1
|
Li J, Zhao H, Yang J, Wang M, Cao Z, Wang Y, Gu Z. The role and mechanism of extracellular traps in chronic rhinosinusitis. Biomed Pharmacother 2024; 181:117655. [PMID: 39486368 DOI: 10.1016/j.biopha.2024.117655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Chronic rhinosinusitis (CRS) is a common inflammatory disease of the nose that affects millions of individuals worldwide. Recent research has introduced the concept of an immunologic endotype based on the pathological characteristics of CRS and the types of inflammatory cell infiltration. This endotype concept is conducive to understanding CRS pathology and guiding further targeted therapy. Eosinophils and neutrophils infiltrate different proportions in different CRS endotypes and release extracellular traps (ETs) as a response to the extracellular immune response. The mechanisms of formation and biological roles of ETs are complex. ETs can trap extracellular microorganisms and limit the range of inflammation to some extent; however, excessive and long-term ETs may be related to disease severity. This review summarises and explores the mechanism of ETs and the advances in CRS research and proposes new insights into the interaction between ETs and programmed cell death (including autophagy, pyroptosis, and necroptosis) in CRS, providing new ideas for the targeted therapy of CRS.
Collapse
Affiliation(s)
- Jiani Li
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - He Zhao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Jing Yang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Meng Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhiwei Cao
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Yunxiu Wang
- Department of Clinical Trial Ward, Clinical Trial and Conversion Center, Shengjing Hospital of China Medical University, Shenyang 110004, PR China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| | - Zhaowei Gu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
2
|
Signorello MG, Ravera S, Leoncini G. Oxidative Stress Induced by Cortisol in Human Platelets. Int J Mol Sci 2024; 25:3776. [PMID: 38612585 PMCID: PMC11011787 DOI: 10.3390/ijms25073776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Hypercortisolism is known to affect platelet function. However, few studies have approached the effect of exogenous cortisol on human platelets, and the results obtained are conflicting and unconvincing. In this study, the effect of exogenous cortisol on several parameters indicative of oxidative status in human platelets has been analysed. We have found that cortisol stimulates ROS production, superoxide anion formation, and lipid peroxidation, with these parameters being in strict correlation. In addition, cortisol decreases GSH and membrane SH-group content, evidencing that the hormone potentiates oxidative stress, depleting platelet antioxidant defence. The involvement of src, syk, PI3K, and AKT enzymes in oxidative mechanisms induced by cortisol is shown. The main sources of ROS in cells can include uncontrolled increase of NADPH oxidase activity and uncoupled aerobic respiration during oxidative phosphorylation. Both mechanisms seem to be involved in ROS formation induced by cortisol, as the NADPH oxidase 1 inhibitor 2(trifluoromethyl)phenothiazine, and rotenone and antimycin A, complex I and III inhibitor, respectively, significantly reduce oxidative stress. On the contrary, the NADPH oxidase inhibitor gp91ds-tat, malate and NaCN, complex II and IV inhibitor, respectively, have a minor effect. It is likely that, in human platelets, oxidative stress induced by cortisol can be associated with venous and arterial thrombosis, greatly contributing to cardiovascular diseases.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genova, Italy;
| | - Giuliana Leoncini
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, 16132 Genova, Italy;
| |
Collapse
|
3
|
Keenum MC, Chatterjee P, Atalis A, Pandey B, Jimenez A, Roy K. Single-cell epitope-transcriptomics reveal lung stromal and immune cell response kinetics to nanoparticle-delivered RIG-I and TLR4 agonists. Biomaterials 2023; 297:122097. [PMID: 37001347 PMCID: PMC10192313 DOI: 10.1016/j.biomaterials.2023.122097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Lung-resident and circulatory lymphoid, myeloid, and stromal cells, expressing various pattern recognition receptors (PRRs), detect pathogen- and danger-associated molecular patterns (PAMPs/DAMPs), and defend against respiratory pathogens and injuries. Here, we report the early responses of murine lungs to nanoparticle-delivered PAMPs, specifically the retinoic acid-inducible gene I (RIG-I) agonist poly-U/UC (PUUC), with or without the TLR4 agonist monophosphoryl lipid A (MPLA). Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we characterized the responses at 4 and 24 h after intranasal administration. Within 4 h, ribosome-associated transcripts decreased in both stromal and immune cells, followed by widespread interferon-stimulated gene (ISG) expression. Using RNA velocity, we show that lung-neutrophils dynamically regulate the synthesis of cytokines like CXCL-10, IL-1α, and IL-1β. Co-delivery of MPLA and PUUC increased chemokine synthesis and upregulated antimicrobial binding proteins targeting iron, manganese, and zinc in many cell types, including fibroblasts, endothelial cells, and epithelial cells. Overall, our results elucidate the early PAMP-induced cellular responses in the lung and demonstrate that stimulation of the RIG-I pathway, with or without TLR4 agonists, induces a ubiquitous microbial defense state in lung stromal and immune cells. Nanoparticle-delivered combination PAMPs may have applications in intranasal antiviral and antimicrobial therapies and prophylaxis.
Collapse
Affiliation(s)
- M Cole Keenum
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Paramita Chatterjee
- Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA
| | - Alexandra Atalis
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Bhawana Pandey
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta, GA, USA; Marcus Center for Therapeutic Cell Characterization and Manufacturing Georgia Institute of Technology, Atlanta, GA, USA; The Parker H. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Signorello MG, Ravera S, Leoncini G. Lectin-induced oxidative stress in human platelets. Redox Biol 2020; 32:101456. [PMID: 32063518 PMCID: PMC7264469 DOI: 10.1016/j.redox.2020.101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Previously we have shown that wheat germ agglutinin (WGA) and, with minor potency, Phaseolus vulgaris agglutinin (PHA), but not lens culinarian agglutinin (LCA), induce platelet aggregation, through the PLCƴ2 activation by the concerted action of src/syk and PI3K/BTK pathways. In this study, we have investigated platelet oxidative stress induced by lectins. Several parameters indicative of oxidative stress, such as reactive oxygen species (ROS), superoxide anion, lipid peroxidation and the efficiency of the aerobic metabolism, have been measured. It was found that ROS, superoxide anion formation and lipid peroxidation are significantly increased upon platelet treatment with WGA and PHA while LCA is ineffective. WGA is always more effective than PHA in all experimental conditions tested. In addition, the involvement of NADPH oxidase 1, syk and PI3K in oxidative stress induced by WGA and PHA has been shown. Concerning the lectins effect on aerobic metabolism, WGA and PHA, but not LCA, act as uncoupling agents, determining an increase of oxygen consumption and a decrease of ATP synthesis, with a consequent decrease of P/O value. These results are confirmed by the impairment of platelets proton gradient formation, evaluated by membrane potential, in platelets treated with WGA and PHA. In conclusion lectins, especially WGA, induce oxidative stress in platelets and decrease energy availability through modifications of membrane structure leading to the inefficiency of the aerobic machinery that steers platelets toward death as suggested by the decreased metabolic activity of platelets and the increased lactic dehydrogenase release.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genoa, Genova, 16132, Italy.
