1
|
Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, Brudvig GW, Amin M, Bryant DA. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. J Biol Chem 2023; 299:102815. [PMID: 36549647 PMCID: PMC9843442 DOI: 10.1016/j.jbc.2022.102815] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Groningen, the Netherlands; Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
2
|
Sirohiwal A, Neese F, Pantazis DA. Chlorophyll excitation energies and structural stability of the CP47 antenna of photosystem II: a case study in the first-principles simulation of light-harvesting complexes. Chem Sci 2021; 12:4463-4476. [PMID: 34163712 PMCID: PMC8179452 DOI: 10.1039/d0sc06616h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Natural photosynthesis relies on light harvesting and excitation energy transfer by specialized pigment-protein complexes. Their structure and the electronic properties of the embedded chromophores define the mechanisms of energy transfer. An important example of a pigment-protein complex is CP47, one of the integral antennae of the oxygen-evolving photosystem II (PSII) that is responsible for efficient excitation energy transfer to the PSII reaction center. The charge-transfer excitation induced among coupled reaction center chromophores resolves into charge separation that initiates the electron transfer cascade driving oxygenic photosynthesis. Mapping the distribution of site energies among the 16 chlorophyll molecules of CP47 is essential for understanding excitation energy transfer and overall antenna function. In this work, we demonstrate a multiscale quantum mechanics/molecular mechanics (QM/MM) approach utilizing full time-dependent density functional theory with modern range-separated functionals to compute for the first time the excitation energies of all CP47 chlorophylls in a complete membrane-embedded cyanobacterial PSII dimer. The results quantify the electrostatic effect of the protein on the site energies of CP47 chlorophylls, providing a high-level quantum chemical excitation profile of CP47 within a complete computational model of "near-native" cyanobacterial PSII. The ranking of site energies and the identity of the most red-shifted chlorophylls (B3, followed by B1) differ from previous hypotheses in the literature and provide an alternative basis for evaluating past approaches and semiempirically fitted sets. Given that a lot of experimental studies on CP47 and other light-harvesting complexes utilize extracted samples, we employ molecular dynamics simulations of isolated CP47 to identify which parts of the polypeptide are most destabilized and which pigments are most perturbed when the antenna complex is extracted from PSII. We demonstrate that large parts of the isolated complex rapidly refold to non-native conformations and that certain pigments (such as chlorophyll B1 and β-carotene h1) are so destabilized that they are probably lost upon extraction of CP47 from PSII. The results suggest that the properties of isolated CP47 are not representative of the native complexed antenna. The insights obtained from CP47 are generalizable, with important implications for the information content of experimental studies on biological light-harvesting antenna systems.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany.,Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum 44780 Bochum Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| |
Collapse
|
3
|
The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: Emitting states of CP47 assigned via circularly polarized luminescence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1580-1593. [PMID: 27342201 DOI: 10.1016/j.bbabio.2016.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 11/22/2022]
Abstract
The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII.
Collapse
|
4
|
The quest for energy traps in the CP43 antenna of photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:286-300. [DOI: 10.1016/j.jphotobiol.2015.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/13/2015] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
|
5
|
Hall J, Renger T, Picorel R, Krausz E. Circularly polarized luminescence spectroscopy reveals low-energy excited states and dynamic localization of vibronic transitions in CP43. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:115-128. [PMID: 26449206 DOI: 10.1016/j.bbabio.2015.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 11/26/2022]
Abstract
Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.
Collapse
Affiliation(s)
- Jeremy Hall
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria
| | - Rafael Picorel
- Estacion Experimental de Aula Dei (CSIC), Avda. Montañana, Zaragoza, Spain
| | - Elmars Krausz
- Research School of Chemistry, Australian National University, Canberra, Australia.
