1
|
Manoj KM, Gideon DA, Parashar A. What is the Role of Lipid Membrane-embedded Quinones in Mitochondria and Chloroplasts? Chemiosmotic Q-cycle versus Murburn Reaction Perspective. Cell Biochem Biophys 2020; 79:3-10. [PMID: 32989571 DOI: 10.1007/s12013-020-00945-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2020] [Indexed: 01/23/2023]
Abstract
Quinones are found in the lipid membranes of prokaryotes like E. coli and cyanobacteria, and are also abundant in eukaryotic mitochondria and chloroplasts. They are intricately involved in the reaction mechanism of redox phosphorylations. In the Mitchellian chemiosmotic school of thought, membrane-lodged quinones are perceived as highly mobile conveyors of two-electron equivalents from the first leg of Electron Transport Chain (ETC) to the 'second pit-stop' of Cytochrome bc1 or b6f complex (CBC), where they undergo a regenerative 'Q-cycle'. In Manoj's murburn mechanism, the membrane-lodged quinones are perceived as relatively slow-moving one- or two- electron donors/acceptors, enabling charge separation and the CBC resets a one-electron paradigm via 'turbo logic'. Herein, we compare various purviews of the two mechanistic schools with respect to: constraints in mobility, protons' availability, binding of quinones with proteins, structural features of the protein complexes, energetics of reaction, overall reaction logic, etc. From various perspectives, the murburn mechanism appeals as a viable alternative explanation well-rooted in thermodynamics/kinetics and one which lends adequate structure-function correlations for the roles of quinones, lipid membrane and associated proteins.
Collapse
Affiliation(s)
- Kelath Murali Manoj
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad, Kerala, 679122, India.
| | - Daniel Andrew Gideon
- Satyamjayatu: The Science & Ethics Foundation, Kulappully, Shoranur-2 (PO), Palakkad, Kerala, 679122, India
| | - Abhinav Parashar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Guntur, 522213, India.
| |
Collapse
|
2
|
Schumaker MF, Kramer DM. Comparison of Monte Carlo simulations of cytochrome b6f with experiment using Latin hypercube sampling. Bull Math Biol 2011; 73:2152-74. [PMID: 21221830 DOI: 10.1007/s11538-010-9616-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
We have programmed a Monte Carlo simulation of the Q-cycle model of electron transport in cytochrome b(6)f complex, an enzyme in the photosynthetic pathway that converts sunlight into biologically useful forms of chemical energy. Results were compared with published experiments of Kramer and Crofts (Biochim. Biophys. Acta 1183:72-84, 1993). Rates for the simulation were optimized by constructing large numbers of parameter sets using Latin hypercube sampling and selecting those that gave the minimum mean square deviation from experiment. Multiple copies of the simulation program were run in parallel on a Beowulf cluster. We found that Latin hypercube sampling works well as a method for approximately optimizing very noisy objective functions of 15 or 22 variables. Further, the simplified Q-cycle model can reproduce experimental results in the presence or absence of a quinone reductase (Q(i)) site inhibitor without invoking ad hoc side-reactions.
Collapse
Affiliation(s)
- Mark F Schumaker
- Department of Mathematics, Washington State University, Pullman, WA 99164, USA.
| | | |
Collapse
|
3
|
Mulkidjanian AY. Activated Q-cycle as a common mechanism for cytochrome bc1 and cytochrome b6f complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1858-68. [DOI: 10.1016/j.bbabio.2010.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/14/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
|
4
|
Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 2010; 464:1210-3. [PMID: 20364124 DOI: 10.1038/nature08885] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 02/02/2010] [Indexed: 11/09/2022]
Abstract
Photosynthetic light reactions establish electron flow in the chloroplast's thylakoid membranes, leading to the production of the ATP and NADPH that participate in carbon fixation. Two modes of electron flow exist-linear electron flow (LEF) from water to NADP(+) via photosystem (PS) II and PSI in series and cyclic electron flow (CEF) around PSI (ref. 2). Although CEF is essential for satisfying the varying demand for ATP, the exact molecule(s) and operational site are as yet unclear. In the green alga Chlamydomonas reinhardtii, the electron flow shifts from LEF to CEF on preferential excitation of PSII (ref. 3), which is brought about by an energy balancing mechanism between PSII and PSI (state transitions). Here, we isolated a protein supercomplex composed of PSI with its own light-harvesting complex (LHCI), the PSII light-harvesting complex (LHCII), the cytochrome b(6)f complex (Cyt bf), ferredoxin (Fd)-NADPH oxidoreductase (FNR), and the integral membrane protein PGRL1 (ref. 5) from C. reinhardtii cells under PSII-favouring conditions. Spectroscopic analyses indicated that on illumination, reducing equivalents from downstream of PSI were transferred to Cyt bf, whereas oxidised PSI was re-reduced by reducing equivalents from Cyt bf, indicating that this supercomplex is engaged in CEF (Supplementary Fig. 1). Thus, formation and dissociation of the PSI-LHCI-LHCII-FNR-Cyt bf-PGRL1 supercomplex not only controlled the energy balance of the two photosystems, but also switched the mode of photosynthetic electron flow.
Collapse
Affiliation(s)
- Masakazu Iwai
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Tremmel IG, Weis E, Farquhar GD. Macromolecular crowding and its influence on possible reaction mechanisms in photosynthetic electron flow. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:353-61. [PMID: 17445761 DOI: 10.1016/j.bbabio.2007.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 11/15/2022]
Abstract
The diffusion of plastoquinol and its binding to the Qo site of the cyt bf complex in the course of photosynthetic electron transport was studied by following the sigmoidal flash-induced re-reduction kinetics of P700 after previous oxidation of the intersystem electron carriers. The data resulting from these experiments were matched with a simulation of electron transport using Monte Carlo techniques. The simulation was able to account for the experimental observations. Two different extreme cases of reaction mechanism at the Qo site were compared: a diffusion limited collisional mechanism and a non-diffusion limited tight binding mechanism. Assuming a tight binding mechanism led to best matches due to the high protein density in thylakoids. The varied parameters resulted in values well within the range of published data. The results emphasise the importance of structural characteristics of thylakoids in models of electron transport.
