIA 1988; 44:586-93. [PMID: 3294034 DOI: 10.1007/bf01953306] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photon emission from unicellular and multicellular organisms has been a subject of study for many decennia. In contrast to the well-known phenomenon of bioluminescence originating in luciferin-luciferase reactions, low intensity emission in the visible region of the electromagnetic spectrum has been found in almost every species studied so far. At present, the nomenclature of this phenomenon has not crystallized and it is referred to by a variety of names, such as mitogenetic radiation 29, dark luminescence 7, low-level chemiluminescence 20,36, and biophotons 57. Particular attention has been focussed on the relationship between photon emission and the regulation of various aspects of cellular metabolism, although in many cases quantitative data are still lacking. Throughout the history of this field of research the question of a functional biological role of the low intensity emission has been repeatedly raised; this is reflected, for instance, in the heterogeneity of the terms used to describe it. The discussion concerns the possible participation of photons of low intensity in intra- and intercellular communication. This paper reviews literature on the metabolic regulation of low intensity emission, as well as the regulation of photon emission initiated by external light. Furthermore, recent data are discussed with respect to a possible biocommunicative function of low intensity photon emission.
Collapse
Affiliation(s)
- R Van Wijk
- Department of Molecular Cell Biology, University of Utrecht, The Netherlands
| | | |
Collapse
|
37
|
Minakami H, Arai H, Nakano M, Sugioka K, Suzuki S, Sotomatsu A. A new and suitable reconstructed system for NADPH-dependent microsomal lipid peroxidation. Biochem Biophys Res Commun 1988; 153:973-8. [PMID: 2839175 DOI: 10.1016/s0006-291x(88)81323-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In order to evaluate the O-2 participation in NADPH-dependent microsomal lipid peroxidation, we used reconstructed system which contained detergent-solubilized NADPH-dependent cytochrome P-450 reductase, cytochrome P-450, phospholipid liposomes, NADPH and Fe3+-ADP. Lipid peroxidation, monitored by the formation of thiobarbituric acid-reactive substance, was increased with increasing concentration of detergent-solubilized NADPH cytochrome P-450 reductase, cytochrome P-450 or Fe3+-ADP. Cytochrome P-450-dependent lipid peroxidation was parallel to O-2 generation monitored by chemiluminescence probe with 2-methyl-6-(p-methoxyphenol)-3,7-dihydroimidazo[1,2-a]pyrazin++ +-3-one. Lipid peroxidation was significantly inhibited by superoxide dismutase, but not by catalase or sodium benzoate. The reconstructed system herein described is considered to be very close to NADPH-dependent microsomal lipid peroxidation system.
Collapse
Affiliation(s)
- H Minakami
- Department of Obstetrics and Gynecology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Wefers H, Sies H. The protection by ascorbate and glutathione against microsomal lipid peroxidation is dependent on vitamin E. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:353-7. [PMID: 3383850 DOI: 10.1111/j.1432-1033.1988.tb14105.x] [Citation(s) in RCA: 285] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lipid peroxidation of rat liver microsomal fractions was monitored by its low-level chemiluminescence in preparations from controls and vitamin-E-deficient animals. Measurements were made (a) of the duration of the lag phase tau0 after initiation with NADPH/iron-ADP and (b) of the slope of the chemiluminescence increase. In microsomes with normal vitamin E (alpha-tocopherol) level the lag phase tau0 was substantially increased by ascorbate; in contrast, even an enhanced peroxidation was observed with ascorbate in vitamin-E-deficient microsomes. Therefore, the ascorbate-mediated protection of microsomal membranes against lipid peroxidation is dependent on vitamin E in the membrane. In vitamin E deficiency the pro-oxidant effect of ascorbate was abolished when glutathione (GSH) was present. Likewise, GSH does not prolong the lag phase tau0 in vitamin E deficiency. However, GSH (but not cysteine) exerts an antioxidant effect both in controls and in vitamin E deficiency by decreasing the slope of the chemiluminescence increase during lipid peroxidation. The involvement of GSH in an enzyme-dependent mechanism is suggested.
