1
|
Allen JF. Why we need to know the structure of phosphorylated chloroplast light-harvesting complex II. PHYSIOLOGIA PLANTARUM 2017; 161:28-44. [PMID: 28393369 DOI: 10.1111/ppl.12577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 02/27/2017] [Accepted: 03/07/2017] [Indexed: 05/11/2023]
Abstract
In oxygenic photosynthesis there are two 'light states' - adaptations of the photosynthetic apparatus to spectral composition that otherwise favours either photosystem I or photosystem II. In chloroplasts of green plants the transition to light state 2 depends on phosphorylation of apoproteins of a membrane-intrinsic antenna, the chlorophyll-a/b-binding, light-harvesting complex II (LHC II), and on the resulting redistribution of absorbed excitation energy from photosystem II to photosystem I. The transition to light state 1 reverses these events and requires a phospho-LHC II phosphatase. Current structures of LHC II reveal little about possible steric effects of phosphorylation. The surface-exposed N-terminal domain of an LHC II polypeptide contains its phosphorylation site and is disordered in its unphosphorylated form. A molecular recognition hypothesis proposes that state transitions are a consequence of movement of LHC II between binding sites on photosystems I and II. In state 1, LHC II forms part of the antenna of photosystem II. In state 2, a unique but as yet unidentified 3-D structure of phospho-LHC II may attach it instead to photosystem I. One possibility is that the LHC II N-terminus becomes ordered upon phosphorylation, adopting a local alpha-helical secondary structure that initiates changes in LHC II tertiary and quaternary structure that sever contact with photosystem II while securing contact with photosystem I. In order to understand redistribution of absorbed excitation energy in photosynthesis we need to know the structure of LHC II in its phosphorylated form, and in its complex with photosystem I.
Collapse
Affiliation(s)
- John F Allen
- Research Department of Genetics, Evolution and Environment, Darwin Building, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
2
|
Finazzi G, Minagawa J. High Light Acclimation in Green Microalgae. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-017-9032-1_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
3
|
Baniulis D, Hasan SS, Stofleth JT, Cramer WA. Mechanism of enhanced superoxide production in the cytochrome b(6)f complex of oxygenic photosynthesis. Biochemistry 2013; 52:8975-83. [PMID: 24298890 DOI: 10.1021/bi4013534] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The specific rate of superoxide (O2(•-)) production in the purified active crystallizable cytochrome b6f complex, normalized to the rate of electron transport, has been found to be more than an order of magnitude greater than that measured in isolated yeast respiratory bc1 complex. The biochemical and structural basis for the enhanced production of O2(•-) in the cytochrome b6f complex compared to that in the bc1 complex is discussed. The higher rate of superoxide production in the b6f complex could be a consequence of an increased residence time of plastosemiquinone/plastoquinol in its binding niche near the Rieske protein iron-sulfur cluster, resulting from (i) occlusion of the quinone portal by the phytyl chain of the unique bound chlorophyll, (ii) an altered environment of the proton-accepting glutamate believed to be a proton acceptor from semiquinone, or (iii) a more negative redox potential of the heme bp on the electrochemically positive side of the complex. The enhanced rate of superoxide production in the b6f complex is physiologically significant as the chloroplast-generated reactive oxygen species (ROS) functions in the regulation of excess excitation energy, is a source of oxidative damage inflicted during photosynthetic reactions, and is a major source of ROS in plant cells. Altered levels of ROS production are believed to convey redox signaling from the organelle to the cytosol and nucleus.
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Hockmeyer Hall of Structural Biology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
4
|
Minagawa J. State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:897-905. [PMID: 21108925 DOI: 10.1016/j.bbabio.2010.11.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 11/08/2010] [Accepted: 11/10/2010] [Indexed: 11/29/2022]
Abstract
In oxygen-evolving photosynthesis, the two photosystems-photosystem I and photosystem II-function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under natural light conditions. State transitions in photosynthetic organisms balance the absorbed light energy between the two photosystems in a short time by relocating light-harvesting complex II proteins. For over a decade, the understanding of the physiological consequences, the molecular mechanism, and its regulation has increased considerably. After providing an overview of the general understanding of state transitions, this review focuses on the recent advances of the molecular aspects of state transitions with a particular emphasis on the studies using the green alga Chlamydomonas reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.
