Kamp F, Chen YD, Westerhoff HV. Energization-induced redistribution of charge carriers near membranes.
Biophys Chem 1988;
30:113-32. [PMID:
2843244 DOI:
10.1016/0301-4622(88)85009-9]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The electric field arising from proton pumping across a topologically closed biological membrane causes accumulation close to the membrane of ionic charges equivalent to the charge of the pumped protons, positive on the side towards which protons are pumped, negative on the other side. We shall call this the 'active surface charge'. We here use the Poisson-Boltzmann equation to evaluate the effects of zwitterionic buffer molecules and uncharged proteins in the aqueous phase bordering the membrane on the magnitude and ionic composition of the active surface charge. For the positive side of the membrane, the main results are: (1) If the membrane is freely accessible to bulk phase ions, pumped protons exchange with these ions, such that the active surface charge consists of salt cations. (2) If a significant fraction of the ions in bulk solution consists of buffer molecules, then some of the pumped protons will remain close to the membrane and constitute a major fraction of the active surface charge. (3) If a protein layer borders the membrane, a significant part of the transmembrane electric potential difference exists within that protein layer and protons inside this layer dominate the active surface charge. (4) On the negative side of the membrane the corresponding phenomena would occur. (5) All these effects are strictly dependent on the transmembrane electric potential difference arising from proton pumping and would come in addition to the well known effects of buffers and electrically charged proteins on the retention of scalar protons. (6) No additional proton diffusion barrier may be required to account for a deficit in number of protons observed in the aqueous bulk phase upon aeration-induced proton pumping.
Collapse