1
|
Joliot P, Sellés J, Wollman FA, Verméglio A. High efficient cyclic electron flow and functional supercomplexes in Chlamydomonas cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148909. [PMID: 35952798 DOI: 10.1016/j.bbabio.2022.148909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
A very high rate for cyclic electron flow (CEF) around PSI (~180 s-1 or 210 s-1 in minimum medium or in the presence of a carbon source respectively) is measured in the presence of methyl viologen (MV) in intact cells of Chlamydomonas reinhardtii under anaerobic conditions. The observation of an efficient CEF in the presence of methyl viologen is in agreement with the previous results reports of Asada et al. in broken chloroplasts (Plant Cell Physiol. 31(4) (1990) 557-564). From the analysis of the P700 and PC absorbance changes, we propose that a confinement between 2 PC molecules, 1 PSI and 1 cytb6f corresponding to a functional supercomplex is responsible for these high rates of CEF. Supercomplex formation is also observed in the absence of methyl viologen, but with lower maximal CEF rate (about 100 s-1) suggesting that this compound facilitates the mediation of electron transfer from PSI acceptors to the stromal side of cytb6f. Further analysis of CEF in mutants of Chlamydomonas defective in state transitions shows the requirement of a kinase-driven transition to state 2 to establish this functional supercomplex configuration. However, a movement of the LHCII antennae is not involved in this process. We discuss the possible involvement of auxiliary proteins, among which is a small cytb6f-associated polypeptide, the PETO protein, which is one of the targets of the STT7 kinase.
Collapse
Affiliation(s)
- Pierre Joliot
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Julien Sellés
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France.
| | - Françis-André Wollman
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| | - André Verméglio
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière Chez les Microalgues, Institut de Biologie Physico-Chimique, CNRS UMR 7141, Sorbonne Université, Paris, France
| |
Collapse
|
2
|
The BF4 and p71 antenna mutants from Chlamydomonas reinhardtii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148085. [PMID: 31672413 DOI: 10.1016/j.bbabio.2019.148085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/28/2019] [Accepted: 09/11/2019] [Indexed: 11/23/2022]
Abstract
Two pale green mutants of the green alga Chlamydomonas reinhardtii, which have been used over the years in many photosynthesis studies, the BF4 and p71 mutants, were characterized and their mutated gene identified in the nuclear genome. The BF4 mutant is defective in the insertase Alb3.1 whereas p71 is defective in cpSRP43. The two mutants showed strikingly similar deficiencies in most of the peripheral antenna proteins associated with either photosystem I or photosystem 2. As a result the two photosystems have a reduced antenna size with photosystem 2 being the most affected. Still up to 20% of the antenna proteins remain in these strains, with the heterodimer Lhca5/Lhca6 showing a lower sensitivity to these mutations. We discuss these phenotypes in light of those of other allelic mutants that have been described in the literature and suggest that eventhough the cpSRP route serves as the main biogenesis pathway for antenna proteins, there should be an escape pathway which remains to be genetically identified.
Collapse
|
3
|
Bujaldon S, Kodama N, Rappaport F, Subramanyam R, de Vitry C, Takahashi Y, Wollman FA. Functional Accumulation of Antenna Proteins in Chlorophyll b-Less Mutants of Chlamydomonas reinhardtii. MOLECULAR PLANT 2017; 10:115-130. [PMID: 27742488 DOI: 10.1016/j.molp.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/01/2016] [Accepted: 10/04/2016] [Indexed: 05/29/2023]
Abstract
The green alga Chlamydomonas reinhardtii contains several light-harvesting chlorophyll a/b complexes (LHC): four major LHCIIs, two minor LHCIIs, and nine LHCIs. We characterized three chlorophyll b-less mutants to assess the effect of chlorophyll b deficiency on the function, assembly, and stability of these chlorophyll a/b binding proteins. We identified point mutations in two mutants that inactivate the CAO gene responsible for chlorophyll a to chlorophyll b conversion. All LHCIIs accumulated to wild-type levels in a CAO mutant but their light-harvesting function for photosystem II was impaired. In contrast, most LHCIs accumulated to wild-type levels in the mutant and their light-harvesting capability for photosystem I remained unaltered. Unexpectedly, LHCI accumulation and the photosystem I functional antenna size increased in the mutant compared with in the wild type when grown in dim light. When the CAO mutation was placed in a yellow-in-the-dark background (yid-BF3), in which chlorophyll a synthesis remains limited in dim light, accumulation of the major LHCIIs and of most LHCIs was markedly reduced, indicating that sustained synthesis of chlorophyll a is required to preserve the proteolytic resistance of antenna proteins. Indeed, after crossing yid-BF3 with a mutant defective for the thylakoid FtsH protease activity, yid-BF3-ftsh1 restored wild-type levels of LHCI, which defines LHCI as a new substrate for the FtsH protease.