Collapse
Affiliation(s)
- H Wefers
- Institut für Physiologische Chemie I, Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
39
|
Link EM, Riley PA. Role of hydrogen peroxide in the cytotoxicity of the xanthine/xanthine oxidase system. Biochem J 1988; 249:391-9. [PMID: 2829857 PMCID: PMC1148716 DOI: 10.1042/bj2490391] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. The survival of mammalian epithelial cells exposed in vitro to the xanthine/xanthine oxidase system in phosphate-buffered saline (PBS) or serum-containing medium (SCMEM) was investigated. 2. The cytotoxic effect observed depended on the composition of the medium in which the enzymic reaction was carried out; a surviving fraction of 5 x 10(-5) was found for cells exposed in PBS and 5.2 x 10(-1) for those in SCMEM. 3. The cytotoxic product(s) formed by the xanthine/xanthine oxidase system was relatively stable in PBS; survival of cells incubated after completion of the enzymic reaction was always less than that found for cells exposed during the reaction in the same system. 4. Superoxide dismutase or mannitol present during the enzymic reaction did not inhibit the cytotoxic effect. 5. NaN3 (a single-oxygen quencher and a catalase inhibitor) added to the system in SCMEM caused a reduction in survival to the level observed for cells exposed to the enzymic reaction in PBS. 6. Catalase completely protected cells, but no protection was observed when both catalase and NaN3 were present in the reaction mixture. 7. A similar cytotoxic effect was produced when cells were treated with H2O2 alone. 8. The rate of H2O2 decomposition in medium was accelerated by the presence of serum, but this was completely inhibited by NaN3. 9. It is concluded that H2O2 is the major cytotoxic product formed by the xanthine/xanthine oxidase system.
Collapse
Affiliation(s)
- E M Link
- Department of Chemical Pathology, University College, London, U.K
| | | |
Collapse
|
40
|
Yasuda H, Miki M, Takenaka Y, Tamai H, Mino M. Chemiluminescence from vitamin E-deficient erythrocyte membranes induced by xanthine oxidase reaction. BASIC LIFE SCIENCES 1988; 49:249-54. [PMID: 3250482 DOI: 10.1007/978-1-4684-5568-7_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- H Yasuda
- Department of Pediatrics Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
41
|
Goddard JG, Sweeney GD. Delayed, ferrous iron-dependent peroxidation of rat liver microsomes. Arch Biochem Biophys 1987; 259:372-81. [PMID: 3426233 DOI: 10.1016/0003-9861(87)90503-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Measurement of both chemiluminescence (CL) and the formation of 2-thiobarbituric acid-reacting substances (TBAR) has been used to study the delayed, nonenzymatic lipid peroxidation (LP) initiated in rat liver microsomes by ferrous chloride. Following Fe2+ addition, the CL technique revealed a burst of light emission (peak, Phase II) which was preceded by a period of little or no detectable photon production (delay, Phase I) and succeeded by an increased emission (Phase III). Analysis of TBAR indicated a low rate of LP during the delay which increased more than fivefold during a 1-min period and which corresponded to the CL peak. The delay length depended on both the Fe2+ concentration and the microsome concentration; increased Fe2+ yielded longer delays while increased microsome concentration decreased the delay. As reported by others [J. R. Bucher, M. Tien, and S. D. Aust (1983) Biochem. Biophys. Res. Commun. 111, 777-784; J. M. Braughler, L. A. Duncan, and R. L. Chase (1986) J. Biol. Chem. 261, 10282-10289], Fe3+ also decreased the delay. The ferric-nitrilotriacetate (Fe3+-NTA) complex was found to be more efficient than "free" Fe3+ [Fe(NO3)3]; a 100 microM concentration of the 1:1 Fe3+-NTA complex eliminated the delay due to 100 microM Fe2+, whereas 400 microM Fe(NO3)3 reduced the delay from 17.5 to 2.5 min. Incubation under reduced O2 tension demonstrated a requirement for O2 during the delay. The use of antioxidants [butylated hydroxytoluene, (+)-catechin, promethazine, and uric acid] and inhibitors of the Haber-Weiss reaction (mannitol, Tris buffer, dimethyl sulfoxide, catalase, and superoxide dismutase) indicated that the initiating species has characteristics of a weak oxidizing radical capable of either hydrogen or electron abstraction from suitable target molecules. We hypothesize that the delay that is sensitive to the Fe2+:microsome ratio is due to reductive elimination of the initiating species by "free" Fe2+. The nature of the initiating species has yet to be determined; however, the argument is presented that the perferryl ion (Fe3+-O2-.) may possess the characteristics required for the initiator.