Collapse
Affiliation(s)
- Jun Minagawa
- Nattional Institute for Basic Biology, Okazaki, Japan.
| |
Collapse
|
5
|
Hayden DB, Baker NR. Damage to Photosynthetic Membranes in Chilling-Sensitive Plants: Maize, a Case Study. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558909036742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Schwenkert S, Umate P, Dal Bosco C, Volz S, Mlçochová L, Zoryan M, Eichacker LA, Ohad I, Herrmann RG, Meurer J. PsbI affects the stability, function, and phosphorylation patterns of photosystem II assemblies in tobacco. J Biol Chem 2006; 281:34227-38. [PMID: 16920705 DOI: 10.1074/jbc.m604888200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.
Collapse
Affiliation(s)
- Serena Schwenkert
- Department Biology I, Botany, Ludwig-Maximilians-University Munich, Menzingerstrasse 67, 80638 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Oh M, Reingold JA, Carpenter GB, Sweigart DA. Hydrogen-bonded networks from η5-semiquinone complexes of manganese tricarbonyl. J Organomet Chem 2003. [DOI: 10.1016/j.jorganchem.2003.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Tsinoremas NF, Hubbard JA, Evans MC, Allen JF. P-700 photooxidation in state 1 and state 2 in cyanobacteria upon flash illumination with phycobilin- and chlorophyll-absorbed light. FEBS Lett 2002. [DOI: 10.1016/0014-5793(89)81727-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Allen J. Photosynthesis and phosphorylation of light-harvesting chlorophylla/b-protein in intact chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80087-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
|
11
|
Michel H, Bennett J. Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)81565-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
|
13
|
Fernyhough P, Foyer C, Horton P. Increase in the level of thylakoid protein phosphorylation in maize mesophyll chloroplasts by decrease in the transthylakoid pH gradient. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80927-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Stimulation of a cyclic electron-transfer pathway around photosystem II by phosphorylation of chloroplast thylakoid proteins. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)81053-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Michel H, Bennett J. Use of synthetic peptides to study the substrate specificity of a thylakoid protein kinase. FEBS Lett 2001. [DOI: 10.1016/0014-5793(89)81031-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Gal A, Shahak Y, Schuster G, Ohad I. Specific loss of LHCII phosphorylation in theLemnamutant 1073 lacking the cytochromeb6/fcomplex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)80926-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Haldrup A, Jensen PE, Lunde C, Scheller HV. Balance of power: a view of the mechanism of photosynthetic state transitions. TRENDS IN PLANT SCIENCE 2001; 6:301-305. [PMID: 11435168 DOI: 10.1016/s1360-1385(01)01953-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Photosynthesis in plants involves photosystem I and photosystem II, both of which use light energy to drive redox processes. Plants can balance the distribution of absorbed light energy between the two photosystems. When photosystem II is favoured, a mobile pool of light harvesting complex II moves from photosystem II to photosystem I. This short-term and reversible redistribution is known as a state transition. It is associated with changes in the phosphorylation of light harvesting complex II but the regulation is complex. Redistribution of energy during state transitions depends on an altered binding equilibrium between the light harvesting complex II-photosystem II and light harvesting complex II-photosystem I complexes.
Collapse
Affiliation(s)
- A Haldrup
- Plant Biochemistry Laboratory, Dept Plant Biology, The Royal Veterinary and Agricultural University, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
18
|
Finazzi G, Zito F, Barbagallo RP, Wollman FA. Contrasted effects of inhibitors of cytochrome b6f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. J Biol Chem 2001; 276:9770-4. [PMID: 11134032 DOI: 10.1074/jbc.m010092200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the relationship between the occupancy of the Q(o) site in the cytochrome b(6)f complex and the activation of the LHCII protein kinase that controls state transitions. To this aim, fluorescence emission and LHCII phosphorylation patterns were studied in whole cells of Chlamydomonas reinhardtii treated with different plastoquinone analogues. The analysis of fluorescence induction at room temperature indicates that stigmatellin consistently prevented transition to State 2, whereas 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone behaved as an inhibitor of state transitions only after the cells were preilluminated. The same effects were observed on the phosphorylation patterns of the LHCII proteins, while subunit V of the cytochrome b(6)f complex showed a different behavior. These findings are discussed on the basis of a dynamic structural model of cytochrome b(6)f that relates the activation of the LHCII kinase to the occupancy of the Q(o) site and the movement of the Rieske protein.