Collapse
Affiliation(s)
- I G Tremmel
- Max-Planck-Institute for Biophysical Chemistry, Theoretical and Computational Biophysics Department, Am Fassberg 11, D-37077 Goettingen, Germany.
| | | | | |
Collapse
|
6
|
Shinkarev VP, Crofts AR, Wraight CA. Spectral and kinetic resolution of the bc1 complex components in situ: a simple and robust alternative to the traditional difference wavelength approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:273-83. [PMID: 16730321 DOI: 10.1016/j.bbabio.2006.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 03/31/2006] [Accepted: 04/01/2006] [Indexed: 11/24/2022]
Abstract
The kinetics of the cytochrome (cyt) components of the bc(1) complex (ubiquinol: cytochrome c oxidoreductase, Complex III) are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. However, this difference-wavelength (DW) approach is of limited accuracy in the separation of absorbance changes of components with overlapping spectral bands. To resolve the kinetics of individual components in Rhodobacter sphaeroides chromatophores, we have tested a simplified version of a least squares (LS) analysis, based on measurement at a minimal number of different wavelengths. The success of the simplified LS analysis depended significantly on the wavelengths used in the set. The "traditional" set of 6 wavelengths (542, 551, 561, 566, 569 and 575 nm), normally used in the DW approach to characterize kinetics of cyt c(tot) (cyt c(1)+cyt c(2)), cyt b(L), cyt b(H), and P870 in chromatophores, could also be used to determine these components via the simplified LS analysis, with improved resolution of the individual components. However, this set is not sufficient when information about cyts c(1) and c(2) is needed. We identified multiple alternative sets of 5 and 6 wavelengths that could be used to determine the kinetics of all 5 components (P870 and cyts c(1), c(2), b(L), and b(H)) simultaneously, with an accuracy comparable to that of the LS analysis based on a full set of wavelengths (1 nm intervals). We conclude that a simplified version of LS deconvolution based on a small number of carefully selected wavelengths provides a robust and significant improvement over the traditional DW approach, since it accounts for spectral interference of the different components, and uses fewer measurements when information about all five individual components is needed. Using the simplified and complete LS analyses, we measured the simultaneous kinetics of all cytochrome components of bc(1) complex in the absence and presence of specific inhibitors and found that they correspond well to those expected from the modified Q-cycle. This is the first study in which the kinetics of all cytochrome and reaction center components of the bc(1) complex functioning in situ have been measured simultaneously, with full deconvolution over an extended time range.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, 6l80l, USA.
| | | | | |
Collapse
|
7
|
Shinkarev VP, Crofts AR, Wraight CA. Spectral analysis of the bc(1) complex components in situ: beyond the traditional difference approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1757:67-77. [PMID: 16386703 DOI: 10.1016/j.bbabio.2005.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/08/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
The cytochrome (cyt) bc(1) complex (ubiquinol: cytochrome c oxidoreductase) is the central enzyme of mitochondrial and bacterial electron-transport chains. It is rich in prosthetic groups, many of which have significant but overlapping absorption bands in the visible spectrum. The kinetics of the cytochrome components of the bc(1) complex are traditionally followed by using the difference of absorbance changes at two or more different wavelengths. This difference-wavelength (DW) approach has been used extensively in the development and testing of the Q-cycle mechanism of the bc(1) complex in Rhodobacter sphaeroides chromatophores. However, the DW approach does not fully compensate for spectral interference from other components, which can significantly distort both amplitudes and kinetics. Mechanistic elaboration of cyt bc(1) turnover requires an approach that overcomes this limitation. Here, we compare the traditional DW approach to a least squares (LS) analysis of electron transport, based on newly determined difference spectra of all individual components of cyclic electron transport in chromatophores. Multiple sets of kinetic traces, measured at different wavelengths in the absence and presence of specific inhibitors, were analyzed by both LS and DW approaches. Comparison of the two methods showed that the DW approach did not adequately correct for the spectral overlap among the components, and was generally unreliable when amplitude changes for a component of interest were small. In particular, it was unable to correct for extraneous contributions to the amplitudes and kinetics of cyt b(L). From LS analysis of the chromophoric components (RC, c(tot), b(H) and b(L)), we show that while the Q-cycle model remains firmly grounded, quantitative reevaluation of rates, amplitudes, delays, etc., of individual components is necessary. We conclude that further exploration of mechanisms of the bc(1) complex, will require LS deconvolution for reliable measurement of the kinetics of individual components of the complex in situ.
Collapse
Affiliation(s)
- Vladimir P Shinkarev
- Department of Biochemistry, University of Illinois at Urbana -- Champaign, 156 Davenport Hall, 607 South Mathews Avenue, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
8
|
Mulkidjanian AY. Ubiquinol oxidation in the cytochrome bc1 complex: Reaction mechanism and prevention of short-circuiting. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1709:5-34. [PMID: 16005845 DOI: 10.1016/j.bbabio.2005.03.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 12/01/2004] [Accepted: 03/22/2005] [Indexed: 11/26/2022]
Abstract
This review is focused on the mechanism of ubiquinol oxidation by the cytochrome bc1 complex (bc1). This integral membrane complex serves as a "hub" in the vast majority of electron transfer chains. The bc1 oxidizes a ubiquinol molecule to ubiquinone by a unique "bifurcated" reaction where the two released electrons go to different acceptors: one is accepted by the mobile redox active domain of the [2Fe-2S] iron-sulfur Rieske protein (FeS protein) and the other goes to cytochrome b. The nature of intermediates in this reaction remains unclear. It is also debatable how the enzyme prevents short-circuiting that could happen if both electrons escape to the FeS protein. Here, I consider a reaction mechanism that (i) agrees with the available experimental data, (ii) entails three traits preventing the short-circuiting in bc1, and (iii) exploits the evident structural similarity of the ubiquinone binding sites in the bc1 and the bacterial photosynthetic reaction center (RC). Based on the latter congruence, it is suggested that the reaction route of ubiquinol oxidation by bc1 is a reversal of that leading to the ubiquinol formation in the RC. The rate-limiting step of ubiquinol oxidation is then the re-location of a ubiquinol molecule from its stand-by site within cytochrome b into a catalytic site, which is formed only transiently, after docking of the mobile redox domain of the FeS protein to cytochrome b. In the catalytic site, the quinone ring is stabilized by Glu-272 of cytochrome b and His-161 of the FeS protein. The short circuiting is prevented as long as: (i) the formed semiquinone anion remains bound to the reduced FeS domain and impedes its undocking, so that the second electron is forced to go to cytochrome b; (ii) even after ubiquinol is fully oxidized, the reduced FeS domain remains docked to cytochrome b until electron(s) pass through cytochrome b; (iii) if cytochrome b becomes (over)reduced, the binding and oxidation of further ubiquinol molecules is hampered; the reason is that the Glu-272 residue is turned towards the reduced hemes of cytochrome b and is protonated to stabilize the surplus negative charge; in this state, this residue cannot participate in the binding/stabilization of a ubiquinol molecule.
Collapse
Affiliation(s)
- Armen Y Mulkidjanian
- Max Planck Institute of Biophysics, Department of Biophysical Chemistry, Max-von-Laue-Str. 3, D-60438 Frankfurt-am-Main, Germany.
| |
Collapse
|
9
|
Sujak A, Drepper F, Haehnel W. Spectroscopic studies on electron transfer between plastocyanin and cytochrome b6f complex. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2004; 74:135-43. [PMID: 15157909 DOI: 10.1016/j.jphotobiol.2004.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2003] [Revised: 03/08/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
This paper reports the results of the research on the interaction between the highly active cytochrome b(6)f complex and plastocyanin, both isolated from the same source - spinachia oleracea plants. An equilibrium constant K between the cytochrome f of the cytochrome b(6)f complex and plastocyanin has been estimated by two independent spectroscopic techniques: steady-state absorption spectroscopy and stopped-flow. The second-order rate constants k2 for forward and backward electron transfer between cytochrome f and plastocyanin have been found between 1.4-2 x 10(7) and 8-10 x 10(6) M(-1)s(-1), respectively, giving the value of an equilibrium constant of about 2+/-0.4 or a difference in redox potential between plastocyanin and cytochrome f of cytochrome b(6)f complex of ca. 17 mV. The value of K=1.7+/-0.3 has been estimated from steady-state experiments in which the initial and final concentrations of participating components after mixing have been estimated via differential spectra analysis or spectra deconvolution. We propose a method of evaluation of the final plastocyanin concentration after the electron transfer reaction between cytochrome bf complex and plastocyanin that overcomes the interference by the strong chlorophyll absorption in the spectral region where oxidised plastocyanin has its low extinction absorption band. The data from both experiments, in the system devoid of quinol being the electron donor to cytochrome b(6), suggest that in case of electron transfer from cytochrome f to plastocyanin electron transfer can either bypass cytochrome f or the Rieske iron-sulfur protein can be reduced prior to its movement to the quinol binding site of cytochrome b(6). The role of the Rieske protein in forward and backward electron transfer reactions is discussed.