Collapse
Affiliation(s)
- Sandrine Bujaldon
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Natsumi Kodama
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan
| | - Fabrice Rappaport
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Catherine de Vitry
- Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, Paris 75005, France
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan; JST-CREST, Okayama University, Okayama 700-8530, Japan.
| | | |
Collapse
|
4
|
de Mooij T, de Vries G, Latsos C, Wijffels RH, Janssen M. Impact of light color on photobioreactor productivity. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.01.015] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Lemeille S, Turkina MV, Vener AV, Rochaix JD. Stt7-dependent phosphorylation during state transitions in the green alga Chlamydomonas reinhardtii. Mol Cell Proteomics 2010; 9:1281-95. [PMID: 20124224 PMCID: PMC2877987 DOI: 10.1074/mcp.m000020-mcp201] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Indexed: 11/06/2022] Open
Abstract
Photosynthetic organisms are able to adapt to changes in light conditions by balancing the light excitation energy between the light-harvesting systems of photosystem (PS) II and photosystem I to optimize the photosynthetic yield. A key component in this process, called state transitions, is the chloroplast protein kinase Stt7/STN7, which senses the redox state of the plastoquinone pool. Upon preferential excitation of photosystem II, this kinase is activated through the cytochrome b(6)f complex and required for the phosphorylation of the light-harvesting system of photosystem II, a portion of which migrates to photosystem I (state 2). Preferential excitation of photosystem I leads to the inactivation of the kinase and to dephosphorylation of light-harvesting complex (LHC) II and its return to photosystem II (state 1). Here we compared the thylakoid phosphoproteome of the wild-type strain and the stt7 mutant of Chlamydomonas under state 1 and state 2 conditions. This analysis revealed that under state 2 conditions several Stt7-dependent phosphorylations of specific Thr residues occur in Lhcbm1/Lhcbm10, Lhcbm4/Lhcbm6/Lhcbm8/Lhcbm9, Lhcbm3, Lhcbm5, and CP29 located at the interface between PSII and its light-harvesting system. Among the two phosphorylation sites detected specifically in CP29 under state 2, one is Stt7-dependent. This phosphorylation may play a crucial role in the dissociation of CP29 from PSII and/or in its association to PSI where it serves as a docking site for LHCII in state 2. Moreover, Stt7 was required for the phosphorylation of the thylakoid protein kinase Stl1 under state 2 conditions, suggesting the existence of a thylakoid protein kinase cascade. Stt7 itself is phosphorylated at Ser(533) in state 2, but analysis of mutants with a S533A/D change indicated that this phosphorylation is not required for state transitions. Moreover, we also identified phosphorylation sites that are redox (state 2)-dependent but independent of Stt7 and additional phosphorylation sites that are redox-independent.
Collapse
Affiliation(s)
- Sylvain Lemeille
- From the ‡Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and
| | - Maria V. Turkina
- ¶Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Alexander V. Vener
- ¶Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden
| | - Jean-David Rochaix
- From the ‡Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland and
| |
Collapse
|
6
|
Nield J, Redding K, Hippler M. Remodeling of light-harvesting protein complexes in chlamydomonas in response to environmental changes. EUKARYOTIC CELL 2005; 3:1370-80. [PMID: 15590812 PMCID: PMC539040 DOI: 10.1128/ec.3.6.1370-1380.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jon Nield
- Department of Biological Sciences, Imperial College London, London, UK
| | | | | |
Collapse
|
7
|
Minagawa J, Takahashi Y. Structure, function and assembly of Photosystem II and its light-harvesting proteins. PHOTOSYNTHESIS RESEARCH 2004; 82:241-63. [PMID: 16143838 DOI: 10.1007/s11120-004-2079-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Accepted: 07/19/2004] [Indexed: 05/02/2023]
Abstract
Photosystem II (PSII) is a multisubunit chlorophyll-protein complex that drives electron transfer from water to plastoquinone using energy derived from light. In green plants, the native form of PSII is surrounded by the light-harvesting complex (LHCII complex) and thus it is called the PSII-LHCII supercomplex. Over the past several years, understanding of the structure, function, and assembly of PSII and LHCII complexes has increased considerably. The unicellular green alga Chlamydomonas reinhardtii has been an excellent model organism to study PSII and LHCII complexes, because this organism grows heterotrophically and photoautotrophically and it is amenable to biochemical, genetic, molecular biological and recombinant DNA methodology. Here, the genes encoding and regulating components of the C. reinhardtii PSII-LHCII supercomplex have been thoroughly catalogued: they include 15 chloroplast and 20 nuclear structural genes as well as 13 nuclear genes coding for regulatory factors. This review discusses these molecular genetic data and presents an overview of the structure, function and assembly of PSII and LHCII complexes.