| |
Collapse
|
5
|
Sajjadian SM, Kim Y. Dual Oxidase-Derived Reactive Oxygen Species Against Bacillus thuringiensis and Its Suppression by Eicosanoid Biosynthesis Inhibitors. Front Microbiol 2020; 11:528. [PMID: 32292400 PMCID: PMC7120046 DOI: 10.3389/fmicb.2020.00528] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/11/2020] [Indexed: 12/26/2022] Open
Abstract
Two entomopathogenic bacteria, Xenorhabdus and Photorhabdus, are known to be able to synthesize and secrete eicosanoid biosynthesis inhibitors (EIBs) that can enhance pathogenicity of Bacillus thuringiensis (Bt) against different target insects. Such enhancements can be explained by the suppression of immune responses in the hemocoel by EIBs. However, little is known about the role of EIBs in the defense against Bt pathogenicity in the gut. This study was focused on the role of insect gut immunity in the defense against Bt pathogenicity, in which the cooperative effect of bacterial metabolites was assessed. Screening 14 different bacterial strains, bacterial culture broth of Photorhabdus temperata subsp. temperata ANU101 (Ptt) gave the highest cooperative effect on Bt virulence along with significant inhibitory activity against phospholipase A2 (PLA2) of Plutella xylostella. In gut lumen, Ptt culture broth suppressed the generation of reactive oxygen species (ROS) induced by Bt treatment and facilitated bacterial growth, similar to vitamin E, an antioxidant. To analyze the ROS source, dual oxidase (Px-Duox) and NADPH-dependent oxidase (Px-Nox) genes were predicted from P. xylostella genome and their expressions were confirmed in larval gut. RNA interference (RNAi) of Px-Duox expression reduced ROS levels in both gut epithelium and lumen while RNAi of Px-Nox expression reduced ROS levels only in gut epithelium. Ptt extract significantly suppressed gene expression levels of Px-Duox and Px-Nox, leading to lower ROS concentrations in the gut lumen. Three commercial PLA2 inhibitors significantly increased the insecticidal activity of Bt by suppressing ROS levels in the gut lumen. These results indicate that Ptt extract containing EBIs can prevent up-regulation of ROS level in the midgut in response to Bt infection and enhance the virulence of Bt against P. xylostella.
Collapse
Affiliation(s)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, South Korea
| |
Collapse
|
6
|
An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidification. Int J Mol Sci 2020; 21:ijms21031173. [PMID: 32050714 PMCID: PMC7037345 DOI: 10.3390/ijms21031173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/29/2022] Open
Abstract
Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not organic acid tolerance. Addition of acetic acid to wild-type plantlets induces production of ROS (Reactive Oxygen Species) measured by dichlorodihydrofluorescein diacetate. Acid-induced ROS production is greatly decreased in sbt4.13-1D and atrboh-D,F mutants. The latter is deficient in two major NADPH oxidases (NOXs) and is tolerant to organic acids. These results suggest that intracellular acidification activates NOXs and the resulting oxidative stress is important for inhibition of growth. The inhibition of acid-activated NOXs in the sbt4.13-1D mutant compensates inhibition of PMA to increase acid tolerance.
Collapse
|
7
|
DeCoursey TE, Morgan D, Musset B, Cherny VV. Insights into the structure and function of HV1 from a meta-analysis of mutation studies. J Gen Physiol 2017; 148:97-118. [PMID: 27481712 PMCID: PMC4969798 DOI: 10.1085/jgp.201611619] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/30/2016] [Indexed: 01/26/2023] Open
Abstract
The voltage-gated proton channel (HV1) is a widely distributed, proton-specific ion channel with unique properties. Since 2006, when genes for HV1 were identified, a vast array of mutations have been generated and characterized. Accessing this potentially useful resource is hindered, however, by the sheer number of mutations and interspecies differences in amino acid numbering. This review organizes all existing information in a logical manner to allow swift identification of studies that have characterized any particular mutation. Although much can be gained from this meta-analysis, important questions about the inner workings of HV1 await future revelation.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Deri Morgan
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| | - Boris Musset
- Institut für Physiologie, PMU Klinikum Nürnberg, 90419 Nürnberg, Germany
| | - Vladimir V Cherny
- Department of Molecular Biophysics and Physiology, Rush University, Chicago, IL 60612
| |
Collapse
|
8
|
Tempol, a Superoxide Dismutase Mimetic Agent, Inhibits Superoxide Anion-Induced Inflammatory Pain in Mice. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9584819. [PMID: 28589150 PMCID: PMC5446866 DOI: 10.1155/2017/9584819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/26/2017] [Accepted: 04/12/2017] [Indexed: 01/16/2023]
Abstract
The present study evaluated the anti-inflammatory and analgesic effects of the superoxide dismutase mimetic agent tempol in superoxide anion-induced pain and inflammation. Mice were treated intraperitoneally with tempol (10–100 mg/kg) 40 min before the intraplantar injection of a superoxide anion donor, potassium superoxide (KO2, 30 μg). Mechanical hyperalgesia and thermal hyperalgesia, paw edema, and mRNA expression of peripheral and spinal cord mediators involved in inflammatory pain, TNFα, IL-1β, IL-10, COX-2, preproET-1, gp91phox, Nrf2, GFAP, and Iba-1, were evaluated. Peripheral and spinal cord reductions of antioxidant defenses and superoxide anion were also assessed. Tempol reduced KO2-induced mechanical hyperalgesia and thermal hyperalgesia and paw edema. The increased mRNA expression of the evaluated mediators and oxidative stress in the paw skin and spinal cord and increased mRNA expression of glial markers in the spinal cord induced by KO2 were successfully inhibited by tempol. KO2-induced reduction in Nrf2 mRNA expression in paw skin and spinal cord was also reverted by tempol. Corroborating the effect of tempol in the KO2 model, tempol also inhibited carrageenan and CFA inflammatory hyperalgesia. The present study demonstrates that tempol inhibits superoxide anion-induced molecular and behavioral alterations, indicating that tempol deserves further preclinical studies as a promising analgesic and anti-inflammatory molecule for the treatment of inflammatory pain.
Collapse
|
9
|
Pereira EJ, Smolko CM, Janes KA. Computational Models of Reactive Oxygen Species as Metabolic Byproducts and Signal-Transduction Modulators. Front Pharmacol 2016; 7:457. [PMID: 27965578 PMCID: PMC5126069 DOI: 10.3389/fphar.2016.00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/14/2016] [Indexed: 12/30/2022] Open
Abstract
Reactive oxygen species (ROS) are widely involved in intracellular signaling and human pathologies, but their precise roles have been difficult to enumerate and integrate holistically. The context- and dose-dependent intracellular effects of ROS can lead to contradictory experimental results and confounded interpretations. For example, lower levels of ROS promote cell signaling and proliferation, whereas abundant ROS cause overwhelming damage to biomolecules and cellular apoptosis or senescence. These complexities raise the question of whether the many facets of ROS biology can be joined under a common mechanistic framework using computational modeling. Here, we take inventory of some current models for ROS production or ROS regulation of signaling pathways. Several models captured non-intuitive observations or made predictions that were later verified by experiment. There remains a need for systems-level analyses that jointly incorporate ROS production, handling, and modulation of multiple signal-transduction cascades.