Collapse
Affiliation(s)
- A Sujak
- Department of Plant Biochemistry, Freiburg University, Schänzlestrasse 1, Freiburg 79104, Germany.
| | | | | |
Collapse
|
10
|
Cavet JS, Borrelly GPM, Robinson NJ. Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 2003; 27:165-81. [PMID: 12829266 DOI: 10.1016/s0168-6445(03)00050-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeostatic systems for essential and non-essential metals create the cellular environments in which the correct metals are acquired by metalloproteins while the incorrect ones are somehow avoided. Cyanobacteria have metal requirements often absent from other bacteria; copper in thylakoidal plastocyanin, zinc in carboxysomal carbonic anhydrase, cobalt in cobalamin but magnesium in chlorophyll, molybdenum in heterocystous nitrogenase, manganese in thylakoidal water-splitting oxygen-evolving complex. This article reviews: an intracellular trafficking pathway for inward copper supply, the sequestration of surplus zinc by metallothionein (also present in other bacteria) and the detection and export of excess cobalt. We consider the influence of homeostatic proteins on selective metal availability.
Collapse
Affiliation(s)
- Jennifer S Cavet
- Biosciences, Medical School, University of Newcastle, Newcastle NE2 4HH, UK
| | | | | |
Collapse
|
11
|
Tottey S, Rondet SAM, Borrelly GPM, Robinson PJ, Rich PR, Robinson NJ. A copper metallochaperone for photosynthesis and respiration reveals metal-specific targets, interaction with an importer, and alternative sites for copper acquisition. J Biol Chem 2002; 277:5490-7. [PMID: 11739376 DOI: 10.1074/jbc.m105857200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A bacterial two-hybrid assay revealed interaction between a protein now designated bacterial Atx1 and amino-terminal domains of copper-transporting ATPases CtaA (cellular import) and PacS (thylakoid import) but not the related zinc (ZiaA) or cobalt (CoaT) transporters from the same organism (Synechocystis PCC 6803). The specificity of metallochaperone interactions coincides with metal specificity. After reconstitution in a N(2) atmosphere, bacterial Atx1 bound 1 mol of copper mol(-1), and apoPacS(N) acquired copper from copper-Atx1. Copper was displaced from Atx1 by p-(hydroxymercuri)phenylsulfonate, indicative of thiol ligands, and two cysteine residues were obligatory for two-hybrid interaction with PacS(N). This organism contains compartments (thylakoids) where the copper proteins plastocyanin and cytochrome oxidase reside. In copper super-supplemented mutants, photooxidation of cytochrome c(6) was greater in Deltaatx1DeltactaA than in DeltactaA, showing that Atx1 contributes to efficient switching from iron in cytochrome c(6) to copper in plastocyanin for photosynthetic electron transport. Cytochrome oxidase activity was also less in membranes purified from low [copper]-grown Deltaatx1 or DeltapacS, compared with wild-type, but the double mutant Deltaatx1DeltapacS was non-additive, consistent with Atx1 acting via PacS. Conversely, activity in Deltaatx1DeltactaA was less than in either respective single mutant, revealing that Atx1 can function without the major copper importer and consistent with a role in recycling endogenous copper.
Collapse
Affiliation(s)
- Stephen Tottey
- Department of Biochemistry and Genetics, Medical School, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | | | | | |
Collapse
|
12
|
Nitschke W, Hauska G, Crofts AR. Fast electron transfer from low- to high-potential cytochromeb6in isolated cytochromeb6fcomplex. FEBS Lett 2001. [DOI: 10.1016/0014-5793(88)80417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Tottey S, Rich PR, Rondet SA, Robinson NJ. Two Menkes-type atpases supply copper for photosynthesis in Synechocystis PCC 6803. J Biol Chem 2001; 276:19999-20004. [PMID: 11264284 DOI: 10.1074/jbc.m011243200] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synechocystis PCC 6803 contains four genes encoding polypeptides with sequence features of CPx-type ATPases, two of which are now designated pacS and ctaA. We show that CtaA and PacS (but not the related transporters, ZiaA or CoaT) facilitate switching to the use of copper (in plastocyanin) as an alternative to iron (in cytochrome c(6)) for the carriage of electrons within the thylakoid lumen. Disruption of pacS reduced copper tolerance but enhanced silver tolerance, and pacS-mediated restoration of copper tolerance was used to select transformants. Disruption of ctaA caused no change in copper tolerance but reduced the amount of copper cell(-1). In cultures supplemented with 0.2 microm copper, photooxidation of cytochrome c(6) (PetJ) was depressed in wild-type cells but remained elevated in both Synechocystis PCC 6803(ctaA) and Synechocystis PCC 6803(pacS). Conversely, plastocyanin transcripts (petE) were less abundant in both mutants at this [copper]. Synechocystis PCC 6803(ctaA) and Synechocystis PCC 6803(pacS) showed increased iron dependence with impaired growth in deferoxamine mesylate (iron chelator)-containing media. Double mutants also deficient in cytochrome c(6), Synechocystis PCC 6803(petJ,ctaA) and Synechocystis PCC 6803(petJ,pacS), were viable, but the former had increased copper dependence with severely impaired growth in the presence of bathocuproinedisulfonic acid (copper chelator). Analogous transporters are likely to supply copper to plastocyanin in chloroplasts.
Collapse
Affiliation(s)
- S Tottey
- Biochemistry and Genetics, Medical School, University of Newcastle, NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
14
|
Abstract
A simulation model of the photosynthetic electron transport chain operating under steady state conditions is presented. The model enables the calculation of (1) the rates of electron transport and transmembrane proton translocation, (2) the proton/electron stoichiometry, (3) the number of electrons stored in the different redox centers and (4) the stationary transmembrane pH difference. Light intensity and proton permeability of the thylakoid membrane are varied in order to compare the predictions of the model with experimental data. The routes of electron transport and proton translocation are simulated by two coupled arithmetic loops. The first one represents the sequence of reaction steps making up the linear electron transport chain and the Q-cycle. This loop yields the electron flow rate and the proton/electron ratio. The second loop balances the H+ fluxes and yields the internal H+ concentration. The bifurcation of the electron transport pathways at the stage of plastoquinol oxidation is obligatory. The first electron enters always the linear branch and is transferred to photosystem I. The electron of the remaining semiquinone can enter the Q-cycle or, alternatively, the semiquinone can be lost from the cytochrome b6f complex. The competition between these two reactions explains the experimentally observed variability of the proton/electron ratio. We also investigated additional model variants, where the variation of the proton/electron stoichiometry is attributed to other loss reactions within the cytochrome b6f complex. However, the semiquinone detachment seems to be the best candidate for a satisfactory description of the experimental data. Additional calculations were done in order to assess the effects of the movement of the Rieske protein on linear electron transport; it was found that this conformational change does not limit the electron transport rate, if it occurs with a time constant of at least 1000 s(-1).