| |
Collapse
|
6
|
Hou HJM. Unidirectional photodamage of pheophytin in photosynthesis. FRONTIERS IN PLANT SCIENCE 2014; 4:554. [PMID: 24454319 PMCID: PMC3888939 DOI: 10.3389/fpls.2013.00554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
|
7
|
Shibata Y, Nishi S, Kawakami K, Shen JR, Renger T. Photosystem II does not possess a simple excitation energy funnel: time-resolved fluorescence spectroscopy meets theory. J Am Chem Soc 2013; 135:6903-14. [PMID: 23537277 PMCID: PMC3650659 DOI: 10.1021/ja312586p] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
The experimentally
obtained time-resolved fluorescence spectra
of photosystem II (PS II) core complexes, purified from a thermophilic
cyanobacterium Thermosynechococcus vulcanus, at 5–180 K are compared with simulations. Dynamic localization
effects of excitons are treated implicitly by introducing exciton
domains of strongly coupled pigments. Exciton relaxations within a
domain and exciton transfers between domains are treated on the basis
of Redfield theory and generalized Förster theory, respectively.
The excitonic couplings between the pigments are calculated by a quantum
chemical/electrostatic method (Poisson-TrEsp). Starting with previously
published values, a refined set of site energies of the pigments is
obtained through optimization cycles of the fits of stationary optical
spectra of PS II. Satisfactorily agreement between the experimental
and simulated spectra is obtained for the absorption spectrum including
its temperature dependence and the linear dichroism spectrum of PS
II core complexes (PS II-CC). Furthermore, the refined site energies
well reproduce the temperature dependence of the time-resolved fluorescence
spectrum of PS II-CC, which is characterized by the emergence of a
695 nm fluorescence peak upon cooling down to 77 K and the decrease
of its relative intensity upon further cooling below 77 K. The blue
shift of the fluorescence band upon cooling below 77 K is explained
by the existence of two red-shifted chlorophyll pools emitting at
around 685 and 695 nm. The former pool is assigned to Chl45 or Chl43
in CP43 (Chl numbering according to the nomenclature of Loll et al. Nature2005, 438, 1040) while
the latter is assigned to Chl29 in CP47. The 695 nm emitting chlorophyll
is suggested to attract excitations from the peripheral light-harvesting
complexes and might also be involved in photoprotection.
Collapse
Affiliation(s)
- Yutaka Shibata
- Division of Material Science (Physics), Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
8
|
Cox N, Hughes JL, Steffen R, Smith PJ, Rutherford AW, Pace RJ, Krausz E. Identification of the QY Excitation of the Primary Electron Acceptor of Photosystem II: CD Determination of Its Coupling Environment. J Phys Chem B 2009; 113:12364-74. [DOI: 10.1021/jp808796x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Joseph L. Hughes
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Ronald Steffen
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Paul J. Smith
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - A. William Rutherford
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Ron J. Pace
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Elmars Krausz
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia, and iBiTec-S, CNRS URA 2096, Bât 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Hughes JL, Picorel R, Seibert M, Krausz E. Photophysical Behavior and Assignment of the Low-Energy Chlorophyll States in the CP43 Proximal Antenna Protein of Higher Plant Photosystem II. Biochemistry 2006; 45:12345-57. [PMID: 17014087 DOI: 10.1021/bi0614683] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have employed absorption, circular dichroism (CD), and persistent spectral hole-burning measurements at 1.7 K to study the photoconversion properties and exciton coupling of low-energy chlorophylls (Chls) in the CP43 proximal antenna light-harvesting subunit of photosystem II (PSII) isolated from spinach. These approximately 683 nm states act as traps for excitation energy in isolated CP43. They "bleach" at 683 nm upon illumination and photoconvert to a form absorbing in the range approximately 660-680 nm. We present new data that show the changes in the CD spectrum due to the photoconversion process. These changes occur in parallel with those in absorption, providing evidence that the feature undergoing the apparent bleach is a component of a weakly exciton-coupled system. From our photoconversion difference spectra, we assign four states in the Chl long-wavelength region of CP43, two of which are the known trap states and are both highly localized on single Chls. The other two states are associated with weak exciton coupling (maximally approximately 50 cm(-)(1)) to one of these traps. We propose a mechanism for photoconversion that involves Chl-protein hydrogen bonding. New hole-burning data are presented that indicate this mechanism is distinct to that for narrow-band spectral hole burning in CP43. We discuss the photophysical behavior of the Chl trap states in isolated CP43 compared to their behavior in intact PSII preparations. The latter represent a more intact, physiological complex, and we find no clear evidence that they exhibit the photoconversion process reported here.