Collapse
Affiliation(s)
- G Finazzi
- Centro di Studio del CNR sulla Biologia Cellulare e Molecolare delle Piante, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
19
|
Ewy RG, Dilley RA. Distinguishing between luminal and localized proton buffering pools in thylakoid membranes. PLANT PHYSIOLOGY 2000; 122:583-96. [PMID: 10677451 PMCID: PMC58895 DOI: 10.1104/pp.122.2.583] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/1999] [Accepted: 10/29/1999] [Indexed: 05/20/2023]
Abstract
The dual gradient energy coupling hypothesis posits that chloroplast thylakoid membranes are energized for ATP formation by either a delocalized or a localized proton gradient geometry. Localized energy coupling is characterized by sequestered domains with a buffering capacity of approximately 150 nmol H(+) mg(-1) chlorophyll (Chl). A total of 30 to 40 nmol mg(-1) Chl of the total sequestered domain buffering capacity is contributed by lysines with anomolously low pK(a)s, which can be covalently derivatized with acetic anhydride. We report that in thylakoid membranes treated with acetic anhydride, luminal acidification by a photosystem I (duraquinol [DQH(2)] to methyl viologen [MV]) proton pumping partial reaction was nearly completely inhibited, as measured by three separate assays, yet surprisingly, H(+) accumulation still occurred to the significant level of more than 100 nmol H(+) mg Chl(-1), presumably into the sequestered domains. The treatment did not increase the observed rate constant of dark H(+) efflux, nor was electron transport significantly inhibited. These data provide support for the existence of a sequestered proton translocating pathway linking the redox reaction H(+) ion sources with the CF(0) H(+) channel. The sequestered, low-pK(a) Lys groups appear to have a role in the H(+) diffusion process and chemically modifying them blocks the putative H(+) relay system.
Collapse
Affiliation(s)
- R G Ewy
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
20
|
Dwlvedi U, Bhardwaj R. Cytochrome b6-f complex : The carburettor of exciton distribution in oxygenic photosynthesis. J Biosci 1994. [DOI: 10.1007/bf02703466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Fork DC, Herbert SK. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. PHOTOSYNTHESIS RESEARCH 1993; 36:149-168. [PMID: 24318920 DOI: 10.1007/bf00033035] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/1992] [Accepted: 02/11/1993] [Indexed: 06/02/2023]
Abstract
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and 'poises' the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.
Collapse
Affiliation(s)
- D C Fork
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305-1297, Stanford, CA, USA
| | | |
Collapse
|
22
|
The redox-controlled light-harvesting chlorophyll a/b protein kinase. Deactivation by substituted quinones. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35694-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
23
|
Allen JF. Protein phosphorylation in regulation of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1098:275-335. [PMID: 1310622 DOI: 10.1016/s0005-2728(09)91014-3] [Citation(s) in RCA: 499] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- J F Allen
- Department of Biology, University of Oslo, Blindern, Norway
| |
Collapse
|
24
|
Harrison MA, Tsinoremas NF, Allen JF. Cyanobacterial thylakoid membrane proteins are reversibly phosphorylated under plastoquinone-reducing conditions in vitro. FEBS Lett 1991; 282:295-9. [PMID: 1903715 DOI: 10.1016/0014-5793(91)80499-s] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reversible, light-dependent protein phosphorylation was observed in isolated thylakoid membranes of the cyanobacterium Synechococcus 6301. A polypeptide of 15 kDa in particular was phosphorylated under plastoquinone-reducing conditions and was not phosphorylated under plastoquinone-oxidising conditions. Phosphorylation and dephosphorylation reactions involving this and several other membrane polypeptides showed sensitivity to inhibitors of protein kinases and phosphatases. Changes in phosphorylation state correlated with changes in low temperature fluorescence emission characteristic of changes in excitation energy distribution between the photosystems. The 15 kDa phosphopolypeptide is likely to be involved directly in light state adaptations in cyanobacteria.
