1
|
Jin Y, Zhang X, Yuan Y, Lan Y, Cheng K, Yang F. Synthesis of artificial humic acid-urea complex improves nitrogen utilization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118377. [PMID: 37348301 DOI: 10.1016/j.jenvman.2023.118377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The inefficient use of conventional nitrogen (N) fertilizers leads to N enrichment in the soil, resulting in N loss via runoff, volatilization and leaching. While using artificial humic acid to prepare novel N fertilizer is a good choice to improve its efficiency, the high heterogeneity of artificial humic acid limits its structural analysis and utilization efficiency. To solve above problems, this work mainly carried out the fractionation experiments, melt penetration experiments and soil incubation experiments. The results revealed that four fractions with different aromatization degree and molecular weights were obtained by the newly proposed continuous dissolution method, particular in the extraction solution of pH = 3-4, which were extracted with the highest aromatization degree. Furthermore, artificial humic acid urea complex fertilizers prepared at pH = 3-4 significantly improved the release of NH4+-N by 38.32% on days 7 and NO3--N by 10.30% on days 14, compared to urea application. The highly aromatic complex fertilizer with loading of urea-N was able to supply more inorganic N to the soil on days 3-14 (low molecular weight N) and to maintain a higher N content on days 70 (highly aromatized N). This can partially offset the mineralization of readily available organic N, buffering the immobilization of inorganic N from the soil when unstable organic compounds (e.g. conventional urea) were incorporated. A-HAU3-4 addition on days 70, Proteobacteria and Actinobacteriota were found to be the dominant phylum in the soil and the relative abundance of Endophytic bacteria was increased, which was conducive to the improvement of soil N utilization efficiency and soil N sequestration. Therefore, the preparation of artificial humic urea fertilizer with high aromatization degree or low molecular weight were an effective way to improve N utilization efficiency in the initial stages of soil incubation and maintain N fixation in the later stages of soil incubation. The future application of the strategy presented by this study would have an important ecological significance for alleviating agricultural N pollution.
Collapse
Affiliation(s)
- Yongxu Jin
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Xi Zhang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yue Yuan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Yibo Lan
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China
| | - Kui Cheng
- Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Provincial International Joint Laboratory of Smart Soil, Harbin, 150030, China.
| |
Collapse
|
2
|
John CW, Proshlyakov DA. Fourier Transform Infrared Spectrovoltammetry and Quantitative Modeling of Analytes in Kinetically Constrained Redox Mixtures. Anal Chem 2019; 91:9563-9570. [PMID: 31257856 DOI: 10.1021/acs.analchem.9b00859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox-active analytes that do not support direct electron transfer on the electrode, such as proteins with buried redox centers, pose challenges to characterization of their structural and thermodynamic properties. Investigations of indirect transitions in analytes supported by complex redox mixtures require a careful balance between kinetic limitations and spectral interference from the mediators. Using methylene green and thionine acetate as redox mediators and myoglobin as the analyte, we demonstrate that normal pulse spectrovoltammetry (NPSV) with Fourier transform infrared (FT-IR) detection and subsequent global spectral regression analysis can resolve structural and thermodynamic properties simultaneously with little a priori information. Both the E1/2 and unbiased redox difference FT-IR spectra of the Fe(II)/Fe(III) redox couple of myoglobin in reduction and oxidation NPSV modes were in good agreement with those reported earlier by independent techniques. The thermodynamic and kinetic limitations of mediators/analyte interactions were investigated using comprehensive semiempirical kinetic simulation models. This modeling effort yielded a flexible computational tool capable of quantitatively predicting the redox response in mediated electrochemical studies and defining its limitations, thus greatly expanding the range and precision of the formal mediator/analyte concentration ratio rule.
Collapse
Affiliation(s)
- Christopher W John
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Denis A Proshlyakov
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
3
|
Andresen ER, Hamm P. Site-specific difference 2D-IR spectroscopy of bacteriorhodopsin. J Phys Chem B 2009; 113:6520-7. [PMID: 19358550 DOI: 10.1021/jp810397u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We demonstrate the extension of the principle of difference Fourier transform infrared (FTIR) spectroscopy to difference 2D-IR spectroscopy. To this end, we measure difference 2D-IR spectra of the protein bacteriorhodopsin in its early J- and K-intermediates. By comparing with the static 2D-IR spectrum of the protonated Schiff base of all-trans retinal, we demonstrate that the 2D-IR spectrum of the all-trans retinal chromophore in bacteriorhodopsin can be measured with the background from the remainder of the protein completely suppressed. We discuss several models to interpret the detailed line shape of the difference 2D-IR spectrum.