Collapse
Affiliation(s)
- Joseph L Hughes
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | |
Collapse
|
10
|
Arsköld SP, Smith PJ, Shen JR, Pace RJ, Krausz E. Key cofactors of photosystem II cores from four organisms identified by 1.7-K absorption, CD and MCD. PHOTOSYNTHESIS RESEARCH 2005; 84:309-16. [PMID: 16049791 DOI: 10.1007/s11120-005-2135-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 02/10/2005] [Indexed: 05/03/2023]
Abstract
Active Photosystem II (PS II) cores were prepared from spinach, pea, Synechocystis PCC 6803, and Thermosynechococcus vulcanus, the latter of which has been structurally determined [Kamiya and Shen (2003) Proc Natl Acad Sci USA 100: 98-103]. Electrochromic shifts resulting from QA reduction by 1.7-K illumination were recorded, and the Qx and Qy absorption bands of the redox-active pheophytin a thus identified in the different organisms. The Qx transition is approximately 3 nm (100 cm-1) to higher energy in cyanobacteria than in the plants. The predominant Qy shift appears in the range 683-686 nm depending on species, and does not appear to have a systematic shift. Low-temperature absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra of the chlorophyll Qy region are very similar in spinach and pea, but vary in cyanobacteria. We assigned CP43 and CP47 trap-chlorophyll absorption features in all species, as well as a P680 transition. Each absorption identified has an area of one chlorophyll a. The MCD deficit, introduced previously for spinach as an indicator of P680 activity, occurs in the same spectral region and has the same area in all species, pointing to a robustness of this as a signature for P680. MCD and CD characteristics point towards a significant variance in P680 structure between cyanobacteria, thermophilic cyanobacteria, and higher plants.
Collapse
Affiliation(s)
- Sindra Peterson Arsköld
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | | | | | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Tracewell CA, Vrettos JS, Bautista JA, Frank HA, Brudvig GW. Carotenoid photooxidation in photosystem II. Arch Biochem Biophys 2001; 385:61-9. [PMID: 11361027 DOI: 10.1006/abbi.2000.2150] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotenoids are known to function as light-harvesting pigments and they play important roles in photoprotection in both plant and bacterial photosynthesis. These functions are also important for carotenoids in photosystem II. In addition, beta-carotene recently has been found to function as a redox intermediate in an alternate pathway of electron transfer within photosystem II. This redox role of a carotenoid in photosystem II is unique among photosynthetic reaction centers and stems from the very highly oxidizing intermediates that form in the process of water oxidation. In this minireview, an overview of the electron-transfer reactions in photosystem II is presented, with an emphasis on those involving carotenoids. The carotenoid composition of photosystem II and the physical methods used to study the structure of the redox-active carotenoid are reviewed. Possible roles of carotenoid cations in photoprotection of photosystem II are discussed.
Collapse
Affiliation(s)
- C A Tracewell
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, USA
| | | | | | | | | |
Collapse
|
14
|
Jankowiak R, Zazubovich V, Rätsep M, Matsuzaki S, Alfonso M, Picorel R, Seibert M, Small GJ. The CP43 Core Antenna Complex of Photosystem II Possesses Two Quasi-Degenerate and Weakly Coupled Qy-Trap States. J Phys Chem B 2000. [DOI: 10.1021/jp0025431] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- R. Jankowiak
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - V. Zazubovich
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Rätsep
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - S. Matsuzaki
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Alfonso
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - R. Picorel
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - M. Seibert
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| | - G. J. Small
- Ames Laboratory-USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401
| |
Collapse
|
15
|
Groot ML, Frese RN, de Weerd FL, Bromek K, Pettersson A, Peterman EJ, van Stokkum IH, van Grondelle R, Dekker JP. Spectroscopic properties of the CP43 core antenna protein of photosystem II. Biophys J 1999; 77:3328-40. [PMID: 10585955 PMCID: PMC1300604 DOI: 10.1016/s0006-3495(99)77164-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
CP43 is a chlorophyll-protein complex that funnels excitation energy from the main light-harvesting system of photosystem II to the photochemical reaction center. We purified CP43 from spinach photosystem II membranes in the presence of the nonionic detergent n-dodecyl-beta,D-maltoside and recorded its spectroscopic properties at various temperatures between 4 and 293 K by a number of polarized absorption and fluorescence techniques, fluorescence line narrowing, and Stark spectroscopy. The results indicate two "red" states in the Q(y) absorption region of the chlorophylls. The first peaks at 682.5 nm at 4 K, has an extremely narrow bandwidth with a full width at half-maximum of approximately 2.7 nm (58 cm(-1)) at 4 K, and has the oscillator strength of a single chlorophyll. The second peaks at approximately 679 nm, has a much broader bandshape, is caused by several excitonically interacting chlorophylls, and is responsible for all 4 K absorption at wavelengths longer than 685 nm. The Stark spectrum of CP43 resembles the first derivative of the absorption spectrum and has an exceptionally small overall size, which we attribute to opposing orientations of the monomer dipole moments of the excitonically coupled pigments.