Collapse
Affiliation(s)
- S Berry
- Lehrstuhl Biochemie der Pflanzen, Ruhr-Universität Bochum, Germany.
| | | |
Collapse
|
15
|
Schoepp B, Chabaud E, Breyton C, Verméglio A, Popot JL. On the spatial organization of hemes and chlorophyll in cytochrome b(6)f. A linear and circular dichroism study. J Biol Chem 2000; 275:5275-83. [PMID: 10681499 DOI: 10.1074/jbc.275.8.5275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organization of chromophores in the cytochrome b(6) f from Chlamydomonas reinhardtii has been studied spectroscopically. Linear dichroism (LD) measurements, performed on the complex co-reconstituted into vesicles with photosynthetic reaction centers as an internal standard, allow the determination of the orientations of the chromophore with respect to the membrane plane. The orientations of the b(H)- and b(L)-hemes are comparable to those determined crystallographically on the cytochrome bc(1). The excitonic CD signal, resulting from the interaction between b-hemes, is similar to that reported for the cytochrome bc(1). LD and CD data are consistent with the differences between the b(6) f and bc(1) leaving the orientation of the b-hemes unaffected. By contrast, the LD data yield a different orientation for the heme f as compared either to the heme c(1) in the crystallographic structures or to the heme f as studied by electron paramagnetic resonance. This difference could either result from incorrect assumptions regarding the orientations of the electronic transitions of the f-heme or may point to the possibility of a redox-dependent movement of cytochrome f. The chlorophyll a was observed in a well defined orientation, further corroborating a specific binding site for it in the b(6) f complex.
Collapse
Affiliation(s)
- B Schoepp
- Laboratoire de Bioénergétique et Ingénierie des Protéines, CNRS 31, Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
| | | | | | | | | |
Collapse
|
16
|
Hope AB. Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1456:5-26. [PMID: 10611452 DOI: 10.1016/s0005-2728(99)00101-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The review covers the theory and practice of the determination of kinetic constants for the electron transfer reactions in chloroplast thylakoid membranes between plastocyanin and cytochrome f in cytochrome bf complexes, and between plastocyanin and the reaction centre of photosystem I. Effects of ionic strength and pH are featured. The contribution of mutant studies is included. It is concluded that nearly all data from in vitro experiments can be interpreted with a reaction scheme in which an encounter complex between donor and acceptor is formed by long-range electrostatic attraction, followed by rearrangement during which metal centres become close enough for rapid intra-complex electron transfer. In vivo experiments so far cast doubt on this particular sequence, but their interpretation is not straightforward. Means of modelling the bimolecular complex between cytochrome f and plastocyanin are outlined, and two likely structures are illustrated. The complex formed by plastocyanin and photosystem I in higher plants involves the PsaF subunit, but its structure has not been fully determined.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Faculty of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, Australia.
| |
Collapse
|
17
|
Leal JM, Garcia B, Domingo PL. Outer-sphere hexacyanoferrate(III) oxidation of organic substrates. Coord Chem Rev 1998. [DOI: 10.1016/s0010-8545(97)00068-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot JL. On the presence and role of a molecule of chlorophyll a in the cytochrome b6 f complex. J Biol Chem 1997; 272:21901-8. [PMID: 9268323 DOI: 10.1074/jbc.272.35.21901] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Highly purified preparations of cytochrome b6 f complex from the unicellar freshwater alga Chlamydomonas reinhardtii contain about 1 molecule of chlorophyll a/cytochrome f. Several lines of evidence indicate that the chlorophyll is an authentic component of the complex rather than a contaminant. In particular, (i) the stoichiometry is constant; (ii) the chlorophyll is associated with the complex at a specific binding site, as evidenced by resonance Raman spectroscopy; (iii) it does not originate from free chlorophyll released from thylakoid membranes upon solubilization; and (iv) its rate of exchange with free, radioactive chlorophyll a is extremely slow (weeks). Some of the putative functional roles for a chlorophyll in the b6f complex are experimentally ruled out, and its possible evolutionary origin is briefly discussed.
Collapse
Affiliation(s)
- Y Pierre
- Institut de Biologie Physico-Chimique and Paris-7 University, CNRS UPR 9052, 13 rue Pierre et Marie Curie, F-75005 Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Hope AB, Valente P. Inhibitor binding to isolated chloroplast cytochrome bf complex. PHOTOSYNTHESIS RESEARCH 1996; 49:37-48. [PMID: 24271532 DOI: 10.1007/bf00029426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/1996] [Accepted: 05/13/1996] [Indexed: 06/02/2023]
Abstract
Effects of three inhibitors of quinol oxidation in the chloroplast cytochrome bf complex (stigmatellin, tridecylstigmatellin and dibromothymoquinone) were studied in an isolated system comprising Photosystem I (PS I) particles, plastocyanin (PC) and cytochrome bf complex, in the absence of quinol or quinone. Addition of these inhibitors increased the extent of cytochrome f oxidation after a laser flash created oxidised PS I reaction centre (P700) and PC, and decreased somewhat the extent of PC oxidation. The re-reduction of oxidised P700 was more complete than when inhibitor was absent. The data were simulated with reactions which included the putative reduction of cytochrome f by the Rieske centre (FeS) and different rate-coefficients according as to whether inhibitor was bound to the bf complex or not. It was concluded that under the conditions studied the Rieske centre donated electrons to oxidised cytochrome f and plastocyanin with an average rate coefficient of 35 s(-1). This electron transfer was prevented by any of the three inhibitors, which also increased the equilibrium coefficient for the cytochrome f/PC reaction by a maximum factor of two. This increase corresponded to a decrease in the back reaction coefficient and an increase in the forward rate. The equilibrium coefficient for the reduction of oxidised P700 by PC was about 2 in the absence of inhibitor but increased to about 20 in their presence, but only if cytochrome bf complex was additionally present. This was attributed to the transient formation of complexes between P700 with bound plastocyanin, and bf complex. The operative mid-point potential of FeS, if that of cytochrome f is 370 mV, was 390 mV. Deviations in midpoint potentials (P700/plastocyanin) from solution values were attributed to the bound state of the reactants. Estimates were made of the binding coefficient of each of the three inhibitors to p-sites in the cytochrome bf complex in the absence of competing quinol. A stoichiometry of two inhibitors per bf dimer was necessary to cause the above changes in reduction potential of cyt f and PC. A result of one inhibitor per dimer was statistically unlikely, particularly in the case of tridecylstigmatellin.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, G.P.O. Box 2100, 5001, Adelaide, S.A., Australia
| | | |
Collapse
|
20
|
Cramer WA, Soriano GM, Ponomarev M, Huang D, Zhang H, Martinez SE, Smith JL. SOME NEW STRUCTURAL ASPECTS AND OLD CONTROVERSIES CONCERNING THE CYTOCHROME b6f COMPLEX OF OXYGENIC PHOTOSYNTHESIS. ACTA ACUST UNITED AC 1996; 47:477-508. [PMID: 15012298 DOI: 10.1146/annurev.arplant.47.1.477] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cytochrome b6f complex functions in oxygenic photosynthetic membranes as the redox link between the photosynthetic reaction center complexes II and I and also functions in proton translocation. It is an ideal integral membrane protein complex in which to study structure and function because of the existence of a large amount of primary sequence data, purified complex, the emergence of structures, and the ability of flash kinetic spectroscopy to assay function in a readily accessible ms-100 mus time domain. The redox active polypeptides are cytochromes f and b6 (organelle encoded) and the Rieske iron-sulfur protein (nuclear encoded) in a mol wt = 210,000 dimeric complex that is believed to contain 22-24 transmembrane helices. The high resolution structure of the lumen-side domain of cytochrome f shows it to be an elongate (75 A long) mostly beta-strand, two-domain protein, with the N-terminal alpha-amino group as orthogonal heme ligand and an internal linear 11-A bound water chain. An unusual electron transfer event, the oxidant-induced reduction of a significant fraction of the p (lumen)-side cytochrome b heme by plastosemiquinone indicates that the electron transfer pathway in the b6f complex can be described by a version of the Q-cycle mechanism, originally proposed to describe similar processes in the mitochondrial and bacterial bc1 complexes.