Collapse
Affiliation(s)
- Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
| | - Christian M Smolko
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
| |
Collapse
|
10
|
Chiurchiù V, Orlacchio A, Maccarrone M. Is Modulation of Oxidative Stress an Answer? The State of the Art of Redox Therapeutic Actions in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7909380. [PMID: 26881039 PMCID: PMC4736210 DOI: 10.1155/2016/7909380] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/18/2015] [Indexed: 12/11/2022]
Abstract
The central nervous system is particularly sensitive to oxidative stress due to many reasons, including its high oxygen consumption even under basal conditions, high production of reactive oxygen and nitrogen species from specific neurochemical reactions, and the increased deposition of metal ions in the brain with aging. For this reason, along with inflammation, oxidative stress seems to be one of the main inducers of neurodegeneration, causing excitotoxicity, neuronal loss, and axonal damage, ultimately being now considered a key element in the onset and progression of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, and hereditary spastic paraplegia. Thus, the present paper reviews the role of oxidative stress and of its mechanistic insights underlying the pathogenesis of these neurodegenerative diseases, with particular focus on current studies on its modulation as a potential and promising therapeutic strategy.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Antonio Orlacchio
- European Center for Brain Research (CERC), Laboratory of Neurogenetics, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of System Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Mauro Maccarrone
- School of Medicine and Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research (CERC), Laboratory of Neurochemistry of Lipids, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Seo HL, Lee JH, Jang MH, Kwon YW, Cho IJ, Kim KJ, Park SJ, Kim SC, Kim YW, Byun SH. Mitochondria protection of Sparganii Rhizoma against oxidative stress in heptocytes. ACTA ACUST UNITED AC 2015. [DOI: 10.14374/hfs.2015.23.2.189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Park Y, Stanley DW, Kim Y. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:63-72. [PMID: 26071791 DOI: 10.1016/j.jinsphys.2015.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoids mediate ROS production by activating NADPH-dependent oxidase (NOX) and tested the idea in the model insect, Spodoptera exigua. A NOX gene (we named SeNOX4) was identified and cloned, yielding a full open reading frame encoding 547 amino acid residues with a predicted molecular weight of 63,410Da and an isoelectric point at 9.28. A transmembrane domain and a large intracellular domain containing NADPH and FAD-binding sites were predicted. Phylogenetic analysis indicated SeNOX4 clusters with other NOX4 genes. SeNOX4 was expressed in all life stages except eggs, and exclusively in hemocytes. Bacterial challenge and, separately, arachidonic acid (AA, a precursor of eicosanoid biosynthesis) injection increased its expression. The internalization step was assessed by counting hemocytes engulfing fluorescence-labeled bacteria. The phagocytic behavior was inhibited by dsRNA suppression of SeNOX4 expression and, separately by dexamethasone (DEX, a specific inhibitor of eicosanoid biosynthesis) treatments. However, injecting AA to dsSeNOX4-treated larvae did not rescue the phagocytic activity. Hemocytic ROS production increased following bacterial challenge, which was sharply reduced in dsSeNOX4-treated, and separately, in DEX-treated larvae. AA partially reversed the suppressed ROS production in dsSeNOX4-treated larvae. Treating larvae with either the ROS-suppressing dsSeNOX4 construct or DEX rendered experimental larvae unable to inhibit bacterial proliferation in their hemocoels. We infer that eicosanoids mediate ROS production during phagocytosis by inducing expression of SeNOX4.
Collapse
Affiliation(s)
- Youngjin Park
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - David W Stanley
- Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 Providence Rd., Columbia, MO 65203, USA
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
13
|
Roach T, Colville L, Beckett RP, Minibayeva FV, Havaux M, Kranner I. A proposed interplay between peroxidase, amine oxidase and lipoxygenase in the wounding-induced oxidative burst in Pisum sativum seedlings. PHYTOCHEMISTRY 2015; 112:130-8. [PMID: 24996671 DOI: 10.1016/j.phytochem.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 05/23/2023]
Abstract
Plant surfaces form the barrier between a plant and its environment. Upon damage, the wound healing process begins immediately and is accompanied by a rapid production of extracellular reactive oxygen species (ROS), essential in deterring pathogens, signalling responses and cell wall restructuring. Although many enzymes produce extracellular ROS, it is unclear if ROS-producing enzymes act synergistically. We characterised the oxidative burst of superoxide (O2(·-)) and hydrogen peroxide (H2O2) that follows wounding in pea (Pisum sativum L.) seedlings. Rates of ROS production were manipulated by exogenous application of enzyme substrates and inhibitors. The results indicate significant roles for di-amine oxidases (DAO) and peroxidases (Prx) rather than NADPH oxidase. The burst of O2(·-) was strongly dependent on the presence of H2O2 produced by DAO. Potential substrates released from wounded seedlings included linoleic acid that, upon exogenous application, strongly stimulated catalase-sensitive O2(·-) production. Moreover, a 65kD plasma membrane (PM) guaiacol Prx was found in the secretome of wounded seedlings and showed dependence on linoleic acid for O2(·-) production. Lipoxygenases are suggested to modulate O2(·-) production by consuming polyunsaturated fatty acids in the apoplast. Overall, a O2(·-)-producing mechanism involving H2O2-derived from DAO, linoleic acid and a PM-associated Prx is proposed.
Collapse
Affiliation(s)
- Thomas Roach
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| | - Louise Colville
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK.
| | - Richard P Beckett
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Pietermaritzburg, Scottsville 3209, South Africa.
| | - Farida V Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russian Federation.
| | - Michel Havaux
- Commissariat à l'Energie Atomique et aux Energies Alternatives/Cadarache, UMR 7265 CNRS-CEA-Aix Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France.
| | - Ilse Kranner
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Ardingly, West Sussex RH17 6TN, UK; Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Abstract
Neutrophils play critical roles in innate immunity and host defense. However, excessive neutrophil accumulation or hyper-responsiveness of neutrophils can be detrimental to the host system. Thus, the response of neutrophils to inflammatory stimuli needs to be tightly controlled. Many cellular processes in neutrophils are mediated by localized formation of an inositol phospholipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3), at the plasma membrane. The PtdIns(3,4,5)P3 signaling pathway is negatively regulated by lipid phosphatases and inositol phosphates, which consequently play a critical role in controlling neutrophil function and would be expected to act as ideal therapeutic targets for enhancing or suppressing innate immune responses. Here, we comprehensively review current understanding about the action of lipid phosphatases and inositol phosphates in the control of neutrophil function in infection and inflammation.
Collapse
Affiliation(s)
- Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School, Boston, MA, USA Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA, USA Promega Corporation, Madison, WI, USA
| |
Collapse
|
15
|
Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 2015; 42:159-71. [PMID: 25579427 DOI: 10.1016/j.immuni.2014.12.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/23/2014] [Accepted: 10/31/2014] [Indexed: 12/20/2022]
Abstract
The cellular mechanisms controlling infection-induced emergency granulopoiesis are poorly defined. Here we found that reactive oxygen species (ROS) concentrations in the bone marrow (BM) were elevated during acute infection in a phagocytic NADPH oxidase-dependent manner in myeloid cells. Gr1(+) myeloid cells were uniformly distributed in the BM, and all c-kit(+) progenitor cells were adjacent to Gr1(+) myeloid cells. Inflammation-induced ROS production in the BM played a critical role in myeloid progenitor expansion during emergency granulopoiesis. ROS elicited oxidation and deactivation of phosphatase and tensin homolog (PTEN), resulting in upregulation of PtdIns(3,4,5)P3 signaling in BM myeloid progenitors. We further revealed that BM myeloid cell-produced ROS stimulated proliferation of myeloid progenitors via a paracrine mechanism. Taken together, our results establish that phagocytic NADPH oxidase-mediated ROS production by BM myeloid cells plays a critical role in mediating emergency granulopoiesis during acute infection.
