1
|
Pavlou A, Styring S, Mamedov F. The S 1 to S 2 and S 2 to S 3 state transitions in plant photosystem II: relevance to the functional and structural heterogeneity of the water oxidizing complex. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-024-01096-4. [PMID: 38662327 DOI: 10.1007/s11120-024-01096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
In Photosystem II, light-induced water splitting occurs via the S state cycle of the CaMn4O5-cluster. To understand the role of various possible conformations of the CaMn4O5-cluster in this process, the temperature dependence of the S1 → S2 and S2 → S3 state transitions, induced by saturating laser flashes, was studied in spinach photosystem II membrane preparations under different conditions. The S1 → S2 transition temperature dependence was shown to be much dependent on the type of the cryoprotectant and presence of 3.5% methanol, resulting in the variation of transition half-inhibition temperature by 50 K. No similar effect was observed for the S2 → S3 state transition, for which we also show that both the low spin g = 2.0 multiline and high spin g = 4.1 EPR configurations of the S2 state advance with similar efficiency to the S3 state, both showing a transition half-inhibition temperature of 240 K. This was further confirmed by following the appearance of the Split S3 EPR signal. The results are discussed in relevance to the functional and structural heterogeneity of the water oxidizing complex intermediates in photosystem II.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
2
|
Pavlou A, Mokvist F, Styring S, Mamedov F. Far-red photosynthesis: Two charge separation pathways exist in plant Photosystem II reaction center. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148994. [PMID: 37355002 DOI: 10.1016/j.bbabio.2023.148994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
An alternative charge separation pathway in Photosystem II under the far-red light was proposed by us on the basis of electron transfer properties at 295 K and 5 K. Here we extend these studies to the temperature range of 77-295 K with help of electron paramagnetic resonance spectroscopy. Induction of the S2 state multiline signal, oxidation of Cytochrome b559 and ChlorophyllZ was studied in Photosystem II membrane preparations from spinach after application of a laser flashes in visible (532 nm) or far-red (730-750 nm) spectral regions. Temperature dependence of the S2 state signal induction after single flash at 730-750 nm (Tinhibition ~ 240 K) was found to be different than that at 532 nm (Tinhibition ~ 157 K). No contaminant oxidation of the secondary electron donors cytochrome b559 or chlorophyllZ was observed. Photoaccumulation experiments with extensive flashing at 77 K showed similar results, with no or very little induction of the secondary electron donors. Thus, the partition ratio defined as (yield of YZ/CaMn4O5-cluster oxidation):(yield of Cytb559/ChlZ/CarD2 oxidation) was found to be 0.4 at under visible light and 1.7 at under far-red light at 77 K. Our data indicate that different products of charge separation after far-red light exists in the wide temperature range which further support the model of the different primary photochemistry in Photosystem II with localization of hole on the ChlD1 molecule.
Collapse
Affiliation(s)
- Andrea Pavlou
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fredrik Mokvist
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| |
Collapse
|
3
|
Han G, Chernev P, Styring S, Messinger J, Mamedov F. Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II. Chem Sci 2022; 13:8667-8678. [PMID: 35974765 PMCID: PMC9337725 DOI: 10.1039/d2sc00854h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Photosynthesis stores solar light as chemical energy and efficiency of this process is highly important. The electrons required for CO2 reduction are extracted from water in a reaction driven by light-induced charge separations in the Photosystem II reaction center and catalyzed by the CaMn4O5-cluster. This cyclic process involves five redox intermediates known as the S0–S4 states. In this study, we quantify the flash-induced turnover efficiency of each S state by electron paramagnetic resonance spectroscopy. Measurements were performed in photosystem II membrane preparations from spinach in the presence of an exogenous electron acceptor at selected temperatures between −10 °C and +20 °C and at flash frequencies of 1.25, 5 and 10 Hz. The results show that at optimal conditions the turnover efficiencies are limited by reactions occurring in the water oxidizing complex, allowing the extraction of their S state dependence and correlating low efficiencies to structural changes and chemical events during the reaction cycle. At temperatures 10 °C and below, the highest efficiency (i.e. lowest miss parameter) was found for the S1 → S2 transition, while the S2 → S3 transition was least efficient (highest miss parameter) over the whole temperature range. These electron paramagnetic resonance results were confirmed by measurements of flash-induced oxygen release patterns in thylakoid membranes and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster that were determined recently by femtosecond X-ray crystallography. Thereby, possible “molecular errors” connected to the e− transfer, H+ transfer, H2O binding and O2 release are identified. Temperature dependence of the transition inefficiencies (misses) for the water oxidation process in photosystem II were studied by EPR spectroscopy and are explained on the basis of S state dependent structural changes at the CaMn4O5-cluster.![]()
Collapse
Affiliation(s)
- Guangye Han
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Petko Chernev
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| | - Johannes Messinger
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 751 20 Uppsala, Sweden
| |
Collapse
|
4
|
Kaminskaya OP, Shuvalov VA. Analysis of the transformation effect in cytochrome b559 of photosystem II in terms of the model of the heme-quinone redox interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1161-1172. [PMID: 32314739 DOI: 10.1016/j.bbabio.2018.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Transformation of three-component redox pattern of cytochrome (Cyt) b559 in PS II membrane fragments upon various treatments is manifested in decrease of the relative content (R) of the high potential (HP) redox form of Cyt b559 and concomitant increase in the fractions of the two lower potential forms. Redox titration of Cyt b559 in different types of PS II membrane preparations was performed and revealed that (1) alteration of redox titration curve of Cyt b559 upon treatment of a sample is not specific to the type of treatment; (2) each value of RHP defines the individual shape of the redox titration curve; (3) population of Cyt b559 may exist in several stable forms with multicomponent redox pattern: three types of three-component redox pattern and one type of two-component redox pattern as well as in the form with a single Em; (4) transformation of Cyt b559 proceeds as successive conversion between the stable forms with multicomponent redox pattern; (5) upon harsh treatments, Cyt b559 abruptly converts into the state with a single Em which value is intermediate between the Em values of the two lower potential forms. Analysis of the data using the model of Cyt b559-quinone redox interaction revealed that diminution of RHP in a range from 80 to 10% reflects a shift in redox equilibrium between the heme group of Cyt b559 and the interacting quinone, due to a gradual decrease of 90 mV in Em of the heme group at the virtually unchanged Em of the quinone component.