Collapse
Affiliation(s)
- W. A. Cramer
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 49707-1392
| | | | | | | | | | | | | |
Collapse
|
21
|
Riedel A, Fetzner S, Rampp M, Lingens F, Liebl U, Zimmermann JL, Nitschke W. EPR, electron spin echo envelope modulation, and electron nuclear double resonance studies of the 2Fe2S centers of the 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS. J Biol Chem 1995; 270:30869-73. [PMID: 8537340 DOI: 10.1074/jbc.270.52.30869] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 2-halobenzoate 1,2-dioxygenase from Burkholderia (Pseudomonas) cepacia 2CBS (Fetzner, S., Müller, R., and Lingens, F. (1992) J. Bacteriol. 174, 279-290) contains both a ferredoxin-type and a Rieske-type 2Fe2S center. These two significantly different 2Fe2S clusters were characterized with respect to their EPR spectra, electrochemical properties (Rieske-type cluster with gz = 2.025, gy = 1.91, gx = 1.79, gav = 1.91, Em = -125 +/- 10 mV; ferredoxin-type center with gz = 2.05, gy = 1.96, gx = 1.89, gav = 1.97, Em = -200 +/- 10 mV) and pH dependence thereof. X band electron spin echo envelope modulation and electron nuclear double resonance spectroscopy was applied to study the interaction of the Rieske-type center of the 2-halobenzoate 1,2-dioxygenase with 14N and 1H nuclei in the vicinity of the 2Fe2S cluster. The results are compared to those obtained on the Rieske protein of the cytochrome b6f complex (Em = +320 mV) and the water-soluble ferredoxin (Em = -430 mV) of spinach chloroplasts, as typical representatives of the gav = 1.91 and gav = 1.96 class of 2Fe2S centers. Properties common to all Rieske-type clusters and those restricted to the respective centers in bacterial oxygenases are discussed.
Collapse
Affiliation(s)
- A Riedel
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Pierre Y, Breyton C, Kramer D, Popot JL. Purification and characterization of the cytochrome b6 f complex from Chlamydomonas reinhardtii. J Biol Chem 1995; 270:29342-9. [PMID: 7493968 DOI: 10.1074/jbc.270.49.29342] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A protocol has been developed for the purification of the cytochrome b6 f complex from the unicellular alga Chlamydomonas reinhardtii. It is based on the use of the neutral detergent Hecameg (6-O-(N-heptylcarbamoyl)-methyl-alpha-D-glycopyranoside) and comprises only three steps: selective solubilization from thylakoid membranes, sucrose gradient sedimentation, and hydroxylapatite chromatography. The purified complex contains two b hemes (alpha bands, 564 nm; Em,8 = -84 and -158 mV) and one chlorophyll alpha (lambda max = 667-668 nm) per cytochrome f (alpha band, 554 nm; Em,8 = +330 mV). It is highly active in transferring electrons from decylplastoquinol to oxidized plastocyanin (turnover number 250-300 s-1). The purified complex contains seven subunits, whose identity has been established by N-terminal sequencing and/or peptide-specific immunolabeling, namely four high molecular weight subunits (cytochrome f, Rieske iron-sulfur protein, cytochrome b6, and subunit IV) and three approximately 4-kDa miniproteins (PetG, PetL, and PetX). Stoichiometry measurements are consistent with every subunit being present as two copies per b6 f dimer.
Collapse
Affiliation(s)
- Y Pierre
- Institut de Biologie Physico-Chimique, CNRS URA 1187, Paris, France
| | | | | | | |
Collapse
|
23
|
Moody AJ, Cooper CE, Gennis RB, Rumbley JN, Rich PR. Interconversion of fast and slow forms of cytochrome bo from Escherichia coli. Biochemistry 1995; 34:6838-46. [PMID: 7756314 DOI: 10.1021/bi00020a030] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fully oxidized fast form of cytochrome bo from Escherichia coli is shown to convert spontaneously to a slow form when stored at -20 degrees C in 50 mM potassium borate, pH 8.5, containing 0.5 mM potassium EDTA. Evidence for the conversion, and that the form produced is analogous to the slow form of bovine heart cytochrome c oxidase, comes from (a) decreases in the extents of fast (k = 1-2 x 10(3) M-1 s-1) H2O2 binding and fast (k = 20-30 M-1 s-1) cyanide binding; (b) changes in the optical spectrum that are like those induced by formate, i.e., a blue shift in the Soret absorption band, loss of absorbance in the alpha and beta bands, and a red shift in the "630 nm" charge-transfer band; (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 8.6 and g = 3.71, and appearance of signals at g approximately 13, g = 3.14, and g = 2.58; and (d) appearance of a slow phase of reduction of heme o by dithionite. The mutant enzyme E286Q also converts to a slow form under the same conditions, as shown by (a) a decrease in the extent of fast H2O2 binding; (b) changes in the optical spectrum like those seen with wild-type enzyme; and (c) changes in the EPR spectrum that are like those induced by formate, i.e., disappearance of signals at g = 7.3 and g = 3.6 and appearance of signals at g approximately 13, g = 3.18, and g = 2.59.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A J Moody
- Glynn Research Institute, Bodmin, Cornwall, U.K
| | | | | | | | | |
Collapse
|
24
|
Hope AB, Hiscock W, Matthews DB, Valente P. Effects of hydrostatic pressure on the kinetics of electron transfer in an isolated system of chloroplast cytochrome bf complex, plastocyanin and P700. PHOTOSYNTHESIS RESEARCH 1995; 43:191-200. [PMID: 24306842 DOI: 10.1007/bf00029932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/1994] [Accepted: 01/19/1995] [Indexed: 06/02/2023]
Abstract