Collapse
|
16
|
Hunt JA, Fok M, Bryan N. Impact of cell purification technique of autologous human adult stem cells on inflammatory reaction. Biomaterials 2013; 34:7626-31. [PMID: 23871537 DOI: 10.1016/j.biomaterials.2013.06.065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/27/2013] [Indexed: 12/23/2022]
Abstract
Adult stem cells have shown fantastic regenerative potential as the cellular components of biomaterial mediated tissue engineering. Realising the biomedical potential of human adult stem cells (hASCs) however will require delivery in an ultra- purified format, without competing cells which may mediate inflammation, fibrosis or tumorigenesis. Purifying ASCs involves exhuming cells from primary tissue using immunoaffinity; which isolates pure populations with the complication of retained immunoglobulin (Ig); the clinical impact of which is currently not known. One of the negative outcomes of retained surface Ig is exacerbation of inflammation by leucocyte Fc receptor (FcR) activation, with consequences ranging from inflammatory cytokine and ROS release to chronic inflammation. The balance of ROS within a tissue will impact the efficacy of a stem cell therapy as ROS play an important role in stem cell self renewal and differentiation. In this study we utilised a chemiluminescent monitoring technique based on a ROS excitable photoprotein Pholasin, to quantify leucocyte ROS production in response to xenogeneic and recombinant human Ig of varying class and isotype with applications in stem cell selection. We were able to demonstrate inter-class differences in leucocyte ROS response to Ig which also varied between donors. This study highlighted the potential for utilising this technique for personalisation of autologous ASC therapies. This would allow clinicians to perform a rapid pre-operative screen to maximise the probability for success of an ASC intervention based on cell isolation using an Ig most appropriate for a specific patient.
Collapse
Affiliation(s)
- John A Hunt
- Clinical Engineering, UKCTE, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
17
|
Smith SM, DeCoursey TE. Consequences of dimerization of the voltage-gated proton channel. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:335-60. [PMID: 23663974 PMCID: PMC3963466 DOI: 10.1016/b978-0-12-386931-9.00012-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The human voltage-gated proton channel, hHV1, appears to exist mainly as a dimer. Teleologically, this is puzzling because each protomer retains the main properties that characterize this protein: proton conduction that is regulated by conformational (channel opening and closing) changes that occur in response to both voltage and pH. The HV1 dimer is mainly linked by C-terminal coiled-coil interactions. Several types of mutations produce monomeric constructs that open approximately five times faster than the wild-type dimeric channel but with weaker voltage dependence. Intriguingly, the quintessential function of the HV1 dimer, opening to allow H(+) conduction, occurs cooperatively. Both protomers undergo a conformational change, but both must undergo this transition before either can conduct. The teleological purpose of dimerization may be to steepen the voltage dependence of channel opening, at least in phagocytes. In other cells, the purpose is not understood. Finally, several single-celled species have HV that are likely monomeric.
Collapse
Affiliation(s)
- Susan M.E. Smith
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Atlanta GA 30322 USA
| | - Thomas E. DeCoursey
- Department of Molecular Biophysics and Physiology, Rush University, Chicago IL 60612 USA
| |
Collapse
|
18
|
Effects of five oleanolic acid triterpenoid saponins from the rhizome of Anemone raddeana on stimulus-induced superoxide generation, phosphorylation of proteins and translocation of cytosolic compounds to cell membrane in human neutrophils. Fitoterapia 2012; 83:402-7. [DOI: 10.1016/j.fitote.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 11/21/2022]
|
19
|
Shi YC, Fu YP, Liu WQ. NADPH oxidase in plasma membrane is involved in stomatal closure induced by dehydroascorbate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:26-30. [PMID: 22153236 DOI: 10.1016/j.plaphy.2011.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Stoma is surrounded by two guard cells, and regulates the contents of water and CO(2) in plant, its opening and closing was affected by various factors. Recently, dehydroascorbate was found to induce stomata closure and H(2)O(2) generation. However, the mechanism of H(2)O(2) production is not clear. DPI and imidazole inhibit the flavoprotein and the b(-type) cytochrome components of the NADPH oxidase complex. Application of DPI or imidazole with DHA together impaired stomatal closure and elevation of H(2)DCF-DA fluorescent intensity induced by DHA in guard cells. CoCl(2) and PD98059, as the blocker of calcium channel and the inhibitor of MAPKKK, both impaired stomatal closure induced by DHA. The results suggested that DHA-induced H(2)O(2) generation via activation of NADPH oxidase, and thus resulting in stomatal closure. Moreover, Ca(2+) channel and MAPK cascades were involved in stomatal closure induced by DHA.
Collapse
Affiliation(s)
- Yong Chun Shi
- National Key Laboratory of Tobacco Planting, Physiology and Biochemistry, 450002 Zhengzhou, China
| | | | | |
Collapse
|
20
|
Chiurchiù V, Maccarrone M. Chronic inflammatory disorders and their redox control: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2011; 15:2605-41. [PMID: 21391902 DOI: 10.1089/ars.2010.3547] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A chronic inflammatory disease is a condition characterized by persistent inflammation. A number of human pathologies fall into this category, and a great deal of research has been conducted to learn more about their characteristics and underlying mechanisms. In many cases, a genetic component has been identified, but also external factors like food, smoke, or environmental pollutants can significantly contribute to worsen their symptoms. Accumulated evidence clearly shows that chronic inflammatory diseases are subjected to a redox control. Here, we shall review the identity, source, regulation, and biological activity of redox molecules, to put in a better perspective their key-role in cancer, diabetes, cardiovascular diseases, atherosclerosis, chronic obstructive pulmonary diseases, and inflammatory bowel diseases. In addition, the impact of redox species on autoimmune disorders (rheumatoid arthritis, systemic lupus erythematosus, psoriasis, and celiac disease) and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis) will be discussed, along with their potential therapeutic implications as novel drugs to combat chronic inflammatory disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
| | | |
Collapse
|
21
|
Antioxidant and anti-inflammatory effects of exercise in diabetic patients. EXPERIMENTAL DIABETES RESEARCH 2011; 2012:941868. [PMID: 22007193 PMCID: PMC3191828 DOI: 10.1155/2012/941868] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/15/2011] [Accepted: 07/17/2011] [Indexed: 02/06/2023]
Abstract
Diabetes is a chronic metabolic disease which is characterized by absolute or relative deficiencies in insulin secretion and/or insulin action. The key roles of oxidative stress and inflammation in the progression of vascular complications of this disease are well recognized. Accumulating epidemiologic evidence confirms that physical inactivity is an independent risk factor for insulin resistance and type II diabetes. This paper briefly reviews the pathophysiological pathways associated with oxidative stress and inflammation in diabetes mellitus and then discusses the impact of exercise on these systems. In this regard, we discuss exercise induced activation of cellular antioxidant systems through “nuclear factor erythroid 2-related factor.” We also discuss anti-inflammatory myokines, which are produced and released by contracting muscle fibers. Antiapoptotic, anti-inflammatory and chaperon effects of exercise-induced heat shock proteins are also reviewed.