Collapse
Affiliation(s)
- M A Harrison
- Department of Pure and Applied Biology, University of Leeds, UK
| | | | | |
Collapse
|
25
|
Affiliation(s)
- D B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409-1061
| |
Collapse
|
26
|
Gal A, Hauska G, Herrmann R, Ohad I. Interaction between light harvesting chlorophyll-a/b protein (LHCII) kinase and cytochrome b6/f complex. In vitro control of kinase activity. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45435-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
White IR, O'Donnell PJ, Keen JN, Findlay JB, Millner PA. Investigation of the substrate specificity of thylakoid protein kinase using synthetic peptides. FEBS Lett 1990; 269:49-52. [PMID: 2387414 DOI: 10.1016/0014-5793(90)81116-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic peptide analogues of the N-terminal region of the light harvesting chlorophyll a/b binding polypeptide of photosystem II (LHC II) were used to probe the effect of charged groups on the protein kinase activity of pea (Pisum sativum) thylakoid membranes. The effectiveness of the synthetic peptides as substrates for protein kinase activity or as inhibitors of LHC II phosphorylation was correlated with their net positive charge, which ranged between +2 and +5. The effects of the synthetic peptides on phosphorylation of other, non-LHC II, thyakoid polypeptides are also discussed.
Collapse
Affiliation(s)
- I R White
- Department of Biochemistry, University of Leeds, UK
| | | | | | | | | |
Collapse
|
28
|
Mullineaux CW, Allen JF. State 1-State 2 transitions in the cyanobacterium Synechococcus 6301 are controlled by the redox state of electron carriers between Photosystems I and II. PHOTOSYNTHESIS RESEARCH 1990; 23:297-311. [PMID: 24419653 DOI: 10.1007/bf00034860] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/1989] [Accepted: 09/17/1989] [Indexed: 05/20/2023]
Abstract
The mechanism by which state 1-state 2 transitions in the cyanobacterium Synechococcus 6301 are controlled was investigated by examining the effects of a variety of chemical and illumination treatments which modify the redox state of the plastoquinone pool. The extent to which these treatments modify excitation energy distribution was determined by 77K fluorescence emission spectroscopy. It was found that treatment which lead to the oxidation of the plastoquinone pool induce a shift towards state 1 whereas treatments which lead to the reduction of the plastoquinone pool induce a shift towards state 2. We therefore propose that state transitions in cyanobacteria are triggered by changes in the redox state of plastoquinone or a closely associated electron carrier. Alternative proposals have included control by the extent of cyclic electron transport around PS I and control by localised electrochemical gradients around PS I and PS II. Neither of these proposals is consistent with the results reported here.
Collapse
Affiliation(s)
- C W Mullineaux
- Max-Planck-Institut für Strahlenchemie, Stiftstr, 34-36, D-4330, Mülheim an der Ruhr, FRG
| | | |
Collapse
|
29
|
Protein phosphorylation in chromatophores from Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Role of the cytochrome b6.f complex in the redox-controlled activity of Acetabularia thylakoid protein kinase. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68567-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Chloroplast thylakoid protein phosphorylation is influenced by mutations in the cytochrome bf complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90076-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Packham NK, Hodges M, Etienne AL, Briantais JM. Changes in the flash-induced oxygen yield pattern by thylakoid membrane phosphorylation. PHOTOSYNTHESIS RESEARCH 1988; 15:221-232. [PMID: 24430924 DOI: 10.1007/bf00047354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/1987] [Accepted: 10/16/1987] [Indexed: 06/03/2023]
Abstract
Phosphorylation of thylakoid membrane proteins results in a partial inhibition (approximately 15-20%) of the light-saturated rate of oxygen evolution. The site of inhibition is thought to be located on the acceptor side of photosystem 2 (PS2) between the primary, QA, and secondary, QB, plastoquinone acceptors (Hodges et al. 1985, 1987). In this paper we report that thylakoid membrane phosphorylation increases the damping of the quaternary oscillation in the flash oxygen yield and increases the extent of the fast component in the deactivation of the S2 oxidation state. These results support the proposal that thylakoid membrane protein phosphorylation decreases the equilibrium constant for the exchange of an electron between QA and QB. An analysis of the oxygen release patterns using the recurrence matrix model of Lavorel (1976) indicates that thylakoid membrane phosphorylation increases the probability that PS2 miss a S-state transition by 20%. This is equivalent, however, to an insignificant inhibition (approximately 2.4%) of the light-saturated oxygen evolution rate. If a double miss in the S-state transitions is included when the PS2 centres are in S2 the fit between the experimental and theoretical oxygen yield sequences is better, and sufficient to account for the 15-20% inhibition in the steady-state oxygen yield. A double miss in the S-state transition is a consequence of an increased population of PS2 centres retaining QA (-): not only will these PS2 centres fail to catalyse photochemical charge transfer until QA (-) is reoxidized, but the re-oxidation reaction will also result in the deactivation of S2 to S1.