The effects of pressure on the kinetics of redox reactions in and around the chloroplast cytochrome bf complex were studied using a reconstituted system consisting of Photosystem I (PS I) particles, cytochrome bf complex and plastocyanin (PC), all derived from pea chloroplasts. There were no significant permanent effects of pressure in the range 0.1-191 MPa on the reaction kinetics, or on the shape of the absorption spectra of components studied. Discernable effects on rate-coefficients of increasing pressure were observed on the reduction of P700(+) by PC(I), on the reduction of PC(II) by ascorbate, and on the oxidation of decyl plastoquinol by the bf complex. The volumes of activation ΔV(#) were determined from the dependence of the rate-coefficient on pressure using: [Formula: see text] The volume of activation is the difference in partial molar volume between the activated state and the reactants for the redox reaction. Such data was sought to help define in detail those redox reactions and the corresponding activated states. For the reduction of P700(+) by PC(I) and the oxidation of decyl plastoquinol by the bf complex, the rate coefficient decreased with increase in pressure, whilst for the reduction of PC(II) by ascorbate it increased. The corresponding volumes of activation were 9.6±0.6×10(-6) m(3) mol(-1), 18±2×10(-6) m(3) mol(-1) and -14±1×10(-6) m(3) mol(-1), respectively. Much of the pressure-dependence of PC(II) reduction by ascorbate was ascribed to an increase in ascorbate ionisation with increase in pressure. There was little effect of pressure on the kinetics of oxidation of ferrocytochrome f by PC(II), or on the equilibrium constant of the redox pair ferrocytochrome f/ferricytochrome f: PC(II)/PC(I). Possible physical bases for these activation volumes are discussed, and they are compared with literature values.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, S.A., Australia
| | | | | | | |
Collapse
|
25
|
Chain RK, Malkin R. Functional activities of monomeric and dimeric forms of the chloroplast cytochrome b6f complex. PHOTOSYNTHESIS RESEARCH 1995; 46:419-426. [PMID: 24301636 DOI: 10.1007/bf00032296] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/1995] [Accepted: 09/20/1995] [Indexed: 06/02/2023]
Abstract
A monomeric form of the isolated cytochrome b6f complex from spinach chloroplast membranes has been isolated after treatment of the dimeric complex with varying concentrations of Triton X-100. The two forms of the complex are similar as regards electron transfer components and subunit composition. In contrast to a previous report (Huang et al. (1994) Biochemistry 33: 4401-4409) both the monomer and dimer are enzymatically active. However, after incorporation of the respective complexes into phospholipid vesicles, only the dimeric form of the cytochrome complex shows uncoupler sensitive electron transport, an indication of coupling of electron transport to proton translocation. The absence of this activity with the monomeric form of the cytochrome complex may be related to an inhibition by added lipids.
Collapse
Affiliation(s)
- R K Chain
- Department of Plant Biology, University of California Berkeley, 111 Koshland Hall, 94720-3102, CA, USA
| | | |
Collapse
|
26
|
Hope AB, Valente P, Matthews DB. Effects of pH on the kinetics of redox reactions in and around the cytochromebf complex in an isolated system. PHOTOSYNTHESIS RESEARCH 1994; 42:111-20. [PMID: 24306499 DOI: 10.1007/bf02187122] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/1994] [Accepted: 06/21/1994] [Indexed: 05/18/2023]
Abstract
Rate-coefficients describing the electron transfer reactions between P700 and plastocyanin, between cytochromef in cytochromebf complexes and plastocyanin, and between decyl plastoquinol and cytochromebf complexes were determined as a function of pH in the range 4-10 from flash-induced absorbancy changes at four wavelengths. The reactions between P700 and plastocyanin, and between cytochromef and plastocyanin were optimised when there was electrostatic interaction between ionised acidic groups in plastocyanin with a pKa of 4.3-4.7 and ionised basic constituents in P700 (assumed to be in the PSI-F subunit) and in cytochromef, with a pKb of 8.9-9.4. The basic groups are thought to be lysine rather than arginine. This mechanism agrees with that inferred from effects of ionic strength changes on rate-coefficients. The relation between the second-order rate-coefficient for decyl plastoquinol oxidation by thebf complex and pH was characterised by a pKa of 6.1. This is interpreted as showing that the anion radical form of that quinol, which has a pKa of 6, and which becomes progressively protonated when pH is changed from 7 to 5, is essential to reduce cytochromeb-563 (low potential) during quinol oxidation. Above pH 9, permanent effects were observed on this rate-coefficient, which were absent in the reactions between P700, plastocyanin and cytochromef.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia
| | | | | |
Collapse
|
27
|
Hope AB, Matthews DB, Valente P. The kinetics of reactions around the cytochrome bf complex studied in an isolated system. PHOTOSYNTHESIS RESEARCH 1994; 40:199-206. [PMID: 24311289 DOI: 10.1007/bf00019337] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/1993] [Accepted: 02/22/1994] [Indexed: 06/02/2023]
Abstract
The kinetics of oxidation and reduction of P700, plastocyanin, cytochrome f and cytochrome b-563 were studied in a reconstituted system consisting of Photosystem I particles, cytochrome bf complex and plastocyanin, all derived from pea leaf chloroplasts. Decyl plastoquinol was the reductant of the bf complex. Turnovers of the system were initiated by laser flashes. The reaction between oxidised P700 and plastocyanin was non-homogeneous in that a second-order rate coefficient of c. 5×10(-7) M(-1) s(-1) applied to 80% of the P700(+) and c. 0.7×10(7) M(-1) s(-1) to the remainder. In the presence of bf complex, but without quinol, the electron transfer between cytochrome f and oxidised plastocyanin could be described by a second-order rate coefficient of c. 4×10(7) M(-1) s(-1) (forward), and c. 1.6×10(7) M(-1) s(-1) (reverse). The equilibrium coefficient was thus 2.5. Unexpectedly, there was little reduction of cytochrome f (+) or plastocyanin(+) by electrons from the Rieske centre. With added quinol, reduction of cytochrome b-563 occurred. Concomitantly, electrons appeared in the oxidised species. It was inferred that either the Rieske centre was not involved in the high-potential chain of electron transfer events, or that, only in the presence of quinol, electrons were quickly passed from the Rieske centre to cytochrome f (+). Additionally, the presence of quinol altered the equilibrium coefficient for the cyt f/PC interaction from 2.5 to c. 5. The reaction between quinol and the bf complex was describable by a second-order rate coefficient of about 3×10(6) M(-1) s(-1). The pattern of the redox reactions around the bf complex could be simulated in detail with a Q-cycle model as previously found for chloroplasts.