Collapse
Affiliation(s)
- Esben Ravn Andresen
- Physikalisch-Chemisches Institut, Universitat Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | |
Collapse
|
4
|
Barth A. Infrared spectroscopy of proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:1073-101. [PMID: 17692815 DOI: 10.1016/j.bbabio.2007.06.004] [Citation(s) in RCA: 2924] [Impact Index Per Article: 172.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 12/12/2022]
Abstract
This review discusses the application of infrared spectroscopy to the study of proteins. The focus is on the mid-infrared spectral region and the study of protein reactions by reaction-induced infrared difference spectroscopy.
Collapse
Affiliation(s)
- Andreas Barth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
| |
Collapse
|
5
|
Iwaki M, Andrianambinintsoa S, Rich P, Breton J. Attenuated total reflection Fourier transform infrared spectroscopy of redox transitions in photosynthetic reaction centers: comparison of perfusion- and light-induced difference spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2002; 58:1523-1533. [PMID: 12083676 DOI: 10.1016/s1386-1425(02)00040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemically induced Fourier transform infrared difference spectra associated with redox transitions of several primary electron donors and acceptors in photosynthetic reaction centers (RCs) have been compared with the light-induced FTIR difference spectra involving the same cofactors. The RCs are deposited on an attenuated total reflection (ATR) prism and form a film that is enclosed in a flow cell. Redox transitions in the film of RCs can be repetitively induced either by perfusion of buffers poised at different redox potentials or by illumination. The perfusion-induced ATR-FTIR difference spectra for the oxidation of the primary electron donor P in the RCs of the purple bacteria Rb. sphaeroides and Rp. viridis and P700 in the photosystem 1 of Synechocystis 6803, as well as the Q(A)/Q(A) transition of the quinone acceptor (Q(A)) in Rb. sphaeroides RCs are reported for the first time. They are compared with the light-induced ATR-FTIR difference spectra P+Q(A)/PQ(A) for the RCs of Rb. sphaeroides and P700+/P700 for photosystem 1. It is shown that the perfusion-induced and light-induced ATR-FTIR difference spectra recorded on the same RC film display identical signal to noise ratios when they are measured under comparable conditions. The ATR-FTIR difference spectra are very similar to the equivalent FTIR difference spectra previously recorded upon photochemical or electrochemical excitation of these RCs in the more conventional transmission mode. The ATR-FTIR technique requires a smaller amount of sample compared with transmission FTIR and allows precise control of the aqueous environment of the RC films.
Collapse
|
6
|
Kuglstatter A, Hellwig P, Fritzsch G, Wachtveitl J, Oesterhelt D, Mäntele W, Michel H. Identification of a hydrogen bond in the phe M197-->Tyr mutant reaction center of the photosynthetic purple bacterium Rhodobacter sphaeroides by X-ray crystallography and FTIR spectroscopy. FEBS Lett 1999; 463:169-74. [PMID: 10601661 DOI: 10.1016/s0014-5793(99)01614-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In bacterial reaction centers the charge separation process across the photosynthetic membrane is predominantly driven by the excited state of the bacteriochlorophyll dimer (D). An X-ray structure analysis of the Phe M197-->Tyr mutant reaction center from Rhodobacter sphaeroides at 2.7 A resolution suggests the formation of a hydrogen bond as postulated by Wachtveitl et al. [Biochemistry 32, 12875-12886, 1993] between the Tyr M197 hydroxy group and one of the 2a-acetyl carbonyls of D. In combination with electrochemically induced FTIR difference spectra showing a split band of the pi-conjugated 9-keto carbonyl of D, there is clear evidence for the existence of such a hydrogen bond.
Collapse
Affiliation(s)
- A Kuglstatter
- Max-Planck-Institut für Biophysik, Heinrich-Hoffmann-Str. 7, D-60528, Frankfurt/M., Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
Breton J, Nabedryk E. Protein-quinone interactions in the bacterial photosynthetic reaction center: light-induced FTIR difference spectroscopy of the quinone vibrations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00054-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Hellwig P, Rost B, Kaiser U, Ostermeier C, Michel H, Mäntele W. Carboxyl group protonation upon reduction of the Paracoccus denitrificans cytochrome c oxidase: direct evidence by FTIR spectroscopy. FEBS Lett 1996; 385:53-7. [PMID: 8641466 DOI: 10.1016/0014-5793(96)00342-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The redox reactions of the cytochrome c oxidase from Paracoccus denitrificans were investigated in a thin-layer cell designed for the combination of electrochemistry under anaerobic conditions with UV/VIS and IR spectroscopy. Quantitative and reversible electrochemical reactions were obtained at a surface-modified electrode for all cofactors as indicated by the optical signals in the 400-700 nm range. Fourier transform infrared (FTIR) difference spectra of reduction and oxidation (reduced-minus-oxidized and oxidized-minus-reduced, respectively) obtained in the 1800-1000 cm(-1) range reveal highly structured band features with major contributions in the amide I (1620-1680 cm(-1)) and amide II (1580-1520 cm(-1)) range which indicate structural rearrangements in the cofactor vicinity. However, the small amplitude of the IR difference signals indicates that these conformational changes are small and affect only individual peptide groups. In the spectral region above 1700 cm(-1), a positive peak in the reduced state (1733 cm(-1)) and negative peak in the oxidized st ate (1745 cm(-1)) are characteristic for the formation and decay of a COOH mode upon reduction. The most obvious interpretation of this difference signal is proton uptake by one Asp or Glu side chain carboxyl group in the reduced state and deprotonation of another Asp or Glu residue. Moreover, both residues could well be coupled as a donor-acceptor pair in the proton transfer chain. An alternative interpretation is in terms of a protonated carboxyl group which shifts to a different environment in the reduced state. The relevance of this first direct observation of protein protonation changes in the cytochrome c oxidase for vectorial proton transfer and the catalytic reaction is discussed.