Collapse
|
22
|
Wei S, Chen G, He W, Chi H, Abe H, Yamashita K, Yokoyama M, Kodama H. Inhibitory effects of secoiridoids from the roots of Gentiana straminea on stimulus-induced superoxide generation, phosphorylation and translocation of cytosolic compounds to plasma membrane in human neutrophils. Phytother Res 2011; 26:168-73. [PMID: 21584870 DOI: 10.1002/ptr.3496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/10/2022]
Abstract
Gentiana straminea Maxim. has been used widely as a traditional Chinese medicine for the treatment of rheumarthritis, icterepatitis, constipation, pain and hypertension. Five secoiridoids, gentiopicroside (GTP), 6'-O-(2-hydroxy-3-O-β-D-glucopyranosyl-benzoyl)-sweroside (HGBS), 6'-O-β-D-glucosylgentiopicroside (GGTP), sweroside (SW) and swertiamarin (STM) were isolated from the roots of G. straminea. The effect of these secoiridoids on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c. Tyrosyl or serine/threonine phosphorylation of neutrophil proteins, and translocation of the cytosolic compounds to the cell membrane were also investigated using specific monoclonal antibodies. The five secoiridoids used in the present experiment suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in a concentration dependent manner. GTP and HGBS also suppressed phorbol 12-myristate 13-acetate (PMA) and arachidonic acid (AA)-induced superoxide generation. However, the other three secoiridoids showed no effect on PMA- and AA-induced superoxide generation. fMLP-, PMA- and AA-induced tyrosyl or serine/threonine phosphorylation and translocation of the cytosolic proteins to the cell membrane were suppressed in parallel with the suppression of the stimulus-induced superoxide generation.
Collapse
Affiliation(s)
- Shihu Wei
- Department of Anesthesiology and Critical Care Medicine, Kochi Medical School, Nankoku-Shi, Kochi 783-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
MacFarlane PM, Vinit S, Mitchell GS. Serotonin 2A and 2B receptor-induced phrenic motor facilitation: differential requirement for spinal NADPH oxidase activity. Neuroscience 2011; 178:45-55. [PMID: 21223996 DOI: 10.1016/j.neuroscience.2011.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 12/08/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Acute intermittent hypoxia (AIH) facilitates phrenic motor output by a mechanism that requires spinal serotonin (type 2) receptor activation, NADPH oxidase activity and formation of reactive oxygen species (ROS). Episodic spinal serotonin (5-HT) receptor activation alone, without changes in oxygenation, is sufficient to elicit NADPH oxidase-dependent phrenic motor facilitation (pMF). Here we investigated: (1) whether serotonin 2A and/or 2B (5-HT2A/B) receptors are expressed in identified phrenic motor neurons, and (2) which receptor subtype is capable of eliciting NADPH-oxidase-dependent pMF. In anesthetized, artificially ventilated adult rats, episodic C4 intrathecal injections (3×6 μl injections, 5 min intervals) of a 5-HT2A (DOI) or 5-HT2B (BW723C86) receptor agonist elicited progressive and sustained increases in integrated phrenic nerve burst amplitude (i.e. pMF), an effect lasting at least 90 min post-injection for both receptor subtypes. 5-HT2A and 5-HT2B receptor agonist-induced pMF were both blocked by selective antagonists (ketanserin and SB206553, respectively), but not by antagonists to the other receptor subtype. Single injections of either agonist failed to elicit pMF, demonstrating a need for episodic receptor activation. Phrenic motor neurons retrogradely labeled with cholera toxin B fragment expressed both 5-HT2A and 5-HT2B receptors. Pre-treatment with NADPH oxidase inhibitors (apocynin and diphenylenodium (DPI)) blocked 5-HT2B, but not 5-HT2A-induced pMF. Thus, multiple spinal type 2 serotonin receptors elicit pMF, but they act via distinct mechanisms that differ in their requirement for NADPH oxidase activity.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Comparative Biosciences, University of Wisconsin, Madison; School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, USA.
| | | | | |
Collapse
|
24
|
Roach T, Beckett RP, Minibayeva FV, Colville L, Whitaker C, Chen H, Bailly C, Kranner I. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. PLANT, CELL & ENVIRONMENT 2010; 33:59-75. [PMID: 19843255 DOI: 10.1111/j.1365-3040.2009.02053.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Reactive oxygen species (ROS) are implicated in seed death following dehydration in desiccation-intolerant 'recalcitrant' seeds. However, it is unknown if and how ROS are produced in the apoplast and if they play a role in stress signalling during desiccation. We studied intracellular damage and extracellular superoxide (O(2)(.-)) production upon desiccation in Castanea sativa seeds, mechanisms of O(2)(.-) production and the effect of exogenously supplied ROS. A transient increase in extracellular O(2)(.-) production by the embryonic axes preceded significant desiccation-induced viability loss. Thereafter, progressively more oxidizing intracellular conditions, as indicated by a significant shift in glutathione half-cell reduction potential, accompanied cell and axis death, coinciding with the disruption of nuclear membranes. Most hydrogen peroxide (H(2)O(2))-dependent O(2)(.-) production was found in a cell wall fraction that contained extracellular peroxidases (ECPOX) with molecular masses of approximately 50 kDa. Cinnamic acid was identified as a potential reductant required for ECPOX-mediated O(2)(.-) production. H(2)O(2), applied exogenously to mimic the transient ROS burst at the onset of desiccation, counteracted viability loss of sub-lethally desiccation-stressed seeds and of excised embryonic axes grown in tissue culture. Hence, extracellular ROS produced by embryonic axes appear to be important signalling components involved in wound response, regeneration and growth.
Collapse
Affiliation(s)
- Thomas Roach
- Seed Conservation Department, Royal Botanic Gardens Kew, Wakehurst Place, Ardingly, West Sussex, UK
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
In recent years, it has become clear that balanced regulation of reactive oxygen species is of critical significance for cell-fate determination as well as for stem cell development, function, and survival. Although many questions regarding intracellular redox status regulation of stem cell fate remain, we review here what is known regarding the impact of cell-fate signaling as shown with a variety of human cancer cells and more recently on cancer-initiating cells and on the regenerative capacity of skeletal muscle and hematopoietic tissue and their stem cells. We also discuss the role of altered intracellular redox status as a potential primary pathogenic mechanism in muscular dystrophy and hematopoietic pathologies. Studies discussed here illustrate how understanding altered redox regulation of stem cell behavior may contribute to the development of novel stem cell therapies.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine , Singapore
| | | | | |
Collapse
|
26
|
Optical probes for detection and quantification of neutrophils’ oxidative burst. A review. Anal Chim Acta 2009; 649:8-23. [DOI: 10.1016/j.aca.2009.06.063] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/25/2009] [Accepted: 06/29/2009] [Indexed: 11/20/2022]
|
27
|
Prata C, Maraldi T, Fiorentini D, Zambonin L, Hakim G, Landi L. Nox-generated ROS modulate glucose uptake in a leukaemic cell line. Free Radic Res 2009; 42:405-14. [DOI: 10.1080/10715760802047344] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Usatyuk PV, Gorshkova IA, He D, Zhao Y, Kalari SK, Garcia JGN, Natarajan V. Phospholipase D-mediated activation of IQGAP1 through Rac1 regulates hyperoxia-induced p47phox translocation and reactive oxygen species generation in lung endothelial cells. J Biol Chem 2009; 284:15339-52. [PMID: 19366706 DOI: 10.1074/jbc.m109.005439] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidic acid generated by the activation of phospholipase D (PLD) functions as a second messenger and plays a vital role in cell signaling. Here we demonstrate that PLD-dependent generation of phosphatidic acid is critical for Rac1/IQGAP1 signal transduction, translocation of p47(phox) to cell periphery, and ROS production. Exposure of [(32)P]orthophosphate-labeled human pulmonary artery endothelial cells (HPAECs) to hyperoxia (95% O(2) and 5% CO(2)) in the presence of 0.05% 1-butanol, but not tertiary-butanol, stimulated PLD as evidenced by accumulation of [(32)P]phosphatidylbutanol. Infection of HPAECs with adenoviral constructs of PLD1 and PLD2 wild-type potentiated hyperoxia-induced PLD activation and accumulation of O(2)(.)/reactive oxygen species (ROS). Conversely, overexpression of catalytically inactive mutants of PLD (hPLD1-K898R or mPLD2-K758R) or down-regulation of expression of PLD with PLD1 or PLD2 siRNA did not augment hyperoxia-induced [(32)P]phosphatidylbutanol accumulation and ROS generation. Hyperoxia caused rapid activation and redistribution of Rac1, and IQGAP1 to cell periphery, and down-regulation of Rac1, and IQGAP1 attenuated hyperoxia-induced tyrosine phosphorylation of Src and cortactin and ROS generation. Further, hyperoxia-mediated redistribution of Rac1, and IQGAP1 to membrane ruffles, was attenuated by PLD1 or PLD2 small interference RNA, suggesting that PLD is upstream of the Rac1/IQGAP1 signaling cascade. Finally, small interference RNA for PLD1 or PLD2 attenuated hyperoxia-induced cortactin tyrosine phosphorylation and abolished Src, cortactin, and p47(phox) redistribution to cell periphery. These results demonstrate a role of PLD in hyperoxia-mediated IQGAP1 activation through Rac1 in tyrosine phosphorylation of Src and cortactin, as well as in p47(phox) translocation and ROS formation in human lung endothelial cells.