Collapse
Affiliation(s)
- Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vladimir A Shuvalov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
5
|
Ahmadova N, Mamedov F. Formation of tyrosine radicals in photosystem II under far-red illumination. PHOTOSYNTHESIS RESEARCH 2018; 136:93-106. [PMID: 28924898 PMCID: PMC5851703 DOI: 10.1007/s11120-017-0442-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/05/2017] [Indexed: 05/27/2023]
Abstract
Photosystem II (PS II) contains two redox-active tyrosine residues on the donor side at symmetrical positions to the primary donor, P680. TyrZ, part of the water-oxidizing complex, is a preferential fast electron donor while TyrD is a slow auxiliary donor to P680+. We used PS II membranes from spinach which were depleted of the water oxidation complex (Mn-depleted PS II) to study electron donation from both tyrosines by time-resolved EPR spectroscopy under visible and far-red continuous light and laser flash illumination. Our results show that under both illumination regimes, oxidation of TyrD occurs via equilibrium with TyrZ• at pH 4.7 and 6.3. At pH 8.5 direct TyrD oxidation by P680+ occurs in the majority of the PS II centers. Under continuous far-red light illumination these reactions were less effective but still possible. Different photochemical steps were considered to explain the far-red light-induced electron donation from tyrosines and localization of the primary electron hole (P680+) on the ChlD1 in Mn-depleted PS II after the far-red light-induced charge separation at room temperature is suggested.
Collapse
Affiliation(s)
- Nigar Ahmadova
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, Box 523, 751 20, Uppsala, Sweden.
| |
Collapse
|
6
|
The wavelength of the incident light determines the primary charge separation pathway in Photosystem II. Sci Rep 2018; 8:2837. [PMID: 29434283 PMCID: PMC5809461 DOI: 10.1038/s41598-018-21101-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Charge separation is a key component of the reactions cascade of photosynthesis, by which solar energy is converted to chemical energy. From this photochemical reaction, two radicals of opposite charge are formed, a highly reducing anion and a highly oxidising cation. We have previously proposed that the cation after far-red light excitation is located on a component different from PD1, which is the location of the primary electron hole after visible light excitation. Here, we attempt to provide further insight into the location of the primary charge separation upon far-red light excitation of PS II, using the EPR signal of the spin polarized 3P680 as a probe. We demonstrate that, under far-red light illumination, the spin polarized 3P680 is not formed, despite the primary charge separation still occurring at these conditions. We propose that this is because under far-red light excitation, the primary electron hole is localized on ChlD1, rather than on PD1. The fact that identical samples have demonstrated charge separation upon both far-red and visible light excitation supports our hypothesis that two pathways for primary charge separation exist in parallel in PS II reaction centres. These pathways are excited and activated dependent of the wavelength applied.
Collapse
|
7
|
Ahmadova N, Ho FM, Styring S, Mamedov F. Tyrozine D oxidation and redox equilibrium in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:407-417. [DOI: 10.1016/j.bbabio.2017.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 10/20/2022]
|
8
|
Sjöholm J, Ho F, Ahmadova N, Brinkert K, Hammarström L, Mamedov F, Styring S. The protonation state around Tyr D /Tyr D • in photosystem II is reflected in its biphasic oxidation kinetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:147-155. [DOI: 10.1016/j.bbabio.2016.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
9
|
Kaminskaya OP, Shuvalov VA. Towards an understanding of redox heterogeneity of the photosystem II cytochrome b559 in the native membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:129-38. [DOI: 10.1007/s00249-015-1082-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 11/29/2022]
|
10
|
Zhang Y, Magdaong NM, Shen M, Frank HA, Rusling JF. Efficient Photoelectrochemical Energy Conversion using Spinach Photosystem II (PSII) in Lipid Multilayer Films. ChemistryOpen 2015; 4:111-4. [PMID: 25969807 PMCID: PMC4420581 DOI: 10.1002/open.201402080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Indexed: 12/01/2022] Open
Abstract
The need for clean, renewable energy has fostered research into photovoltaic alternatives to silicon solar cells. Pigment–protein complexes in green plants convert light energy into chemical potential using redox processes that produce molecular oxygen. Here, we report the first use of spinach protein photosystem II (PSII) core complex in lipid films in photoelectrochemical devices. Photocurrents were generated from PSII in a ∼2 μm biomimetic dimyristoylphosphatidylcholine (DMPC) film on a pyrolytic graphite (PG) anode with PSII embedded in multiple lipid bilayers. The photocurrent was ∼20 μA cm−2 under light intensity 40 mW cm−2. The PSII–DMPC anode was used in a photobiofuel cell with a platinum black mesh cathode in perchloric acid solution to give an output voltage of 0.6 V and a maximum output power of 14 μW cm−2. Part of this large output is related to a five-unit anode–cathode pH gradient. With catholytes at higher pH or no perchlorate, or using an MnO2 oxygen-reduction cathode, the power output was smaller. The results described raise the possibility of using PSII–DMPC films in small portable power conversion devices.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Nikki M Magdaong
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Min Shen
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - Harry A Frank
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA
| | - James F Rusling
- Department of Chemistry and Green Emulsions, Micelles, & Surfactants (GEMS) Center, University of Connecticut 55 N. Eagleville Rd, Storrs, CT, 06269-3060, USA ; Institute of Materials Science, University of Connecticut 97 N. Eagleville Rd, Storrs, CT, 06269-3136, USA ; Department of Cell Biology, University of Connecticut Health Center 263 Farmington Ave, Farmington, CT, 06032, USA
| |
Collapse
|
11
|
Mokvist F, Sjöholm J, Mamedov F, Styring S. The Photochemistry in Photosystem II at 5 K Is Different in Visible and Far-Red Light. Biochemistry 2014; 53:4228-38. [DOI: 10.1021/bi5006392] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fredrik Mokvist
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Johannes Sjöholm
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department
of Chemistry-Ångström, Uppsala University, Ångström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| |
Collapse
|
12
|