Collapse
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, G.P.O. Box 2100, 5001, Adelaide, S.A., Australia
| | | | | |
Collapse
|
28
|
Kramer DM, Joliot A, Joliot P, Crofts AR. Competition among plastoquinol and artificial quinone / quinol couples at the quinol oxidizing site of the cytochrome bf complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90230-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Kramer DM, Crofts AR. Re-examination of the properties and function of the b cytochromes of the thylakoid cytochrome bf complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1994. [DOI: 10.1016/0005-2728(94)90223-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37518-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Manasse RS, Bendall DS. Characteristics of cyclic electron transport in the cyanobacterium Phormidium laminosum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90240-g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Kramer DM, Crofts AR. The concerted reduction of the high- and low-potential chains of the bf complex by plastoquinol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1993. [DOI: 10.1016/0005-2728(93)90006-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Hope AB. The chloroplast cytochrome bf complex: a critical focus on function. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1143:1-22. [PMID: 8388722 DOI: 10.1016/0005-2728(93)90210-7] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A B Hope
- School of Biological Sciences, Flinders University, Adelaide, Australia
| |
Collapse
|
34
|
Tae GS, Everly RM, Cramer WA, Madgwick SA, Rich PR. On the question of the identity of cytochrome b-560 in thylakoid stromal membranes. PHOTOSYNTHESIS RESEARCH 1993; 36:141-146. [PMID: 24318874 DOI: 10.1007/bf00016278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/1992] [Accepted: 01/17/1993] [Indexed: 06/02/2023]
Abstract
Stromal membranes enriched in PS I contain a low potential cytochrome with a reduced α-band peak close to 560 nm. The identity of this cytochrome component has been ascribed either to a low potential form of the Photosystem II cytochrome b-559 or to a different cytochrome with a reduced α-band of 560 nm. The half-bandwidth of the 560 nm component in stromal membranes is identical to that of purified cytochrome b-559. Western blots show that the stromal membranes contain an amount of PS II cytochrome b-559 α-subunit that is more than sufficient to account for the cytochrome b-560 detected spectrophotometrically in these membranes. These immunochemical data and the similarity of (i) the spectral peaks, and (ii) the redox properties of low potential PS II cytochrome b-559 and the b-560 component, suggest that the simplest inference is that the cytochrome b-560 protein in stromal membranes is identical to the PS II cytochrome b-559.
Collapse
Affiliation(s)
- G S Tae
- Department of Biological Sciences, Purdue University, 47907, West Lafayette, IN, USA
| | | | | | | | | |
Collapse
|
35
|
Rich PR, Madgwick SA, Brown S, von Jagow G, Brandt U. MOA-stilbene: A new tool for investigation of the reactions of the chloroplast cytochrome bf complex. PHOTOSYNTHESIS RESEARCH 1992; 34:465-477. [PMID: 24408840 DOI: 10.1007/bf00029819] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/1992] [Accepted: 05/12/1992] [Indexed: 06/03/2023]
Abstract
MOA-stilbene is known to be a specific inhibitor of the Qo site of mammalian cytochrome bc 1 complex. We show that it also binds to the chloroplast cytochrome bf complex. Binding to the reduced enzyme induces a red-shift of the Soret and visible absorption bands of the haems b. Steady state and single turnover experiments with thylakoid membranes show that MOA-stilbene promotes additional 'oxidant-induced reduction' of the b haems and slows their subsequent dark reoxidation. In single turnover experiments, the associated slow phase of the carotenoid bandshift at 518 nm is only partially decreased in apparent extent and rate. These and other effects are similar to those produced by NQNO, a Qi site effector, and by analogy indicate that MOA-stilbene should also be primarily a Qi-site effector of the cytochrome bf complex. MOA-stilbene has less effect on other parts of the photosynthetic chain. This confers an important advantage on MOA-stilbene in that its effects on the cytochrome bf complex can be studied by using Photosystem II to activate turnover. Myxothiazol displays effects on the cytochrome bf complex which are similar to, but much weaker than, those of MOA-stilbene.A Q cycle-based model of turnover of the cytochrome bf complex is presented, which can account for several unusual features of kinetic behaviour.
Collapse
Affiliation(s)
- P R Rich
- Glynn Research Institute, PL30 4AU, Bodmin, Cornwall, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
The pH dependence of the redox midpoint potential of the 2Fe2S cluster from cytochrome b6f complex (the ‘Rieske centre’). ACTA ACUST UNITED AC 1992. [DOI: 10.1016/0167-4838(92)90519-j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Joliot P, Joliot A. Electron transfer between Photosystem II and the cytochrome b/f complex: mechanistic and structural implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90064-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Hope A, Huilgol R, Panizza M, Thompson M, Matthews D. The flash-induced turnover of cytochrome b-563, cytochrome f and plastocyanin in chloroplasts. Models and estimation of kinetic parameters. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90121-h] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Abstract
Membranes of the green sulfur bacterium, Chlorobium limicola f. thiosulfatophilum, catalyze the reduction of externally added isoprenoid quinones by sulfide. This activity is highly sensitive to stigmatellin and aurachins. It is also inhibited by 2-n-nonyl-4-hydroxyquinoline-N-oxide, antimycin, myxothiazol and cyanide. It is concluded that in sulfide oxidizing bacteria like Chlorobium, sulfide oxidation involves a sulfide-quinone reductase (SQR) similar to the one found in Oscilatoria limnetica [Arieli, B., Padan, E. and Shahak, Y. (1991) J. Biol. Chem. 266, 104-111].
Collapse
Affiliation(s)
- Y Shahak
- Biochemistry Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
40
|
Pace R, Hope A, Smith P. Detection of flash-induced quinone radicals in spinach chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/s0005-2728(05)80338-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Abstract
Evidence is presented that single electron reduction is sufficient for rapid electron transfer (k greater than 20 s-1 at pH 8.0 in 0.43 M potassium EDTA) between haem a/CuA and the binuclear centre in 'fast' oxidase, whereas in 'slow' oxidase intramolecular electron transfer is slow even when both CuA and haem a are reduced (k congruent to 0.01 s-1). However, while a single electron can equilibrate rapidly between CuA, haem a and CuB in 'fast' oxidase, it seems that equilibration with haem a3 is relatively slow (k congruent to 2 s-1). Electron transfer between cytochrome c and CuA/haem a is similar for both types of enzyme (k congruent to 2.4 x 10(5) M-1.s-1).