Collapse
Affiliation(s)
- N K Packham
- Laboratorie de photosynthese, CNRS, 91190, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
33
|
Bennett J, Shaw EK, Michel H. Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex II in chloroplast photosynthetic membranes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:95-100. [PMID: 3338473 DOI: 10.1111/j.1432-1033.1988.tb13763.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The light-harvesting chlorophyll a/b complex (LHC II) and four photosystem II (PS II) core proteins (8.3, 32, 34 and 44 kDa) become phosphorylated in response to reduction of the intersystem electron transport chain of green plant chloroplasts. Previous studies indicated that reduction of the plastoquinone (PQ) pool is the key event in kinase activation. However, we show here that, unlike PS II proteins, LHC II is phosphorylated only when the cytochrome b6f complex is active. Two lines of evidence support this conclusion. (1) 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and the 2,4-dinitrophenyl ether of iodonitrothymol (DNP-INT), which are known to block electron flow into the cytochrome complex, selectively inhibit LHC II phosphorylation in spinach thylakoids. (2) The hcf6 mutant of maize, which contains PQ but lacks the cytochrome b6f complex, phosphorylates the four PS II proteins but fails to phosphorylate LHC II in vivo or in vitro.
Collapse
Affiliation(s)
- J Bennett
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | | | | |
Collapse
|
34
|
|
35
|
Heil WG, Senger H. Correlation between thylakoid protein phosphorylation and molecular organization of the photosynthetic apparatus in a dynamic system. PLANTA 1987; 170:362-369. [PMID: 24232966 DOI: 10.1007/bf00395028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/1986] [Accepted: 09/08/1986] [Indexed: 06/02/2023]
Abstract
In-vitro thylakoid protein phosphorylation has been studied in synchronized cells of Scenedesmus obliquus at the 8- and 16-h of the life cycle, stages which are characterized by the maximum and minimum photosynthetic activities, respectively. The stage of maximum photosynthetic activity (8-h) is characterized by the highest protein phosphorylation in vitro and in vivo, by the largest proportion of the heavy subfraction of thylakoids, and by maximum oligomerization of the light-harvesting chlorophyll a/b-protein complex, altogether creating the highest energy charge of the thylakoid membranes. Protein phosphorylation in vitro decreases the amount of the heavy subfraction and increases the amount of oligomerization of the antenna of photosystem I (PSI) (increase of chlorophyll b in the light fraction). Concomittantly, PSII units become smaller (longer time for the rise in fluorescence induction) and photosynthetic efficiency increases (decrease of fluorescence yield). In-vivo protein phosphorylation is controlled mainly endogenously during the 8-h of the life cycle but is exogenously modulated by light to optimize the photosynthetic activity by redistribution of pigment-protein complexes. In-vitro protein phosphorylation seems to restore partially the conditions prevalent in vivo and lost during the preparation of membranes. The effect is greater in 16-h cells which have less-stable membranes. The regulatory mechanism between membrane stabilization and oligomerization on the one hand and redistribution of the light-harvesting chlorophyll a/b-protein complex from PSII to PSI on the other hand remains unexplained. We have confirmed that the mechanism of protein phosphorylation is regulated via plastohydroquinone, but experiments with the plastohydroquinone analogue 2,3,5,6-tetramethyl-p-benzoquinone demonstrated that plastohydroquinone is not solely responsible for the differences in protein phosphorylation of 8- and 16-h thylakoids. The inhibitory effect of ADP and the distinct rates of kinase reaction indicate that the adenylate energy charge and changes in the organization of the photosynthetic apparatus also contribute to the observed differences in protein phosphorylation. Phosphorylation in the presence of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea indicated that the 32-kDa phosphoprotein and the herbicide-binding QB protein may be the same. These experiments also indicated that 3-(3',4'-dichlorophenyl)-1,1-dimethylurea-binding reduces kinase activity directly and not only by inhibiting electron transport.