Zhang Y, Magdaong N, Frank HA, Rusling JF. Protein film voltammetry and co-factor electron transfer dynamics in spinach photosystem II core complex. PHOTOSYNTHESIS RESEARCH 2014; 120:153-167. [PMID: 23625504 DOI: 10.1007/s11120-013-9831-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Direct protein film voltammetry (PFV) was used to investigate the redox properties of the photosystem II (PSII) core complex from spinach. The complex was isolated using an improved protocol not used previously for PFV. The PSII core complex had high oxygen-evolving capacity and was incorporated into thin lipid and polyion films. Three well-defined reversible pairs of reduction and oxidation voltammetry peaks were observed at 4 °C in the dark. Results were similar in both types of films, indicating that the environment of the PSII-bound cofactors was not influenced by film type. Based on comparison with various control samples including Mn-depleted PSII, peaks were assigned to chlorophyll a (Chl a) (Em = -0.47 V, all vs. NHE, at pH 6), quinones (-0.12 V), and the manganese (Mn) cluster (Em = 0.18 V). PFV of purified iron heme protein cytochrome b-559 (Cyt b-559), a component of PSII, gave a partly reversible peak pair at 0.004 V that did not have a potential similar to any peaks observed from the intact PSII core complex. The closest peak in PSII to 0.004 V is the 0.18 V peak that was found to be associated with a two-electron process, and thus is inconsistent with iron heme protein voltammetry. The -0.47 V peak had a peak potential and peak potential-pH dependence similar to that found for purified Chl a incorporated into DMPC films. The midpoint potentials reported here may differ to various extents from previously reported redox titration data due to the influence of electrode double-layer effects. Heterogeneous electron transfer (hET) rate constants were estimated by theoretical fitting and digital simulations for the -0.47 and 0.18 V peaks. Data for the Chl a peaks were best fit to a one-electron model, while the peak assigned to the Mn cluster was best fit by a two-electron/one-proton model.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269-3060, USA
| | | | | | | |
Collapse
|
13
|
Irrgang KD, Hanssum B, Renger G, Vater J. Studies on the Intrinsic Membrane Proteins of Photosystem II from Spinach. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Sjöholm J, Chen G, Ho F, Mamedov F, Styring S. Split electron paramagnetic resonance signal induction in Photosystem II suggests two binding sites in the S2 state for the substrate analogue methanol. Biochemistry 2013; 52:3669-77. [PMID: 23621812 DOI: 10.1021/bi400144e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Illuminating a photosystem II sample at low temperatures (here 5-10 K) yields so-called split signals detectable with continuous wave-electron paramagnetic resonance (CW-EPR). These signals reflect the oxidized, deprotonated radical of D1-Tyr161 (YZ(•)) in a magnetic interaction with the CaMn4 cluster in a particular S state. The intensity of the split EPR signals are affected by the addition of the water substrate analogue methanol. This was previously shown by the induction of split EPR signals from the S1, S3, and S0 states [Su, J.-H. et al. (2006) Biochemistry 45, 7617-7627.]. Here, we use two split EPR signals induced from photosystem II trapped in the S2 state to further probe the binding of methanol in an S state dependent manner. The signals are induced with either visible or near-infrared light illumination provided at 5-10 K where methanol cannot bind or unbind from its site. The results imply that the binding of methanol not only changes the magnetic properties of the CaMn4 cluster but also the hydrogen bond network in the oxygen evolving complex (OEC), thereby affecting the relative charge of the S2 state. The induction mechanisms for the two split EPR signals are different resulting in two different redox states, S2YZ(•) and S1YZ(•) respectively. The two states show different methanol dependence for their induction. This indicates the existence of two binding sites for methanol in the CaMn4 cluster. It is proposed that methanol binds to MnA with high affinity and to MnD with lower affinity. The molecular nature and S-state dependence of the methanol binding to each respective site are discussed.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University , P. O. Box 523, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
15
|
Kaminskaya OP, Shuvalov VA. Biphasic reduction of cytochrome b559 by plastoquinol in photosystem II membrane fragments: evidence for two types of cytochrome b559/plastoquinone redox equilibria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:471-83. [PMID: 23357332 DOI: 10.1016/j.bbabio.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
In photosystem II membrane fragments with oxidized cytochrome (Cyt) b559 reduction of Cyt b559 by plastoquinol formed in the membrane pool under illumination and by exogenous decylplastoquinol added in the dark was studied. Reduction of oxidized Cyt b559 by plastoquinols proceeds biphasically comprising a fast component with a rate constant higher than (10s)(-1), named phase I, followed by a slower dark reaction with a rate constant of (2.7min)(-1) at pH6.5, termed phase II. The extents of both components of Cyt b559 reduction increased with increasing concentrations of the quinols, with that, maximally a half of oxidized Cyt b559 can be photoreduced or chemically reduced in phase I at pH6.5. The photosystem II herbicide dinoseb but not 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) competed with the quinol reductant in phase I. The results reveal that the two components of the Cyt b559 redox reaction reflect two redox equilibria attaining in different time domains. One-electron redox equilibrium between oxidized Cyt b559 and the photosystem II-bound plastoquinol is established in phase I of Cyt b559 reduction. Phase II is attributed to equilibration of Cyt b559 redox forms with the quinone pool. The quinone site involved in phase I of Cyt b559 reduction is considered to be the site regulating the redox potential of Cyt b559 which can accommodate quinone, semiquinone and quinol forms. The properties of this site designated here as QD clearly suggest that it is distinct from the site QC found in the photosystem II crystal structure.
Collapse
Affiliation(s)
- Olga P Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | |
Collapse
|
16
|
Feyziyev Y, Deák Z, Styring S, Bernát G. Electron transfer from Cyt b(559) and tyrosine-D to the S2 and S3 states of the water oxidizing complex in photosystem II at cryogenic temperatures. J Bioenerg Biomembr 2012; 45:111-20. [PMID: 23104119 DOI: 10.1007/s10863-012-9482-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Abstract
The Mn(4)CaO(5) cluster of photosystem II (PSII) catalyzes the oxidation of water to molecular oxygen through the light-driven redox S-cycle. The water oxidizing complex (WOC) forms a triad with Tyrosine(Z) and P(680), which mediates electrons from water towards the acceptor side of PSII. Under certain conditions two other redox-active components, Tyrosine(D) (Y(D)) and Cytochrome b(559) (Cyt b(559)) can also interact with the S-states. In the present work we investigate the electron transfer from Cyt b(559) and Y(D) to the S(2) and S(3) states at 195 K. First, Y(D)(•) and Cyt b(559) were chemically reduced. The S(2) and S(3) states were then achieved by application of one or two laser flashes, respectively, on samples stabilized in the S(1) state. EPR signals of the WOC (the S(2)-state multiline signal, ML-S(2)), Y(D)(•) and oxidized Cyt b(559) were simultaneously detected during a prolonged dark incubation at 195 K. During 163 days of incubation a large fraction of the S(2) population decayed to S(1) in the S(2) samples by following a single exponential decay. Differently, S(3) samples showed an initial increase in the ML-S(2) intensity (due to S(3) to S(2) conversion) and a subsequent slow decay due to S(2) to S(1) conversion. In both cases, only a minor oxidation of Y(D) was observed. In contrast, the signal intensity of the oxidized Cyt b(559) showed a two-fold increase in both the S(2) and S(3) samples. The electron donation from Cyt b(559) was much more efficient to the S(2) state than to the S(3) state.