Collapse
Affiliation(s)
- Jun Minagawa
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, 060-0819, Japan,
| | | |
Collapse
|
8
|
Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G. Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 2002; 3:280-5. [PMID: 11850400 PMCID: PMC1084013 DOI: 10.1093/embo-reports/kvf047] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The energetic metabolism of photosynthetic organisms is profoundly influenced by state transitions and cyclic electron flow around photosystem I. The former involve a reversible redistribution of the light-harvesting antenna between photosystem I and photosystem II and optimize light energy utilization in photosynthesis whereas the latter process modulates the photosynthetic yield. We have used the wild-type and three mutant strains of the green alga Chlamydomonas reinhardtii--locked in state I (stt7), lacking the photosystem II outer antennae (bf4) or accumulating low amounts of cytochrome b6f complex (A-AUU)--and measured electron flow though the cytochrome b6f complex, oxygen evolution rates and fluorescence emission during state transitions. The results demonstrate that the transition from state 1 to state 2 induces a switch from linear to cyclic electron flow in this alga and reveal a strict cause-effect relationship between the redistribution of antenna complexes during state transitions and the onset of cyclic electron flow.
Collapse
Affiliation(s)
- Giovanni Finazzi
- Centro di Studio del C.N.R. sulla Biologia Cellulare e Molecolare delle Piante, Università degli Studi di Milano, 20161 Milano, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix JD. Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 1999; 274:30987-94. [PMID: 10521495 DOI: 10.1074/jbc.274.43.30987] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In photosynthetic cells of higher plants and algae, the distribution of light energy between photosystem I and photosystem II is controlled by light quality through a process called state transition. It involves a reorganization of the light-harvesting complex of photosystem II (LHCII) within the thylakoid membrane whereby light energy captured preferentially by photosystem II is redirected toward photosystem I or vice versa. State transition is correlated with the reversible phosphorylation of several LHCII proteins and requires the presence of functional cytochrome b(6)f complex. Most factors controlling state transition are still not identified. Here we describe the isolation of photoautotrophic mutants of the unicellular alga Chlamydomonas reinhardtii, which are deficient in state transition. Mutant stt7 is unable to undergo state transition and remains blocked in state I as assayed by fluorescence and photoacoustic measurements. Immunocytochemical studies indicate that the distribution of LHCII and of the cytochrome b(6)f complex between appressed and nonappressed thylakoid membranes does not change significantly during state transition in stt7, in contrast to the wild type. This mutant displays the same deficiency in LHCII phosphorylation as observed for mutants deficient in cytochrome b(6)f complex that are known to be unable to undergo state transition. The stt7 mutant grows photoautotrophically, although at a slower rate than wild type, and does not appear to be more sensitive to photoinactivation than the wild-type strain. Mutant stt3-4b is partially deficient in state transition but is still able to phosphorylate LHCII. Potential factors affected in these mutant strains and the function of state transition in C. reinhardtii are discussed.
Collapse
Affiliation(s)
- M M Fleischmann
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
10
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Andronis C, Kruse O, Deák Z, Vass I, Diner BA, Nixon PJ. Mutation of residue threonine-2 of the D2 polypeptide and its effect on photosystem II function in Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 1998; 117:515-24. [PMID: 9625704 PMCID: PMC34971 DOI: 10.1104/pp.117.2.515] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/1997] [Accepted: 02/19/1998] [Indexed: 05/22/2023]
Abstract
The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.
Collapse
Affiliation(s)
- C Andronis
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
12
|
Johnson CH, Schmidt GW. The psbB gene cluster of the Chlamydomonas reinhardtii chloroplast: sequence and transcriptional analyses of psbN and psbH. PLANT MOLECULAR BIOLOGY 1993; 22:645-658. [PMID: 8343600 DOI: 10.1007/bf00047405] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have sequenced and characterized the complete psbB gene cluster of Chlamydomonas reinhardtii chloroplast DNA. Although the petB and petD genes are located elsewhere, the sequential order of psbB, ORF31, psbN and psbH is identical to that of the psbB operon in higher plants. Also, intergenic non-coding regions are much larger in the Chlamydomonas gene cluster. Northern blot analyses indicate the formation of dicistronic transcripts of psbB and ORF31 and monocistronic transcripts of psbN and psbH. It is unclear whether a psbB operon is transcribed to yield a large polycistronic precursor but northern blot analysis with total RNA from cells grown at 15 degrees C does not detect an increased complexity of the transcripts, as has been found in studies of the psbB operon of higher plants. From primer extension and nuclease protection assays, it is apparent that 5' and 3' processing of the primary psbH transcript results in the accumulation of a heterogenous population of mRNAs. Northern blot analyses reveal transcription of Chlamydomonas psbN and show that its mRNA is much larger than that identified in liverwort and pea. The sequence identities of the PSII-H and PSII-N polypeptides as compared to their vascular plant counterparts is 50 to 62%. While the amino acid sequences of PSII-H and PSII-N proteins are significantly conserved, the mass of PSII-H from Chlamydomonas is significantly larger.
Collapse
Affiliation(s)
- C H Johnson
- Department of Botany, University of Georgia, Athens 30602
| | | |
Collapse
|
13
|
Harrison MA, Allen JF. Light-dependent phosphorylation of Photosystem II polypeptides maintains electron transport at high light intensity: separation from effects of phosphorylation of LHC-II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80249-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|