Collapse
Affiliation(s)
- W G Heil
- Physiologische Chemie, Medizinische Fakultät, Universität des Saarlandes, D-6650, Homburg/Saar
| | | |
Collapse
|
36
|
Williams WP, Allen JF. State 1/State 2 changes in higher plants and algae. PHOTOSYNTHESIS RESEARCH 1987; 13:19-45. [PMID: 24435719 DOI: 10.1007/bf00032263] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/1986] [Accepted: 01/21/1987] [Indexed: 06/03/2023]
Abstract
Current ideas regarding the molecular basis of State 1/State 2 transitions in higher plants and green algae are mainly centered around the view that excitation energy distribution is controlled by phosphorylation of the light-harvesting complex of photosystem II (LHC-II). The evidence supporting this view is examined and the relationship of the transitions occurring in these systems to the corresponding transitions seen in red and blue-green algae is explored.
Collapse
Affiliation(s)
- W P Williams
- Department of Biochemistry, King's College London (KQC), Kensington Campus, Campden Hill, W8 7AH, London
| | | |
Collapse
|
37
|
Jennings RC, Zucchelli G. Studies on thylakoid phosphorylation and noncyclic electron transport. Arch Biochem Biophys 1986; 246:108-13. [PMID: 3516071 DOI: 10.1016/0003-9861(86)90454-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of thylakoid phosphorylation on noncyclic electron transport in spinach chloroplasts was investigated by measuring both the reduction of nicotinamide adenine dinucleotide phosphate (NADP) and the steady-state redox level of the primary electron acceptor quinone of photosystem II (Q) during electron flow to NADP. These data are compared with the theoretical predictions for an electron transport model which relates both the redox levels of Q and the photosystem II optical cross section to the overall velocity of noncyclic electron flow. It is demonstrated that transfer of 15-20% of the photosystem II antenna to photosystem I may stimulate electron flow to NADP only if Q is less than 60-70% oxidized (this condition exists with our thylakoids, even at extremely low absorption fluxes, when the illumination is not specifically enriched in photosystem I absorbed wavelengths); in phosphorylated thylakoids the steady-state redox level Q is substantially shifted to a more oxidized one (measurements of this parameter using light of different wavelengths quantitatively support the idea that thylakoid phosphorylation leads to increased photosystem I and decreased photosystem II cross sections); thylakoid phosphorylation leads to stimulated noncyclic electron flow to NADP only when the increased photosystem I antenna is able to bring about large increases in the steady-state level of oxidized Q.
Collapse
|
38
|
Barber J. Regulation of energy transfer by cations and protein phosphorylation in relation to thylakoid membrane organisation. PHOTOSYNTHESIS RESEARCH 1986; 10:243-253. [PMID: 24435371 DOI: 10.1007/bf00118289] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A brief review is given of the state of knowledge which indicates that the State I-State II transition in higher plants and green algae is due to the reversible phosphorylation of the chlorophyll a/b light harvesting complex. The importance of membrane reorganisational changes in this process is discussed in terms of changes in electrostatic parameters as emphasised by the interplay of the effect of phosphorylation and the background levels of cations surrounding the membrane. It is argued that recognition of this interplay is vital when using the bipartite or tripartite models of Butler to obtain quantitative information of energy transfer between the various pigment complexes.
Collapse
Affiliation(s)
- J Barber
- Department of Pure and Applied Biology, Imperial College of Science and Technology, Prince Consort Road, SW7 2BB, London, UK
| |
Collapse
|
39
|
Islam K, Jennings RC. Relative kinetics of quenching of Photosystem II fluorescence and phosphorylation of the two light-harvesting chlorophyll ab polypeptides in isolated spinach thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90131-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Schuster G, Ohad I, Martineau B, Taylor WC. Differentiation and development of bundle sheath and mesophyll thylakoids in maize. Thylakoid polypeptide composition, phosphorylation, and organization of photosystem II. J Biol Chem 1985. [DOI: 10.1016/s0021-9258(17)39111-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
41
|
An investigation into the ATP requirement for phosphorylation of thylakoid proteins and for the ATP-induced decrease in the yield of chlorophyll fluorescence in chloroplasts at different stages of development. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90055-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Membrane phosphorylation leads to the partial detachment of the chlorophyll a/b protein from Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90202-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
|
44
|
The influence of metabolic state on the level of phosphorylation of the light-harvesting chlorophyll-protein complex in chloroplasts isolated from maize mesophyll. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90235-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Krause G, Briantais JM, Vernotte C. Characterization of chlorophyll fluorescence quenching in chloroplasts by fluorescence spectroscopy at 77 K I. ΔpH-dependent quenching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90116-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Thylakoid protein phosphorylation during State 1—State 2 transitions in osmotically shocked pea chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90171-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
|