Collapse
Affiliation(s)
- Yashar Feyziyev
- Institute of Botany, 40 Patamdar Shosse, AZ-1073 Baku, Azerbaijan
| | | | | | | |
Collapse
|
17
|
Miloslavina Y, Lambrev PH, Jávorfi T, Várkonyi Z, Karlický V, Wall JS, Hind G, Garab G. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. PHOTOSYNTHESIS RESEARCH 2012; 111:29-39. [PMID: 21667227 DOI: 10.1007/s11120-011-9664-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/27/2011] [Indexed: 05/24/2023]
Abstract
In photosynthesis research, circular dichroism (CD) spectroscopy is an indispensable tool to probe molecular architecture at virtually all levels of structural complexity. At the molecular level, the chirality of the molecule results in intrinsic CD; pigment-pigment interactions in protein complexes and small aggregates can give rise to excitonic CD bands, while "psi-type" CD signals originate from large, densely packed chiral aggregates. It has been well established that anisotropic CD (ACD), measured on samples with defined non-random orientation relative to the propagation of the measuring beam, carries specific information on the architecture of molecules or molecular macroassemblies. However, ACD is usually combined with linear dichroism and can be distorted by instrumental imperfections, which given the strong anisotropic nature of photosynthetic membranes and complexes, might be the reason why ACD is rarely studied in photosynthesis research. In this study, we present ACD spectra, corrected for linear dichroism, of isolated intact thylakoid membranes of granal chloroplasts, washed unstacked thylakoid membranes, photosystem II (PSII) membranes (BBY particles), grana patches, and tightly stacked lamellar macroaggregates of the main light-harvesting complex of PSII (LHCII). We show that the ACD spectra of face- and edge-aligned stacked thylakoid membranes and LHCII lamellae exhibit profound differences in their psi-type CD bands. Marked differences are also seen in the excitonic CD of BBY and washed thylakoid membranes. Magnetic CD (MCD) spectra on random and aligned samples, and the largely invariable nature of the MCD spectra, despite dramatic variations in the measured isotropic and anisotropic CD, testify that ACD can be measured without substantial distortions and thus employed to extract detailed information on the (supra)molecular organization of photosynthetic complexes. An example is provided showing the ability of CD data to indicate such an organization, leading to the discovery of a novel crystalline structure in macroaggregates of LHCII.
Collapse
Affiliation(s)
- Yuliya Miloslavina
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nagy G, Pieper J, Krumova SB, Kovács L, Trapp M, Garab G, Peters J. Dynamic properties of photosystem II membranes at physiological temperatures characterized by elastic incoherent neutron scattering. Increased flexibility associated with the inactivation of the oxygen evolving complex. PHOTOSYNTHESIS RESEARCH 2012; 111:113-24. [PMID: 22052408 DOI: 10.1007/s11120-011-9701-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 10/13/2011] [Indexed: 05/02/2023]
Abstract
Elastic incoherent neutron scattering (EINS), a non-invasive technique which is capable of measuring the mean square displacement of atoms in the sample, has been widely used in biology for exploring the dynamics of proteins and lipid membranes but studies on photosynthetic systems are scarce. In this study we investigated the dynamic characteristics of Photosystem II (PSII) membrane fragments between 280 and 340 K, i.e., in the physiological temperature range and in the range of thermal denaturation of some of the protein complexes. The mean square displacement values revealed the presence of a hydration-sensitive transition in the sample between 310 and 320 K, suggesting that the oxygen evolving complex (OEC) plays an important role in the transition. Indeed, in samples in which the OEC had been removed by TRIS- or heat-treatments (323 and 333 K) no such transition was found. Further support on the main role of OEC in these reorganizations is provided by data obtained from differential scanning calorimetry experiments, showing marked differences between the untreated and TRIS-treated samples. In contrast, circular dichroism spectra exhibited only minor changes in the excitonic interactions below 323 K, showing that the molecular organization of the pigment-protein complexes remains essentially unaffected. Our data, along with earlier incoherent neutron scattering data on PSII membranes at cryogenic temperatures (Pieper et al., Biochemistry 46:11398-11409, 2007), demonstrate that this technique can be applied to characterize the dynamic features of PSII membranes, and can be used to investigate photosynthetic membranes under physiologically relevant experimental conditions.
Collapse
Affiliation(s)
- Gergely Nagy
- Institut Laue-Langevin, P.O. Box 156, 38042, Grenoble Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Sjöholm J, Styring S, Havelius KGV, Ho FM. Visible light induction of an electron paramagnetic resonance split signal in Photosystem II in the S(2) state reveals the importance of charges in the oxygen-evolving center during catalysis: a unifying model. Biochemistry 2012; 51:2054-64. [PMID: 22352968 DOI: 10.1021/bi2015794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryogenic illumination of Photosystem II (PSII) can lead to the trapping of the metastable radical Y(Z)(•), the radical form of the redox-active tyrosine residue D1-Tyr161 (known as Y(Z)). Magnetic interaction between this radical and the CaMn(4) cluster of PSII gives rise to so-called split electron paramagnetic resonance (EPR) signals with characteristics that are dependent on the S state. We report here the observation and characterization of a split EPR signal that can be directly induced from PSII centers in the S(2) state through visible light illumination at 10 K. We further show that the induction of this split signal takes place via a Mn-centered mechanism, in the same way as when using near-infrared light illumination [Koulougliotis, D., et al. (2003) Biochemistry 42, 3045-3053]. On the basis of interpretations of these results, and in combination with literature data for other split signals induced under a variety of conditions (temperature and light quality), we propose a unified model for the mechanisms of split signal induction across the four S states (S(0), S(1), S(2), and S(3)). At the heart of this model is the stability or instability of the Y(Z)(•)(D1-His190)(+) pair that would be formed during cryogenic oxidation of Y(Z). Furthermore, the model is closely related to the sequence of transfers of protons and electrons from the CaMn(4) cluster during the S cycle and further demonstrates the utility of the split signals in probing the immediate environment of the oxygen-evolving center in PSII.