Collapse
Affiliation(s)
- Peter V Usatyuk
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
30
|
Marmaras VJ, Lampropoulou M. Regulators and signalling in insect haemocyte immunity. Cell Signal 2009; 21:186-95. [DOI: 10.1016/j.cellsig.2008.08.014] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/24/2008] [Indexed: 02/06/2023]
|
31
|
MacFarlane PM, Mitchell GS. Respiratory long-term facilitation following intermittent hypoxia requires reactive oxygen species formation. Neuroscience 2008; 152:189-97. [PMID: 18207649 DOI: 10.1016/j.neuroscience.2007.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 11/19/2022]
Abstract
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). LTF is a progressive and sustained increase in respiratory motor output as expressed in phrenic and hypoglossal (XII) nerve activity. Since reactive oxygen species (ROS) play important roles in several forms of neuroplasticity, and ROS production is increased by intermittent hypoxia, we tested the hypothesis that ROS are necessary for phrenic and XII LTF following AIH. Urethane-anesthetized, paralyzed, vagotomized and pump-ventilated Sprague-Dawley rats were exposed to AIH (11% O2, 3, 5 min episodes, 5 min intervals), and both phrenic and XII nerve activity were monitored for 60 min post-AIH. Although phrenic and XII LTF were observed in control rats, i.v. manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP), a superoxide anion scavenger, attenuated both phrenic and XII LTF in a dose dependent manner. Localized application of MnTMPyP (5.5 mM; 10 microl) to the intrathecal space of the cervical spinal cord (C4) abolished phrenic, but not XII LTF. Thus, ROS are necessary for AIH-induced respiratory LTF, and the relevant ROS appear to be localized near respiratory motor nuclei since cervical MnTMPyP injections impaired phrenic (and not XII) LTF. Phrenic LTF is a novel form of ROS-dependent neuroplasticity since its ROS-dependence resides in the spinal cord.
Collapse
Affiliation(s)
- P M MacFarlane
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706, USA.
| | | |
Collapse
|
32
|
Marçal LE, Dias-da-Motta PM, Rehder J, Mamoni RL, Blotta MHSL, Whitney CB, Newburger PE, Costa FF, Saad STO, Condino-Neto A. Up-regulation of NADPH oxidase components and increased production of interferon-gamma by leukocytes from sickle cell disease patients. Am J Hematol 2008; 83:41-5. [PMID: 17654682 DOI: 10.1002/ajh.20991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P=0.036). Monocytes from SCD patients showed higher levels of p47(phox) phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P=0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P>0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.
Collapse
Affiliation(s)
- Lívia E Marçal
- Center for Investigation in Pediatrics, Department of Pediatrics, State University of Campinas Medical School, Campinas, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hung KT, Kao CH. The participation of hydrogen peroxide in methyl jasmonate-induced NH(4)(+) accumulation in rice leaves. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1469-79. [PMID: 17215059 DOI: 10.1016/j.jplph.2006.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/14/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
Ammonium is a central intermediate in the nitrogen metabolism of plants. We have previously shown that methyl jasmonate (MJ) not only increases the content of H(2)O(2), but also causes NH(4)(+) accumulation in rice leaves. More recently, H(2)O(2) is thought to constitute a general signal molecule participating in the recognition of and the response to stress factors. In this study, we examined the role of H(2)O(2) as a link between MJ and subsequent NH(4)(+) accumulation in detached rice leaves. MJ treatment resulted in an accumulation of NH(4)(+) in detached rice leaves, which was preceded by a decrease in the activity of glutamine synthetase (GS) and an increase in the specific activities of protease and phenylalanine ammonia-lyase (PAL). GS, PAL, and protease appear to be the enzymes responsible for the accumulation of NH(4)(+) in MJ-treated detached rice leaves. Dimethylthiourea (DMTU), a chemical trap for H(2)O(2), was observed to be effective in inhibiting MJ-induced NH(4)(+) accumulation in detached rice leaves. Scavengers of free radicals (sodium benzoate, SB, and glutathione, GSH), nitric oxide donor (N-tert-butyl-alpha-phenylnitrone, PBN), the inhibitors of NADPH oxidase (diphenyleneiodonium chloride, DPI, and imidazole, IMD), and inhibitors of phosphatidylinositol 3-kinase (wortmannin, WM, and LY 294002, LY), which have previously been shown to prevent MJ-induced H(2)O(2) production in detached rice leaves, inhibited MJ-induced NH(4)(+) accumulation. Similarly, changes in enzymes responsible for NH(4)(+) accumulation induced by MJ were observed to be inhibited by DMTU, SB, GSH, PBN DPI, IMD, WM, or LY. Seedlings of rice cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)-sensitive and those of cultivar Tainung 67 (TNG67) are JA-insensitive. On treatment with JA, H(2)O(2) accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ- and abscisic acid-induced accumulation of NH(4)(+) and changes in enzymes responsible for NH(4)(+) accumulation in detached rice leaves, suggesting that the action of MJ and ABA is ethylene dependent.