Collapse
Affiliation(s)
- J G Goddard
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
42
|
Abstract
In toxicology, it is of interest not only to assess enzyme levels and capacities for potential fluxes, but it is also useful to develop methods for determining actual concentrations and fluxes in the intact cell and organ. To this end, several noninvasive techniques have been developed over the years. Our interest has been largely in photometric techniques. Transmission spectrophotometry through solid organs permits monitoring of the cytochromes of the mitochondrial respiratory chain and cytochrome P-450 as well as other pigments of biological interest. Furthermore, the steady state level of catalase Compound I in liver provides information on rates of H2O2 production. These are in the nM to microM concentration range. More recently, the monitoring of photoemission from intact organs has been useful in toxicological problems. The major photoemissive species, singlet molecular oxygen and excited carbonyls, can now be monitored with good signal/noise ratio. Redox cycling of quinones and the generation of photoemissive species were studied in menadione metabolism. Inhibition of phase II led to a significant increase in the steady state level of singlet oxygen, as did the inhibition of two-electron reduction by using the inhibitor dicoumarol for DT diaphorase. Conversely, the induction of DT diaphorase by pretreatment with BHA protected by decreasing the level of reactive oxygen species.
Collapse
|
43
|
Thompson JE, Legge RL, Barber RF. THE ROLE OF FREE RADICALS IN SENESCENCE AND WOUNDING. THE NEW PHYTOLOGIST 1987; 105:317-344. [PMID: 33873900 DOI: 10.1111/j.1469-8137.1987.tb00871.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactions involving free radicals are an inherent feature of plant senescence and appear to contribute to a process of oxidative deterioration that leads ultimately to cell death. Radical species derived from molecular oxygen are the primary mediators of this oxidative damage, but non-radical excited states of oxygen, specifically singlet oxygen, may also be involved. Several lines of evidence suggest that degradation of lipids in senescing membranes and the ensuing release of free fatty acids initiate oxidative deterioration by providing substrate for lipoxygenase. In some tissues, lipoxygenase activity increases with advancing senescence in a pattern that is consistent with its putative role in promoting oxidative damage. However, there are important exceptions to this which may be explained by the fact that the timing and extent of peroxidative reactions initiated by lipoxygenase are likely to be determined more by the availability of substrate for the enzyme than by changes in its activity. There are both membranous and cytosolic forms of lipoxygenase in senescing tissues, and peroxidation of membrane lipids appears to be initiated by the membranous enzyme once the appropriate fatty acid substrates, linoleic acid and linolenic acid, become available. Since lipid peroxidation is known to form alkoxy and peroxy radicals as well as singlet oxygen, these reactions in membrane bilayers are probably a major source of activated oxygen species in senescing tissues. Further-more, there are indications that activated oxygen from the lipoxygenase reaction can become substrate for the cytosolic form of the enzyme which, in turn, may raise the titre of activated oxygen during senescence. Additional possible sources of increased free radical production in senescing tissues include peroxidase, which shows greatly increased activity with advancing age, leakage of electrons from electron transport systems to oxygen, in particular from the photosynthetic electron transport system, and decompartmentalization of iron, which would facilitate formation of the highly reactive hydroxyl radical from the less reactive superoxide anion. A variety of macromolecules can be damaged by activated oxygen. Unsaturated fatty acids are especially prone to attack, and this implies that membranes are primary targets of free radical damage. The manifestations of this damage in senescing tissues range from altered membrane fluidity and phase properties to leakiness that can be attributed to a destabilized and highly perturbed membrane bilayer. There is also a progressive breakdown of