Collapse
Affiliation(s)
- Johannes Sjöholm
- Photochemistry and Molecular Science, Department of Chemistry, Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | |
Collapse
|
20
|
Han G, Mamedov F, Styring S. Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 2012; 287:13422-9. [PMID: 22374999 DOI: 10.1074/jbc.m112.342543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 °C and 20 °C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 °C and 10% misses at 20 °C during the S(1)→S(2) transition. The highest miss factor was found in the S(2)→S(3) transition which decreased from 23% to 16% with increasing temperature. For the S(3)→S(0) transition the miss parameter was found to be 7% at 1 °C and decreased to 3% at 20 °C. For the S(0)→S(1) transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn(4)O(5) cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.
Collapse
Affiliation(s)
- Guangye Han
- Photochemistry and Molecular Science, the Department of Chemistry-Ångström, Box 523, Uppsala University, 751 20 Uppsala, Sweden
| | | | | |
Collapse
|
21
|
Chen G, Han G, Göransson E, Mamedov F, Styring S. Stability of the S3 and S2 State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry 2011; 51:138-48. [PMID: 22112168 DOI: 10.1021/bi200627j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiying Chen
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Guangye Han
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Erik Göransson
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
22
|
Lambrev PH, Schmitt FJ, Kussin S, Schoengen M, Várkonyi Z, Eichler HJ, Garab G, Renger G. Functional domain size in aggregates of light-harvesting complex II and thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1022-31. [PMID: 21616053 DOI: 10.1016/j.bbabio.2011.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 05/03/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022]
Abstract
The functional domain size for efficient excited singlet state quenching was studied in artificial aggregates of the main light-harvesting complex II (LHCIIb) from spinach and in native thylakoid membranes by picosecond time-resolved fluorescence spectroscopy and quantum yield measurements. The domain size was estimated from the efficiency of added exogenous singlet excitation quenchers-phenyl-p-benzoquinone (PPQ) and dinitrobenzene (DNB). The mean fluorescence lifetimes τ(av) were quantified for a range of quencher concentrations. Applying the Stern-Volmer formalism, apparent quenching rate constants k(q) were determined from the dependencies on quencher concentration of the ratio τ(0)(av)/τ(av), where τ(0)(av) is the average fluorescence lifetime of the sample without addition of an exogenous quencher. The functional domain size was gathered from the ratio k(q)'/k(q), i.e., the apparent quenching rate constants determined in aggregates (or membranes), k(q)', and in detergent-solubilised LHCII trimers, k(q), respectively. In LHCII macroaggregates, the resulting values for the domain size were 15-30 LHCII trimers. In native thylakoid membranes the domain size was equivalent to 12-24 LHCII trimers, corresponding to 500-1000 chlorophylls. Virtually the same results were obtained when membranes were suspended in buffers promoting either membrane stacking or destacking. These domain sizes are orders of magnitude smaller than the number of physically connected pigment-protein complexes. Therefore our results imply that the physical size of an antenna system beyond the numbers of a functional domain size has little or no effect on improving the light-harvesting efficiency.
Collapse
Affiliation(s)
- Petar H Lambrev
- Max-Volmer-Laboratory for Biophysical Chemistry PC 14, Berlin Institute of Technology, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Slowik D, Rossmann M, Konarev PV, Irrgang KD, Saenger W. Structural Investigation of PsbO from Plant and Cyanobacterial Photosystem II. J Mol Biol 2011; 407:125-37. [DOI: 10.1016/j.jmb.2011.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 02/02/2023]
|
24
|
Sjöholm J, Havelius KGV, Mamedov F, Styring S. Effects of pH on the S3 State of the Oxygen Evolving Complex in Photosystem II Probed by EPR Split Signal Induction. Biochemistry 2010; 49:9800-8. [DOI: 10.1021/bi101364t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Johannes Sjöholm
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Kajsa G. V. Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Ångström Laboratory, Uppsala University, P.O. Box 523, SE-751 20 Uppsala, Sweden
| |
Collapse
|
25
|
Havelius KGV, Su JH, Han G, Mamedov F, Ho FM, Styring S. The formation of the split EPR signal from the S(3) state of Photosystem II does not involve primary charge separation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:11-21. [PMID: 20863810 DOI: 10.1016/j.bbabio.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022]
Abstract
Metalloradical EPR signals have been found in intact Photosystem II at cryogenic temperatures. They reflect the light-driven formation of the tyrosine Z radical (Y(Z)) in magnetic interaction with the CaMn(4) cluster in a particular S state. These so-called split EPR signals, induced at cryogenic temperatures, provide means to study the otherwise transient Y(Z) and to probe the S states with EPR spectroscopy. In the S(0) and S(1) states, the respective split signals are induced by illumination of the sample in the visible light range only. In the S(3) state the split EPR signal is induced irrespective of illumination wavelength within the entire 415-900nm range (visible and near-IR region) [Su, J. H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F., and Styring, S. (2007) Biochemistry 46, 10703-10712]. An important question is whether a single mechanism can explain the induction of the Split S(3) signal across the entire wavelength range or whether wavelength-dependent mechanisms are required. In this paper we confirm that the Y(Z) radical formation in the S(1) state, reflected in the Split S(1) signal, is driven by P680-centered charge separation. The situation in the S(3) state is different. In Photosystem II centers with pre-reduced quinone A (Q(A)), where the P680-centered charge separation is blocked, the Split S(3) EPR signal could still be induced in the majority of the Photosystem II centers using both visible and NIR (830nm) light. This shows that P680-centered charge separation is not involved. The amount of oxidized electron donors and reduced electron acceptors (Q(A)(-)) was well correlated after visible light illumination at cryogenic temperatures in the S(1) state. This was not the case in the S(3) state, where the Split S(3) EPR signal was formed in the majority of the centers in a pathway other than P680-centered charge separation. Instead, we propose that one mechanism exists over the entire wavelength interval to drive the formation of the Split S(3) signal. The origin for this, probably involving excitation of one of the Mn ions in the CaMn(4) cluster in Photosystem II, is discussed.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetrics, Department of Photochemistry and Molecular Sciences, Uppsala University, The Angström Laboratory, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
26
|
Thapper A, Mamedov F, Mokvist F, Hammarström L, Styring S. Defining the far-red limit of photosystem II in spinach. THE PLANT CELL 2009; 21:2391-401. [PMID: 19700631 PMCID: PMC2751953 DOI: 10.1105/tpc.108.064154] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 07/08/2009] [Accepted: 08/04/2009] [Indexed: 05/24/2023]
Abstract
The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn(4) cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S(2)-, S(3)-, and S(0)-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results.