Collapse
Affiliation(s)
- Kuo Tung Hung
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
34
|
Yang Y, Xu S, An L, Chen N. NADPH oxidase-dependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1429-35. [PMID: 17223222 DOI: 10.1016/j.jplph.2006.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 08/29/2006] [Indexed: 05/13/2023]
Abstract
Hydrogen peroxide (H(2)O(2)) is often generated by cells and tissues under environmental stress. In this work, we provide evidence that plasma membrane (PM) NADPH oxidase-dependent H(2)O(2) production might act as an intermediate step in the NaCl-induced elevation of calcium (Ca) in roots of wheat. Remarkable increases in the content of total Ca were observed not only in roots exposed to NaCl but also in roots of seedlings exposed to exogenous H(2)O(2). In roots, H(2)O(2) production increased upon exposure to salt stress. PM vesicles were isolated from roots, and NADPH oxidase activity was determined by measuring superoxide anion (O(2)(-)) production. NADPH oxidase-dependent O(2)(-) production was 11.6nmolmg(-1)proteinmin(-1) in control vesicles, but 19.6nmol after NaCl treatment (24h), indicating that salt stress resulted in the activation of the PM NADPH oxidase. Furthermore, the NaCl-induced increase in total Ca was partially abolished by the addition of 150U/mL catalase (CAT), a H(2)O(2) scavenger, and also by 10microM diphenylane iodonium (DPI), a NADPH oxidase inhibitor. This data suggest that NADPH oxidase-dependent H(2)O(2) production might be involved in the modulation of the Ca content in wheat roots. In conclusion, our results show that salinity stress increases the total Ca content of wheat roots, which is partly due to PM NADPH oxidase-dependent H(2)O(2) generation.
Collapse
Affiliation(s)
- Yingli Yang
- Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | | | | | | |
Collapse
|
35
|
Goedken M, McCormick S, Leidal KG, Suzuki K, Kameoka Y, Astern JM, Huang M, Cherkasov A, Nauseef WM. Impact of Two Novel Mutations on the Structure and Function of Human Myeloperoxidase. J Biol Chem 2007; 282:27994-8003. [PMID: 17650507 DOI: 10.1074/jbc.m701984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The heme protein myeloperoxidase (MPO) contributes critically to O(2)-dependent neutrophil antimicrobial activity. Two Japanese adults were identified with inherited MPO deficiency because of mutations at Arg-499 or Gly-501, conserved residues near the proximal histidine in the heme pocket. Because of the proximity of these residues to a critical histidine in the heme pocket, we examined the biosynthesis, function, and spectral properties of the peroxidase stably expressed in human embryonic kidney cells. Biosynthesis of normal MPO by human embryonic kidney cells faithfully mirrored events previously identified in cells expressing endogenous MPO. Mutant apopro-MPO was 90 kDa and interacted normally with the molecular chaperones ERp57, calreticulin, and calnexin in the endoplasmic reticulum. However, mutant precursors were not proteolytically processed into subunits of MPO, although secretion of the unprocessed precursors occurred normally. Although delta-[(14)C]aminolevulinic acid incorporation demonstrated formation of pro-MPO in both mutants, neither protein was enzymatically active. The Soret band for each mutant was shifted from the normal 430 to approximately 412 nm, confirming that heme was incorporated but suggesting that the number of covalent bonds or other structural aspects of the heme pocket were disrupted by the mutations. These studies demonstrate that despite heme incorporation, mutations in the heme environs compromised the oxidizing potential of MPO.
Collapse
Affiliation(s)
- Melissa Goedken
- Inflammation Program, Department of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, Iowa 52241, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pervaiz S, Clement MV. Superoxide anion: Oncogenic reactive oxygen species? Int J Biochem Cell Biol 2007; 39:1297-304. [PMID: 17531522 DOI: 10.1016/j.biocel.2007.04.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2007] [Revised: 04/05/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Recent evidence linking intracellular reactive oxygen species to cell survival and/or proliferation signals has resulted in a paradigm shift from the age-old dogma implicating reactive oxygen species exclusively in cell damage and death. It is now accepted that reactive oxygen species play important roles in normal physiological states and that depending on the species involved the effect could be highly varied. In this regard, the effects of the two major reactive oxygen species, superoxide and hydrogen peroxide have been extensively studied. During normal cell growth a tight balance between the two species is kept under check by the cells' anti-oxidant defense systems. Deficiency or defect in this defense armory is invariably associated with neoplasia, thus rendering the intracellular redox status in a state of imbalance and generating a "pro-oxidant" milieu. A variety of model systems have underscored the relationship between a pro-oxidant state and cancer promotion and progression. In this review, we present evidence to support the hypothesis that the effect of intracellular reactive oxygen species on oncogenesis is dependent on the ratio of intracellular superoxide to hydrogen peroxide in that a predominant increase in superoxide supports cell survival and promotes oncogenesis whereas a tilt in favor of hydrogen peroxide prevents carcinogenesis by facilitating cell death signaling.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Cancer Biology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | | |
Collapse
|
37
|
Hausmann M, Obermeier F, Paper DH, Balan K, Dunger N, Menzel K, Falk W, Schoelmerich J, Herfarth H, Rogler G. In vivo treatment with the herbal phenylethanoid acteoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol 2007; 148:373-81. [PMID: 17437425 PMCID: PMC1868873 DOI: 10.1111/j.1365-2249.2007.03350.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recently we demonstrated that in inflammatory bowel disease (IBD) macrophage-oxidative burst activity is increased and NADPH oxidase mRNA is induced. The herbal phenylethanoid acteoside isolated from Plantago lanceolata L. was shown to exhibit anti-oxidative potential. Using the dextran sulphate sodium (DSS)-induced colitis model, in this study we have assessed whether systemic application of acteoside affects colitis. Colitis was induced by DSS in Balb/c mice. Treatment with acteoside (120, 600 microg/mouse/day) was performed intraperitoneally. The colon lengths were determined. Colonic tissue was scored histologically (max. score 8) by a blinded investigator. T cells isolated from mesenteric lymph nodes (MLN) were stimulated with anti-CD3 antibody in the presence of interleukin (IL)-2 (final concentration 10 U/ml). After incubation for 24 h, IL-1beta, IL-6, IL-12 tumour necrosis factor (TNF)-alpha and interferon (IFN)-gamma levels in supernatants were analysed by the beadlyte cytokine detection system. Histological scoring of colonic tissue revealed that application of acteoside was followed by a significantly improved histological score. In acute colitis the histological score was 3.2 with acteoside versus 5.2 with phosphate-buffered saline (PBS) (P < 0.02). In chronic colitis both 120 microg (3.3 versus 5.2) or 600 microg acteoside (3.0 versus 5.2) significantly ameliorated colitis (both P < 0.02). Stimulated MLN from mice with chronic DSS-induced colitis treated with acteoside showed a significant down-regulation of IFN-gamma secretion (195 pg/ml with 600 microg acteoside versus 612 pg/ml with PBS, P < 0.02). Inhibition of oxidative burst activity with acteoside reduced mucosal tissue damage in DSS colitis and could be a therapeutic alternative for IBD treatment. Further studies of this agent are warranted.