Collapse
Affiliation(s)
- A J Moody
- Glynn Research Institute, Bodmin, Cornwall, UK
| | | | | |
Collapse
|
42
|
Biochemical and biophysical properties of thylakoid acyl lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(09)91002-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Riedel A, Rutherford A, Hauska G, Müller A, Nitschke W. Chloroplast Rieske Center. EPR study on its spectral characteristics, relaxation and orientation properties. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55204-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Rich PR, Madgwick SA, Moss DA. The interactions of duroquinol, DBMIB and NQNO with the chloroplast cytochrome bf complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80252-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Marres CA, de Vries S. Reduction of the Q-pool by duroquinol via the two quinone-binding sites of the QH2: cytochrome c oxidoreductase. A model for the equilibrium between cytochrome b-562 and the Q-pool. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1057:51-63. [PMID: 1849003 DOI: 10.1016/s0005-2728(05)80083-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The steady-state reduction of exogenous ubiquinone-2 by duroquinol as catalysed by the ubiquinol: cytochrome c oxidoreductase was studied in bovine heart mitoplasts. The reduction of ubiquinone-2 by duroquinol proceeds both in the absence of inhibitors of the enzyme, in the presence of outside inhibitors, e.g., myxothiazol, and in the presence of inside inhibitors, e.g., antimycin, but not in the presence of both inside and outside inhibitors. It is concluded that both the Qin-binding domain and the Qout-binding domain may independently catalyse this reaction. The rate of the reduction of ubiquinone-2 by duroquinol via the Qin-binding domain is dependent on the type of outside inhibitor used. The maximal rate obtained for the reduction of ubiquinone-2 by DQH2 via the Qout-binding domain, measured in the presence of antimycin, is similar to that catalysed by the Qin-binding domain of the non-inhibited enzyme and depends on the redox state of the high-potential electron carriers of the respiratory chain. The reduction of ubiquinone-2 by DQH2 via the Qin-binding domain can be described by a mechanism in which duroquinol reduces the enzyme, upon which the reduced enzyme is rapidly oxidized by ubiquinone-2 yielding ubiquinol-2. By determination of the initial rate under various conditions and simulation of the time course of reduction of ubiquinone-2 using the integrated form of the steady-state rate equation the values of the various kinetic constants were calculated. During the course of reduction of ubiquinone-2 by duroquinol in the presence of outside inhibitors only cytochrome b-562 becomes reduced. At all stages during the reaction, cytochrome b-562 is in equilibrium with the redox potential of the ubiquinone-2/ubiquinol-2 couple but not with that of the duroquinone/duroquinol couple. At low pH values, cytochrome b-562 is reduced in a single phase; at high pH separate reduction phases are observed. In the absence of inhibitors three reduction phases of cytochrome b-562 are discernible at low pH values and two at high pH values. In the presence of antimyin cytochrome b becomes reduced in two phases. Cytochrome b-562 is reduced in the first phase and cytochrome b-566 in the second phase after substantial reduction of ubiquinone-2 to ubiquinol-2 has occurred. In ubiquinone-10 depleted preparations, titration of cytochrome b-562, in the presence of myxothiazol, with the duroquinone/duroquinol redox couple yields a value of napp = 2, both at low and high pH.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C A Marres
- Department of Cellular Biology, University of Amsterdam, The Netherlands
| | | |
Collapse
|
46
|
Bechmann G, Weiss H. Regulation of the proton/electron stoichiometry of mitochondrial ubiquinol:cytochrome c reductase by the membrane potential. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:431-8. [PMID: 1847681 DOI: 10.1111/j.1432-1033.1991.tb15722.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The electron transfer reaction catalysed by mitochondrial ubiquinol:cytochrome c reductase is linked to the outwards translocation of protons with an H+ e- stoichiometry of 1 under non-membrane potential condition. The effect of the electrical membrane potential on the H+/e- stoichiometry was investigated. The enzyme was isolated from Neurospora crassa, reconstituted into phospholipid vesicles and electrical membrane potentials of various values were generated across the membranes by means of the valinomycin-induced potassium-diffusion method. Using lithium ions as counterions for the intravesicular potassium, the induced membrane potential was stable for minutes and was not significantly changed by the protons ejected by the working enzyme. This allowed the assay of steady-state reaction rates at pre-given values of electrical membrane potential. The rate ratio between electron transfer and proton translocation declined from 1 to 0.6 with increase of the membrane potential from 0 to 100 mV. The activity of the quinol/cytochrome c redox reaction followed a parabolic dependence, being activated by low (less than 50 mV) potential and inhibited by high (greater than 100 mV) potential. This apparent non-linear dependence was interpreted in terms of a linear flow/force relationship plus a membrane-potential-dependent slip. Evaluation of the parabolic course by means of a modified linear flow/force relation also indicated a decline of the H+/e- stoichiometry from 1 to 0.5 with increase of the membrane potential from 0 to 120 mV. These observations suggest that the membrane potential controls a change of ubiquinol:cytochrome c reductase between two states that have different reaction routes.
Collapse
Affiliation(s)
- G Bechmann
- Institut für Biochemie Heinrich-Heine-Universität Düsseldorf, Federal Republic of Germany
| | | |
Collapse
|
47
|
Klughammer C, Kolbowski J, Schreiber U. LED array spectrophotometer for measurement of time resolved difference spectra in the 530-600 nm wavelength region. PHOTOSYNTHESIS RESEARCH 1990; 25:317-27. [PMID: 24420362 DOI: 10.1007/bf00033173] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/1989] [Accepted: 05/09/1990] [Indexed: 05/23/2023]
Abstract
A new type of computer controlled spectrophotometer is described which is based on an array of independent, monochromatic pulsed light sources consisting of light emitting diodes (LED) equipped with narrow band interference filters. The LEDs are sequentially pulsed at a high repetition rate. The absorbance information at specific wavelengths is sampled in the μs-time range, using a computer-controlled, highly selective technique of synchronous amplification. A first prototype of this LED Array Spectrophotometer allows simultaneous recording of kinetic changes at 16 different wavelengths in the range from 530 to 600 nm, with a time resolution of 1 ms/point. Special features of the new type of spectrophotometer are: Weak integrated measuring light intensity, high signal/noise ratio even with scattering samples like intact leaves, active baseline adjustment by LED current regulation, computer control of system operation and data analysis. To deconvolute the complex absorbance changes in the cytochrome α-band region, 'standard spectra' of the major components are stored in computer memory and used for curve fitting of difference spectra and kinetic changes. As an example of application, the light-induced absorbance changes in a heat-pretreated spinach leaf are analysed. The system effectively separates specific absorbance changes of C550, cyt f, cyt b 559 and cyt b 563 from a large background of non-specific changes.
Collapse
Affiliation(s)
- C Klughammer
- Lehrstuhl Botanik I, Universität Würzburg, Mittlerer Dallenbergweg 64, D-8700, Würzburg, FRG
| | | | | |
Collapse
|
48
|
Rich PR, Harper R. Partition coefficients of quinones and hydroquinones and their relation to biochemical reactivity. FEBS Lett 1990; 269:139-44. [PMID: 2387393 DOI: 10.1016/0014-5793(90)81139-f] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some major effects of ring substituents on the partition coefficients of quinone headgroups are described. Attention is drawn to the large differences in partition coefficients in cyclohexane/water of the two major freely diffusing redox forms, the quinone, Q, and the hydroquinone, QH2. Methoxy substituents cause a marked increase of the cyclohexane/water partition coefficient of the hydroquinone, but this effect is absent in the quinone and is also not seen in measurements in octanol/water. The relation between partition coefficients and biochemical specificity of quinone binding sites is explored.
Collapse
Affiliation(s)
- P R Rich
- Glynn Research Institute, Bodmin, Cornwall, UK
| | | |
Collapse
|
49
|
Zweck A, Bechmann G, Weiss H. The pathway of the quinol/quinone transhydrogenation reaction in ubiquinol: cytochrome-c reductase of Neurospora mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 183:199-203. [PMID: 2546772 DOI: 10.1111/j.1432-1033.1989.tb14913.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ubiquinol: cytochrome-c reductase, isolated from Neurospora mitochondria as a protein/Triton X-100 preparation, and reconstituted into phospholipid membranes, catalyses the electron transfer from duroquinol to 2.3-dimethoxy-5-decyl-6-methyl-benzoquinone (decQ) on a myxothiazol-insensitive, but antimycin-sensitive, ping-pong pathway. Duroquinol reacts first to form the altered, reduced enzyme E'. This reaction is followed by dissociation of duroquinone making way for E' to bind decQ and convert it into decQH2.
Collapse
Affiliation(s)
- A Zweck
- Institut für Biochemie, Universität Düsseldorf, Federal Republic of Germany
| | | | | |
Collapse
|
50
|
Hope A, Rich P. Proton uptake by the chloroplast cytochrome bf complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80206-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|