Collapse
Affiliation(s)
- Anders Thapper
- Department of Photochemistry, Angström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
27
|
Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:496-503. [DOI: 10.1016/j.bbabio.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
|
28
|
Mamedov F, Gadjieva R, Styring S. Oxygen-induced changes in the redox state of the cytochrome b559 in photosystem II depend on the integrity of the Mn cluster. PHYSIOLOGIA PLANTARUM 2007; 131:41-49. [PMID: 18251923 DOI: 10.1111/j.1399-3054.2007.00938.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The effect of oxygen and anaerobiosis on the redox properties of Cyt b(559) was investigated in PSII preparations from spinach with different degree of disintegration of the donor side. Comparative studies were performed on intact PSII membranes and PSII membranes that were deprived of the 18-kDa peripheral subunit (0.25 NaCl washed), the 18- and 24-kDa peripheral subunits (1 M NaCl washed), the 18-, 24- and 33-kDa peripheral subunits (1.2 M CaCl(2) washed), Cl depleted and after complete depletion of the Mn cluster (Tris washed). In active PSII centers, about 75% of Cyt b(559) was found in the high-potential form and the rest in the intermediate potential form. With decomposition of the donor side, the intermediate potential form started to dominate, reaching more than 90% after Tris treatment. The oxygen-dependent conversion of the intermediate potential form of Cyt b(559) into the low-potential and high-potential forms was only observed after treatments that directly affect the Mn cluster. In PSII membranes, deprived of all three extrinsic subunits (CaCl(2) treatment), 21% of the intermediate potential form was converted into the low-potential form and 14% into the high-potential form by the removal of oxygen. In Tris-washed PSII membranes, completely lacking the Mn cluster, this conversion amounted to 60 and 33%, respectively. In intact PSII membranes, the oxygen-dependent conversion did not occur. The possible physiological role of this oxygen-dependent behavior of the Cyt b(559) redox forms during the assembly/photoactivation cycle of PSII is discussed.
Collapse
Affiliation(s)
- Fikret Mamedov
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Angström Laboratory, Uppsala University, PO Box 523, 75120 Uppsala, Sweden.
| | | | | |
Collapse
|
29
|
Havelius KGV, Styring S. pH Dependent Competition between YZand YDin Photosystem II Probed by Illumination at 5 K. Biochemistry 2007; 46:7865-74. [PMID: 17559194 DOI: 10.1021/bi700377g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photosystem II (PSII) reaction center contains two redox active tyrosines, YZ and YD, situated on the D1 and D2 proteins, respectively. By illumination at 5 K, oxidation of YZ in oxygen-evolving PSII can be observed as induction of the Split S1 EPR signal from YZ* in magnetic interaction with the CaMn4 cluster, whereas oxidation of YD can be observed as the formation of the free radical EPR signal from YD*. We have followed the light induced induction at 5 K of the Split S1 signal between pH 4-8.5. The formation of the signal, that is, the oxidation of YZ, is pH independent and efficient between pH 5.5 and 8.5. At low pH, the split signal formation decreases with pKa approximately 4.7-4.9. In samples with chemically pre-reduced YD, the pH dependent competition between YZ and YD was studied. Only YZ was oxidized below pH 7.2, but at pH above 7.2, the oxidation of YD became possible, and the formation of the Split S1 signal diminished. The onset of YD oxidation occurred with pKa approximately 8.0, while the Split S1 signal decreased with pKa approximately 7.9 demonstrating that the two tyrosines compete in this pH interval. The results reflect the formation and breaking of hydrogen bonds between YZ and D1-His190 (HisZ) and YD and D2-His190 (HisD), respectively. The oxidation of respective tyrosine at 5 K demands that the hydrogen bond is well-defined; otherwise, the low-temperature oxidation is not possible. The results are discussed in the framework of recent literature data and with respect to the different oxidation kinetics of YZ and YD.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetics, Department of Photochemistry and Molecular Science, Uppsala University, Angström Laboratory, P.O. Box 523, S-751 20 Uppsala, Sweden
| | | |
Collapse
|
30
|
Kaminskaya O, Shuvalov VA, Renger G. Two reaction pathways for transformation of high potential cytochrome b559 of PS II into the intermediate potential form. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:550-8. [PMID: 17400179 DOI: 10.1016/j.bbabio.2007.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/04/2006] [Accepted: 02/03/2007] [Indexed: 11/17/2022]
Abstract
This study describes an analysis of different treatments that influence the relative content and the midpoint potential of HP Cyt b559 in PS II membrane fragments from higher plants. Two basically different types of irreversible modification effects are distinguished: the HP form of Cyt b559 is either predominantly affected when the heme group is oxidized ("O-type" effects) or when it is reduced ("R-type" effects). Transformation of HP Cyt b559 to lower potential redox forms (IP and LP forms) by the "O-type" mechanism is induced by high pH and detergent treatments. In this case the effects consist of a gradual decrease in the relative content of HP Cyt b559 while its midpoint potential remains unaffected. Transformation of HP Cyt b559 via an "R-type" mechanism is caused by a number of exogenous compounds denoted L: herbicides, ADRY reagents and tetraphenylboron. These compounds are postulated to bind to the PS II complex at a quinone binding site designated as Q(C) which interacts with Cyt b559 and is clearly not the Q(B) site. Binding of compounds L to the Q(C) site when HP Cyt b559 is oxidized gives rise to a gradual decrease in the E(m) of HP Cyt b559 with increasing concentration of L (up to 10 K(ox)(L) values) while the relative content of HP Cyt b559 is unaffected. Higher concentrations of compounds L required for their binding to Q(C) site when HP Cyt b559 is reduced (described by K(red)(L)) induce a conversion of HP Cyt b559 to lower potential redox forms ("R-type" transformation). Two reaction pathways for transitions of Cyt b559 between the different protein conformations that are responsible for the HP and IP/LP redox forms are proposed and new insights into the functional regulation of Cyt b559 via the Q(C) site are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | |
Collapse
|
31
|
Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the Lowest QY-state and Spectral Dynamics of the CP29 Chlorophyll a/b Antenna Complex of Green Plants: A Hole-burning Study ‡. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710574aotlqy2.0.co2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kaminskaya O, Kern J, Shuvalov VA, Renger G. Extinction coefficients of cytochromes b559 and c550 of Thermosynechococcus elongatus and Cyt b559/PS II stoichiometry of higher plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:333-41. [PMID: 15950926 DOI: 10.1016/j.bbabio.2005.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/21/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.