cellular protein with advancing senescence. Free radicals can inactivate proteins by reacting with specific amino acid residues, and a number of in zitro studies have indicated that such alteration renders the proteins more prone to hydrolysis by proteases. Thus, although there is no direct evidence linking enhanced proteolysis during senescence to free radical damage, there is reason to believe that this may be a contributing factor. Wounding of certain plant tissues also initiates a series of reactions that revolve around the breakdown of membrane lipids and their peroxidation. Indeed, as in the case of senescence, membrane deterioration follokving wounding appears to be facilitated by a self-perpetuating wave of free radical production emanating from peroxidation within the lipid bilayer. There is also recent evidence for activation of an O2 - -producing NADPH oxidase in plant tissues following fungal infection that may be analogous to the well-characterized O2 - -generating NADPH oxidase associated with the plasma membrane of polymorphonuclear leukocytes. This raises the interesting possibility that plants and animals share a common defence response to invading organisms. Contents Summary 317 I. Introduction 318 II. Species of activated oxygen 319 III. Sites of activated oxygen production 319 IV. Free radical production during senescence 323 V. Targets of free radical damage in senescing tissues 330 VI. The role of free radicals in seed ageing 336 VII. The role of free radicals in wounding 337 VIII. Concluding remarks 338 Acknowledgement 338 References 338.
Collapse
Affiliation(s)
- J E Thompson
- Departments of Biology and Chemical Engineering, University of Waterloo, Ontario, Canada N2L 3G1
| | - R L Legge
- Departments of Biology and Chemical Engineering, University of Waterloo, Ontario, Canada N2L 3G1
| | - R F Barber
- Departments of Biology and Chemical Engineering, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
44
|
Noll T, de Groot H, Sies H. Distinct temporal relation among oxygen uptake, malondialdehyde formation, and low-level chemiluminescence during microsomal lipid peroxidation. Arch Biochem Biophys 1987; 252:284-91. [PMID: 3813537 DOI: 10.1016/0003-9861(87)90033-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An oxystat system was employed in conjunction with a single-photon counting apparatus for simultaneous monitoring of oxygen uptake, oxidative decomposition of membrane lipids, and occurrence of electronically excited species during microsomal lipid peroxidation. During NADPH/ADP-iron-promoted lipid peroxidation at a steady state oxygen partial pressure (pO2) of 30 mm Hg, complex time relationships among oxygen uptake, malondialdehyde (MDA) formation, and low-level chemiluminescence were observed. While the first two parameters occurred nearly simultaneously, low-level chemiluminescence occurred with a significant delay. A decrease of the steady state pO2 to 3 mm Hg led to significant increases of the lag phases of all three parameters and a further enhancement of the time displacement of low-level chemiluminescence in relation to oxygen uptake and MDA formation. At a pO2 of 0.5 mm Hg, the lowest pO2 maintained during this study, no low-level chemiluminescence was observed while oxygen uptake and MDA formation were still detected. In contrast, during NADPH/CCl4-promoted lipid peroxidation at a pO2 of 0.5 mm Hg a sudden drastic rise of low-level chemiluminescence accompanying oxygen uptake and MDA formation was observed. At pO2 between 0.5 and 3 mm Hg all three parameters occurred nearly concomitantly during the entire incubation. At pO2 levels above 3 mm Hg all three parameters showed principally the same behavior. However, the respective maxima of low-level chemiluminescence were reached with some delay. The present observations support the assumption that the decomposition of membrane lipid peroxyl radicals to MDA and the formation of electronically excited species proceed via different pathways. The time displacement between oxygen uptake and MDA formation, on the one hand, and low-level chemiluminescence, on the other hand, depends on the type of initiating radical system and on the steady state pO2 level. It is suggested that the differences are due to distinct subsets (chemical or spatial) of secondary peroxyl radicals in the membrane.