Collapse
Affiliation(s)
- M L Groot
- Division of Physics and Astronomy, Institute of Molecular Biological Sciences, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jennings RC, Bassi R, Zucchelli G. Antenna structure and energy transfer in higher plant photosystems. ELECTRON TRANSFER II 1996. [DOI: 10.1007/3-540-60110-4_5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Schelvis J, Germano M, Aartsma T, van Gorkom H. Energy transfer and trapping in Photosystem II core particles with closed reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00048-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
|
19
|
Carbonera D, Giacometti G, Agostini G, Angerhofer A, Aust V. ODMR of carotenoid and chlorophyll triplets in CP43 and CP47 complexes of spinach. Chem Phys Lett 1992. [DOI: 10.1016/0009-2614(92)86051-i] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Newell W, Amerongen HV, Barber J, van Grondelle R. Spectroscopic characterisation of the reaction centre of photosystem II using polarised light: Evidence for β-carotene excitons in PS II reaction centres. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80106-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Hansson O, Wydrzynski T. Current perceptions of Photosystem II. PHOTOSYNTHESIS RESEARCH 1990; 23:131-162. [PMID: 24421057 DOI: 10.1007/bf00035006] [Citation(s) in RCA: 134] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/1989] [Accepted: 06/05/1989] [Indexed: 06/03/2023]
Abstract
In the last few years our knowledge of the structure and function of Photosystem II in oxygen-evolving organisms has increased significantly. The biochemical isolation and characterization of essential protein components and the comparative analysis from purple photosynthetic bacteria (Deisenhofer, Epp, Miki, Huber and Michel (1984) J Mol Biol 180: 385-398) have led to a more concise picture of Photosystem II organization. Thus, it is now generally accepted that the so-called D1 and D2 intrinsic proteins bind the primary reactants and the reducing-side components. Simultaneously, the nature and reaction kinetics of the major electron transfer components have been further clarified. For example, the radicals giving rise to the different forms of EPR Signal II have recently been assigned to oxidized tyrosine residues on the D1 and D2 proteins, while the so-called Q400 component has been assigned to the ferric form of the acceptor-side iron. The primary charge-separation has been meaured to take place in about 3 ps. However, despite all recent major efforts, the location of the manganese ions and the water-oxidation mechanism still remain largely unknown. Other topics which lately have received much attention include the organization of Photosystem II in the thylakoid membrane and the role of lipids and ionic cofactors like bicarbonate, calcium and chloride. This article attempts to give an overall update in this rapidly expanding field.
Collapse
Affiliation(s)
- O Hansson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, S-412 96, Göteborg, Sweden
| | | |
Collapse
|
22
|
Orientation of the Pheophytin Primary Electron Acceptor and of the Cytochrome B559 in the D1D2 Photosystem II Reaction Center. THE JERUSALEM SYMPOSIA ON QUANTUM CHEMISTRY AND BIOCHEMISTRY 1990. [DOI: 10.1007/978-94-009-0489-7_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
van Dorssen R, Breton J, Plijter J, Satoh K, van Gorkom H, Amesz J. Spectroscopic properties of the reaction center and of the 47 kDa chlorophyll protein of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90048-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|