Collapse
Affiliation(s)
- Olga Kaminskaya
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | | | | | | |
Collapse
|
33
|
Lee JW, Greenbaum E. Interfacial Photoredox Molecular Interactions: A New Class of Hill Reagents for Photosystem II Reaction Centers. J Phys Chem B 2004. [DOI: 10.1021/jp037565c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- James W. Lee
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6194
| | - Elias Greenbaum
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6194
| |
Collapse
|
34
|
Huyer J, Eckert HJ, Irrgang KD, Miao J, Eichler HJ, Renger G. Fluorescence Decay Kinetics of Solubilized Pigment Protein Complexes from the Distal, Proximal, and Core Antenna of Photosystem II in the Range of 10−277 K and Absence or Presence of Sucrose. J Phys Chem B 2004. [DOI: 10.1021/jp030944l] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Huyer
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| | - H.-J. Eckert
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| | - K.-D. Irrgang
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| | - J. Miao
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| | - H.-J. Eichler
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| | - G. Renger
- Optical Institute and Max-Volmer-Laboratories for Biophysical Chemistry, Technical University Berlin, Strasse des 17. Juni 135, 10623 Berlin
| |
Collapse
|
35
|
Kühn P, Eckert HJ, Eichler HJ, Renger G. Analysis of the P680+˙ reduction pattern and its temperature dependence in oxygen-evolving PS II core complexes from thermophilic cyanobacteria and higher plants. Phys Chem Chem Phys 2004. [DOI: 10.1039/b407656g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Kropacheva TN, Feikema W, Mamedov F, Feyziyev Y, Styring S, Hoff AJ. Spin conversion of cytochrome b559 in photosystem II induced by exogenous high potential quinone. Chem Phys 2003. [DOI: 10.1016/s0301-0104(03)00327-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Shutova T, Villarejo A, Zietz B, Klimov V, Gillbro T, Samuelsson G, Renger G. Comparative studies on the properties of the extrinsic manganese-stabilizing protein from higher plants and of a synthetic peptide of its C-terminus. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1604:95-104. [PMID: 12765766 DOI: 10.1016/s0005-2728(03)00025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The present study describes a comparative analysis on the fluorescence properties of the manganese-stabilizing protein (MSP), a synthetic peptide corresponding to its C terminus and a 7:1 (molar ratio) mixture of N-acetyl-tyrosine and N-acetyl-tryptophan, respectively, together with reconstitution experiments of oxygen evolution in MSP-depleted photosystem II (PS II) membrane fragments. It is found: (i) at neutral pH, the fluorescence from Trp(241) is strongly diminished in MSP solutions, whereas it highly dominates the overall emission from the C-terminus peptide; (ii) at alkaline pH, the emission of Tyr and Trp is quenched in both, MSP and C-terminus peptide, with increasing pH but the decline curve is shifted by about two pH units towards the alkaline region in MSP; (iii) a drastically different pattern emerges in the 7:1 mixture where the Trp emission even slightly increases at high pH; (iv) the anisotropy of the fluorescence emission is wavelength-independent (310-395 nm) and indicative of one emitter type (Trp) in the C-terminus peptide and of two emitter types (Tyr, Trp) in MSP; and (v) in MSP-depleted PS II membrane fragments the oxygen evolution is restored (up to 85% of untreated control) by rebinding of MSP but not by the C-terminus peptide, however, the presence of the latter diminishes the restoration effect of MSP. A quenching mechanism of Trp fluorescence by a next neighbored tyrosinate in the peptide chain is proposed and the relevance of the C terminus of MSP briefly discussed.
Collapse
Affiliation(s)
- T Shutova
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Sweden
| | | | | | | | | | | | | |
Collapse
|
38
|
Leupold D, Teuchner K, Ehlert J, Irrgang KD, Renger G, Lokstein H. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes: a new approach to detect strong excitonic chlorophyll a/b coupling. Biophys J 2002; 82:1580-5. [PMID: 11867470 PMCID: PMC1301956 DOI: 10.1016/s0006-3495(02)75509-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q(y) region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at approximately 680 nm) is not excitonically coupled to chlorophyll b.
Collapse
Affiliation(s)
- Dieter Leupold
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
39
|
Plijter JJ, de Groot A, van Dijk MA, van Gorkom HJ. Destabilization by high pH of the S1
-state of the oxygen-evolving complex in photosystem II particles. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80184-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Irrgang KD, Renger G, Vater J. Identification of Chl-binding proteins in a PS II preparation from spinach. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)81389-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
The susceptibility of the P
-benzoquinone-mediated electron transport and atrazine binding to trypsin and its modification by CaCl2
in thylakoids and PS II membrane fragments. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80744-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Vater J, Salnikow J, Jansson C. N-terminal sequence determination and secondary structure analysis of extrinsic membrane proteins in the water-splitting complex of spinach. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80748-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Renger G, Rutherford A, Völker M. Evidence for resistance of the microenvironment of the primary plastoquinone acceptor (QA
−
·Fe2+
) to mild trypsinization in PS II particles. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)80915-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
|
45
|
Eckert HJ, Renger G. Temperature dependence of P680+
reduction in O2
-evolving PS II membrane fragments at different redox states Si
of the water oxidizing system. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80070-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Hong SK, Pawlikowski SA, Vander Meulen KA, Yocum CF. The oxidation state of the photosystem II manganese cluster influences the structure of manganese stabilizing protein. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:262-74. [PMID: 11245790 DOI: 10.1016/s0005-2728(00)00255-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure of photosystem II membranes to trypsin that has been treated to inhibit chymotrypsin activity produces limited hydrolysis of manganese stabilizing protein. Exposure to chymotrypsin under the same conditions yields substantial digestion of the protein. Further probing of the unusual insensitivity of manganese stabilizing protein to trypsin hydrolysis reveals that increasing the temperature from 4 to 25 degrees C will cause some acceleration in the rate of proteolysis. However, addition of low (100 microM) concentrations of NH2OH, that are sufficient to reduce, but not destroy, the photosystem II Mn cluster, causes a change in PS II-bound manganese stabilizing protein that causes it to be rapidly digested by trypsin. Immunoblot analyses with polyclonal antibodies directed against the N-terminus of the protein, or against the entire sequence show that trypsin cleavage produces two distinct peptide fragments estimated to be in the 17-20 kDa range, consistent with proposals that there are 2 mol of the protein/mol photosystem II. The correlation of trypsin sensitivity with Mn redox state(s) in photosystem II suggest that manganese stabilizing protein may interact either directly with Mn, or alternatively, that the polypeptide is bound to another protein of the photosystem II reaction center that is intimately involved in binding and redox activity of Mn.