Collapse
|
45
|
Goddard JG, Basford D, Sweeney GD. Lipid peroxidation stimulated by iron nitrilotriacetate in rat liver. Biochem Pharmacol 1986; 35:2381-7. [PMID: 3729994 DOI: 10.1016/0006-2952(86)90465-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The complex of ferric iron with nitrilotriacetate (iron-NTA) given i.p. is an unusually potent stimulus for lipid peroxidation (LP) in vivo, as monitored by exhaled alkanes. Localization of 59Fe-labeled NTA radioactivity in mouse liver and accumulation of thiobarbituric acid (TBA)-reacting material in liver after i.p. injection suggested that the effect of i.p. iron-NTA could be primarily hepatic. It was found that 100 microM iron-NTA added to a hepatocyte suspension gassed with air stimulated ethane production (3 +/- 1 pmoles/10(6) cells/min) versus an undetectable control, and at a sensitivity of 0.083 pmole/10(6) cells/min. Under similar conditions, hepatocytes stimulated by iron-NTA generated low level chemiluminescence (CL) in parallel with formation of TBA-reactants; the generation of CL was concentration related. Liver was homogenized and fractionated by ultracentrifugation: iron-NTA stimulated CL in whole liver homogenate as in intact cells. The greater part of this activity localized to the microsomal and mitochondrial fractions where NADH or NADPH was required. Using rat liver microsomes, it was shown that iron-NTA in the presence of NADPH stimulated two phases of CL with an initial phase maximum in 1-2 min (phase 1) which decreased abruptly to be followed by a prolonged rise (phase 2); NADH could replace NADPH. Ferrous iron (as chloride) caused a burst of CL, whereas ferric iron was inactive. However, complex differences exist between CL stimulated by Fe(II) and by iron-NTA in the presence of reducing equivalents. Under conditions resulting in the production of CL, a microsomal system with iron-NTA and reducing equivalent accumulated TBA-reactants in parallel with the stimulated CL and rapid increase in oxygen consumption. Both desferrioxamine and butylated hydroxyanisole were able to strongly inhibit the CL stimulated by iron-NTA. When iron-NTA and iron-ADP were compared in the microsomal system, similar responses were obtained but major differences characterized the effects of these iron chelates on whole cells with the ADP complex being relatively inactive. We conclude that iron-NTA stimulated free radical reactions in liver by undergoing cyclic oxidation and reduction and that these reactions utilized oxygen, generated CL, and formed TBA-reactants and ethane. At a subcellular level, the reactions of iron-NTA resembled those reported for iron-ADP.
Collapse
|
46
|
Lissi EA, Cáceres T, Videla LA. Visible chemiluminescence from rat brain homogenates undergoing autoxidation. I. Effect of additives and products accumulation. JOURNAL OF FREE RADICALS IN BIOLOGY & MEDICINE 1986; 2:63-9. [PMID: 3772042 DOI: 10.1016/0748-5514(86)90125-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rat brain homogenate autoxidation was assessed from thiobarbituric acid reactant accumulation (TBAR), light emission, and oxygen uptake. The effect of several additives upon TBAR accumulation and light intensity suggests that these parameters can be employed as a reliable measure of the lipoperoxidation extent. From the different time profiles of TBAR accumulation and light emission, it is concluded that instantaneous light emission is not a measure of the lipoperoxidation rate but it is related to the accumulation of products. The time dependence of the light emitted after addition to an incubated sample of an excess of free radical scavengers indicates that at least two intermediates of widely different lifetimes are contributing to the observed light emission.