Collapse
Affiliation(s)
- P Hellwig
- Institut für Physikalishce und Theoretische Chemie der Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Brudler R, de Groot HJ, van Liemt WB, Gast P, Hoff AJ, Lugtenburg J, Gerwert K. FTIR spectroscopy shows weak symmetric hydrogen bonding of the QB carbonyl groups in Rhodobacter sphaeroides R26 reaction centres. FEBS Lett 1995; 370:88-92. [PMID: 7649310 DOI: 10.1016/0014-5793(95)00805-j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The absorption frequencies of the C = O and C = C (neutral state) and of the C...O (semiquinone state) stretching vibrations of QB have been assigned by FTIR spectroscopy, using native and site-specifically 1-, 2-, 3- and 4-13C-labelled ubiquinone-10 (UQ10) reconstituted at the QB binding site of Rhodobacter sphaeroides R26 reaction centres. Besides the main C = O band at 1641 cm-1, two smaller bands are observed at 1664 and 1651 cm-1. The smaller bands at 1664 and 1651 cm-1 agree in frequencies with the 1- and 4-C = O vibrations of unbound UQ10, showing that a minor fraction is loosely and symmetrically bound to the protein. The larger band at 1641 cm-1 indicates symmetric H-bonding of the 1- and 4-C = O groups for the larger fraction of UQ10 but much weaker interaction as for the 4-C = O group of QA. The FTIR experiments show that different C = O protein interactions contribute to the factors determining the different functions of UQ10 at the QA and the QB binding sites.
Collapse
Affiliation(s)
- R Brudler
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Breton J, Boullais C, Burie JR, Nabedryk E, Mioskowski C. Binding sites of quinones in photosynthetic bacterial reaction centers investigated by light-induced FTIR difference spectroscopy: assignment of the interactions of each carbonyl of QA in Rhodobacter sphaeroides using site-specific 13C-labeled ubiquinone. Biochemistry 1994; 33:14378-86. [PMID: 7981197 DOI: 10.1021/bi00252a002] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Light-induced QA-/QA FTIR difference spectra of the photoreduction of the primary quinone (QA) have been obtained for Rhodobacter sphaeroides reaction centers (RCs) reconstituted with ubiquinone (Q3) labeled selectively with 13C at the 1- or 4-position of the quinone ring, i.e., on either of the two carbonyls. The vibrational modes of the quinone in the QA site are compared to those in vitro. IR absorption spectra of films of the labeled quinones show that the two carbonyls contribute equally to the split C = O band at 1663-1650 cm-1. This splitting is assigned to the two different geometries of the methoxy group nearest to each carbonyl. The QA-/QA spectra of RCs reconstituted with either 13C1- or 13C4-labeled Q3 and with unlabeled Q3 as well as the double differences calculated from these spectra exhibit distinct isotopic shifts for the bands assigned to C = O and C = C vibrations of the neutral QA. For the unlabeled QA, these bands correspond to the bands at 1660, 1628, and 1601 cm-1 previously detected upon nonselective isotopic labeling [Breton, J., Burie, J.-R., Berthomieu, C., Berger, G., & Nabedryk, E. (1994) Biochemistry 33, 4953-4965]. The 1660-cm-1 band is unaffected upon selective labeling at C4 but shifts to approximately 1623 cm-1 upon 13C1 labeling, demonstrating that this band arises from the C1 carbonyl, proximal to the isoprenoid chain. The band at 1628 cm-1 shifts by 11 and 16 cm-1 upon 13C1 and 13C4 labeling, respectively, and is assigned to a C = C mode coupled to both carbonyls.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Breton
- Section de Bioénergétique, CEA-Saclay, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|