Collapse
Affiliation(s)
- S K Hong
- Department of Biology and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
47
|
Shutova T, Deikus G, Irrgang KD, Klimov VV, Renger G. Origin and properties of fluorescence emission from the extrinsic 33 kDa manganese stabilizing protein of higher plant water oxidizing complex. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1504:371-8. [PMID: 11245801 DOI: 10.1016/s0005-2728(00)00267-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescence properties of the isolated extrinsic 33 kDa subunit acting as 'manganese stabilizing protein' (MSP) of the water oxidizing complex in photosynthesis was analyzed in buffer solution. Measurements of the emission spectra as a function of excitation wavelength, pH and temperature led to the following results: (a) under all experimental conditions the spectra monitored were found to be the composite of two contributions referred to as '306 nm band' and 'long-wavelength band', (b) the excitation spectra of these two bands closely resemble those of tyrosine and tryptophan in solution, respectively, (c) the spectral shape of the '306 nm band' is virtually independent on pH but its amplitude drastically decreases in the alkaline with a pK of 11.7, (d) the amplitude of the 'long-wavelength' emission band at alkaline pH slightly increases when the pH rises from 7.2 to about 11.3 followed by a sharp decline at higher pH, and (e) the shape of the overall spectrum at pH 7.2 is only slightly changed upon heating to 90 degrees C whereas the amplitude significantly declines. Based on these findings the two distinct fluorescence bands are ascribed to tyrosine(s) ('306 nm band') and the only tryptophan residue W241 of MSP from higher plants ('long-wavelength band') as emitters which are both embedded into a rather hydrophobic environment.
Collapse
Affiliation(s)
- T Shutova
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
48
|
Pieper J, Irrgang KD, Rätsep M, Voigt J, Renger G, Small GJ. Assignment of the lowest Qy-state and spectral dynamics of the CP29 chlorophyll a/b antenna complex of green plants: a hole-burning study. Photochem Photobiol 2000; 71:574-81. [PMID: 10818788 DOI: 10.1562/0031-8655(2000)071<0574:aotlqy>2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Low-temperature absorption, fluorescence and persistent non-photochemical hole-burned spectra are reported for the CP29 chlorophyll (Chl) a/b antenna complex of photosystem II of green plants. The absorption-origin band of the lowest Qy-state lies at 678.2 nm and carries a width of approximately 130 cm-1 that is dominated by inhomogeneous broadening at low temperatures. Its absorption intensity is equivalent to that of one of the six Chl a molecules of CP29. The absence of a significant satellite hole structure produced by hole burning, within the absorption band of the lowest state, indicates that the associated Chl a molecule is weakly coupled to the other Chl and, therefore, that the lowest-energy state is highly localized on a single Chl a molecule. The electron-phonon coupling of the 678.2 nm state is weak with a Huang-Rhys factor S of 0.5 and a peak phonon frequency (omega m) of approximately 20 cm-1. These values give a Stokes shift (2S omega m) in good agreement with the measured positions of the absorption band at 678.2 nm and a fluorescence-origin band at 679.1 nm. Zero-phonon holes associated with the lowest state have a width of approximately 0.05 cm-1 at 4.2 K, corresponding to a total effective dephasing time of approximately 400 ps. The temperature dependence of the zero-phonon holewidth indicates that this time constant is dominated at temperatures below 8 K by pure dephasing/spectral diffusion due to coupling of the optical transition to the glass-like two-level systems of the protein. Zero-phonon hole-widths obtained for the Chl b bands at 638.5 and 650.0 nm, at 4.2 K, lead to lower limits of 900 +/- 150 fs and 4.2 +/- 0.3 ps, respectively, for the Chl b-->Chl a energy-transfer times. Downward energy transfer from the Chl a state(s) at 665.0 nm occurs in 5.3 +/- 0.6 ps at 4.2 K.
Collapse
Affiliation(s)
- J Pieper
- Institute of Physics, Humboldt University, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
49
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Schödel R, Irrgang KD, Voigt J, Renger G. Quenching of chlorophyll fluorescence by triplets in solubilized light-harvesting complex II (LHCII). Biophys J 1999; 76:2238-48. [PMID: 10096919 PMCID: PMC1300197 DOI: 10.1016/s0006-3495(99)77380-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The quenching of chlorophyll fluorescence by triplets in solubilized trimeric light harvesting complexes was analyzed by comparative pump-probe experiments that monitor with weak 2-ns probe pulses the fluorescence yield and changes of optical density, DeltaOD, induced by 2-ns pump pulses. By using a special array for the measurement of the probe fluorescence (Schödel R., F. Hillman, T. Schrötter, K.-D. Irrgang, J. Voight, and G. Biophys. J. 71:3370-3380) the emission caused by the pump pulses could be drastically reduced so that even at highest pump pulse intensities, IP, no significant interference with the signal due to the probe pulse was observed. The data obtained reveal: a) at a fixed time delay of 50 ns between pump and probe pulse the fluorescence yield of the latter drastically decreased with increasing IP, b) the recovery of the fluorescence yield in the microseconds time domain exhibits kinetics which are dependent on IP, c) DeltaOD at 507 nm induced by the pump pulse and monitored by the probe pulse with a delay of 50 ns (reflecting carotenoid triplets) increases with IP without reaching a saturation level at highest IP values, d) an analogous feature is observed for the bleaching at 675 nm but it becomes significant only at very high IP values, e) the relaxation of DeltaOD at 507 nm occurs via a monophasic kinetics at all IP values whereas DeltaOD at 675 nm measured under the same conditions is characterized by a biphasic kinetics with tau values of about 1 microseconds and 7-9 microseconds. The latter corresponds with the monoexponential decay kinetics of DeltaOD at 507 nm. Based on a Stern-Volmer plot, the time-dependent fluorescence quenching is compared with the relaxation kinetics of triplets. It is shown that the fluorescence data can be consistently described by a quenching due to triplets.
Collapse
Affiliation(s)
- R Schödel
- AG Molekulare Biophysik und Spektroskopie, Institut für Physik der Humboldt Universität zu Berlin, Germany.
| | | | | | | |
Collapse
|