Collapse
|
47
|
Talcott RE, Smith MT, Giannini DD. Inhibition of microsomal lipid peroxidation by naphthoquinones: structure-activity relationships and possible mechanisms of action. Arch Biochem Biophys 1985; 241:88-94. [PMID: 4026326 DOI: 10.1016/0003-9861(85)90365-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Menadione (2-methyl-1,4-naphthoquinone) is a remarkably potent inhibitor of microsomal lipid peroxidation, effective at submicromolar concentrations. Its possible mechanism of action and the relationship between naphthoquinone structure and antioxidant activity were the topics of this investigation. In the microsomal lipid-peroxidizing system dependent on NADPH and ferric pyrophosphate, menadione, at concentrations of 50 microM or higher virtually eliminated the accumulation of malondialdehyde and lipid hydroperoxides. In the NADPH-independent, cumene hydroperoxide-dependent system, menadione was also an effective antioxidant, but only in the presence of reducing equivalents. These and other observations indicate that a reduced form of menadione, either the hydroquinone or semiquinone, is the active antioxidant, and suggest that it may trap hydroperoxy radicals, alkoxy radicals, or other free radicals involved in propagating lipid peroxidation. Moreover, these results show that electron diversion per se cannot account for the antioxidant effects of menadione. A comparison of the antioxidant activities of eight 1,4-naphthoquinones indicated that methyl substitution of C-2, lack of steric hindrance at C-3 or C-5, and (in the case of weak acids) a relatively high pKa are favorable structural features associated with strong antioxidant activity.
Collapse
|
48
|
Yoneda Y, Kuriyama K, Takahashi M. Modulation of synaptic GABA receptor binding by membrane phospholipids: possible role of active oxygen radicals. Brain Res 1985; 333:111-22. [PMID: 2986768 DOI: 10.1016/0006-8993(85)90130-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pretreatment of cerebral synaptic membrane preparations with phospholipase (PLase) A2 invariably induced a significant enhancement of [3H]muscimol binding in a dose-dependent manner with a concomitant elevation of the content of total free fatty acids in the membrane. In vitro addition of various free fatty acids exhibited no profound alteration in [3H]muscimol binding, whereas a significant enhancement of the binding was induced by the pretreatment of the membrane with unsaturated free fatty acids such as arachidonic acid and linoleic acid, but not by that with saturated free fatty acids. None of the inhibitors of arachidonic acid metabolism including indomethacin (an inhibitor of cyclo-oxygenase) and nordihydroguaiaretic acid (an inhibitor of lipoxygenase), however, had a significant preventive action on the augmentation of [3H]muscimol binding. On the other hand, various scavengers for superoxide anion radical such as superoxide dismutase, tiron and nitroblue tetrazolium (NBT) not only suppressed the PLase A2-induced enhancement of [3H]muscimol binding, but also diminished the augmentation of the binding due to PLase C and arachidonic acid. It was also found that a remarkable facilitation of the formation of superoxide anion radical was induced by the treatment of synaptic membrane with PLase A2, PLase C and arachidonic acid, all of which exhibited a prominent stimulation of the binding. In addition, treatment of the membrane with xanthine and xanthine oxidase, a superoxide anion radical generating system, resulted in a profound stimulation of the binding. The PLase A2-induced enhancement of the binding was also attenuated by the scavengers for hydrogen peroxide like catalase as well as by those for hydroxyl radical such as dimethylnitrosoaniline, mannitol, methanol and ethanol, but not by those for singlet oxygen radical including alpha-tocopherol and beta-carotene. The present results suggest that membrane phospholipids may play an important role in the modulation of the association of GABA with its relevant receptor through the generation of active oxygen radicals from unsaturated free fatty acids which are yielded by the catalytic action of PLase A2 and/or PLase C.
Collapse
|
49
|
Kogure K, Arai H, Abe K, Nakano M. Free radical damage of the brain following ischemia. PROGRESS IN BRAIN RESEARCH 1985; 63:237-59. [PMID: 3835580 DOI: 10.1016/s0079-6123(08)61987-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
|