Collapse
Affiliation(s)
- M Hausmann
- Department of Internal Medicine I, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Waller HL, Harper SJF, Hosgood SA, Bagul A, Yang B, Kay MD, Kaushik M, Nicholson ML. Biomarkers of oxidative damage to predict ischaemia-reperfusion injury in an isolated organ perfusion model of the transplanted kidney. Free Radic Res 2007; 40:1218-25. [PMID: 17050175 DOI: 10.1080/10715760600907368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ischaemia-reperfusion (IR) injury is known to be a risk factor influencing both short and long-term graft function following transplantation. The pathophysiology of IR injury is suggested to involve elevated reactive oxygen species production resulting in oxidative damaged cellular macromolecules. The objective of this study was to evaluate oxidative damage following IR using an isolated organ perfusion model of the transplanted kidney, in order to determine a simple, preferably non-invasive biomarker for IR injury. Porcine kidneys were retrieved with 10 or 40 min warm ischaemic (WI) time and haemoperfused for 6 h on an isolated organ perfusion machine. ELISA was used to detect carbonyls, 8-isporostane and 8-hydroxy-2'-deoxyguanosine, representing protein, lipid and DNA damage respectively in pre and post reperfusion samples of plasma, urine and biopsy material. Plasma carbonyl and 8-isporostane and were significantly increased in the 40 min group compared to pre-perfusion (0.96 +/- 0.10 vs. 0.62 +/- 0.06, P < 0.001 and 1.57(1.28-4.9) vs. 0.36(0.09-0.59), P < 0.05). The levels also correlated with creatinine clearance used to determine renal function (r = - 0.6150, P < 0.01 and r = - 0.7727, P < 0.01). The results of this study suggest both plasma carbonyl and 8-isporostane to be reliable biomarkers to predict the level IR injury.
Collapse
Affiliation(s)
- Helen L Waller
- Transplant Surgery Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Herst PM, Berridge MV. Cell surface oxygen consumption: a major contributor to cellular oxygen consumption in glycolytic cancer cell lines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1767:170-7. [PMID: 17266920 DOI: 10.1016/j.bbabio.2006.11.018] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 11/23/2006] [Accepted: 11/29/2006] [Indexed: 01/09/2023]
Abstract
Oxygen consumption for bioenergetic purposes has long been thought to be the prerogative of mitochondria. Nevertheless, mitochondrial gene knockout (rho(0)) cells that are defective in mitochondrial respiration require oxygen for growth and consume oxygen at the cell surface via trans-plasma membrane electron transport (tPMET). This raises the possibility that cell surface oxygen consumption may support glycolytic energy metabolism by reoxidising cytosolic NADH to facilitate continued glycolysis. In this paper we determined the extent of cell surface oxygen consumption in a panel of 19 cancer cell lines. Non-mitochondrial (myxothiazol-resistant) oxygen consumption was demonstrated to consist of at least two components, cell surface oxygen consumption (inhibited by extracellular NADH) and basal oxygen consumption (insensitive to both myxothiazol and NADH). The extent of cell surface oxygen consumption varied considerably between parental cell lines from 1% to 80% of total oxygen consumption rates. In addition, cell surface oxygen consumption was found to be associated with low levels of superoxide production and to contribute significantly (up to 25%) to extracellular acidification in HL60rho(0) cells. In summary, cell surface oxygen consumption contributes significantly to total cellular oxygen consumption, not only in rho(0) cells but also in mitochondrially competent tumour cell lines with glycolytic metabolism.
Collapse
Affiliation(s)
- Patries M Herst
- Malaghan Institute of Medical Research, P.O. Box 7060, Wellington, New Zealand.
| | | |
Collapse
|
40
|
Iaccio A, Collinet C, Gesualdi NM, Ammendola R. Protein kinase C-alpha and -delta are required for NADPH oxidase activation in WKYMVm-stimulated IMR90 human fibroblasts. Arch Biochem Biophys 2006; 459:288-94. [PMID: 17166481 DOI: 10.1016/j.abb.2006.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 11/08/2006] [Indexed: 11/22/2022]
Abstract
The regulation of the activation of non phagocytic NADPH oxidase is poorly understood. Previously we demonstrated that in fibroblasts the exposure to WKYMVm induced p47(phox) phosphorylation and translocation and that these effects were mediated by ERKs activation. Protein kinase C (PKC) is reported to be involved in regulating the phosphorylation of NADPH oxidase components in polymorphonucleate cells stimulated via FPRL1 receptor, but its involvement in fibroblasts was not demonstrated. Therefore, we investigated in IMR90 cells exposed to WKYMVm the role of PKC isoenzymes in the activation of NADPH oxidase-like enzyme. Preincubation with general pharmacological inhibitors of PKC, before stimulation with WKYMVm, prevented the ERKs activation, p47(phox) phosphorylation and translocation. The analysis of cellular partitioning of PKC isoenzymes demonstrated that PKCalpha and PKCdelta translocated from the cytosolic to the membrane fraction upon stimulation with WKYMVm. Preincubation with Gö6976 or with rottlerin prevented the phosphorylation and translocation of NADPH oxidase regulatory subunit.
Collapse
|
41
|
|
42
|
Abstract
Reactive oxygen species (ROS) are formed enzymatically, chemically, photochemically, and by irradiation of food. They are also formed by the decomposition and the inter-reactions of ROS. Hydroxy radical is the most reactive ROS, followed by singlet oxygen. Reactions of ROS with food components produce undesirable volatile compounds and carcinogens, destroy essential nutrients, and change the functionalities of proteins, lipids, and carbohydrates. Lipid oxidation by ROS produces low molecular volatile aldehydes, alcohols, and hydrocarbons. ROS causes crosslink or cleavage of proteins and produces low molecular carbonyls from carbohydrates. Vitamins are easily oxidized by ROS, especially singlet oxygen. The singlet oxygen reaction rate was the highest in ss-carotene, followed by tocopherol, riboflavin, vitamin D, and ascorbic acid.
Collapse
Affiliation(s)
- Eunok Choe
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | | |
Collapse
|
43
|
Yagi-Chaves SN, Liu G, Yamashita K, Manabe M, Song SJ, Kodama H. Effect of five triterpenoid compounds isolated from root bark of Aralia elata on stimulus-induced superoxide generation, tyrosyl or serine/threonine phosphorylation and translocation of p47(phox), p67(phox), and rac to cell membrane in human neutrophils. Arch Biochem Biophys 2006; 446:84-90. [PMID: 16405902 DOI: 10.1016/j.abb.2005.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/02/2005] [Accepted: 11/14/2005] [Indexed: 11/17/2022]
Abstract
Five triterpenoids; Congmuyanoside V, X, XI, XII, and XV (Cong. V, X, XI, XII, and XV) were isolated from the root bark of Aralia elata. The effect of these triterpenoids on stimulus-induced superoxide generation in human neutrophils was assayed by measuring the reduction of ferricytochrome c (cyt. c) using a dual-beam spectrophotometer. Translocation of p47(phox), p67(phox), and rac to the cell membrane and tyrosyl or serine/threonine phosphorylation of neutrophil proteins were investigated using specific monoclonal antibodies. The five triterpenoids used in the present experiment significantly suppressed N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced superoxide generation in concentration-dependent manner. Congmuyanoside V, XII, and XV also suppressed arachidonic acid (AA)-induced superoxide generation in high concentration. However, these triterpenoids showed no effect on phorbol 12-myristate 13-acetate (PMA)-induced superoxide generation. fMLP- and AA-induced tyrosyl phosphorylation and translocation of the cytosolic proteins p47(phox), p67(phox), and rac to the cell membrane were suppressed in parallel with the suppression of the stimulus-induced superoxide generation.
Collapse
Affiliation(s)
- Sachiko N Yagi-Chaves
- Department of Anesthesiology and Critical Care Medicine, Kochi Medical School, Nankoku-shi, Kochi 783-8505, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Loubna Kerkeb
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, USA
| | | |
Collapse
|
45
|
Song CJ, Steinebrunner I, Wang X, Stout SC, Roux SJ. Extracellular ATP induces the accumulation of superoxide via NADPH oxidases in Arabidopsis. PLANT PHYSIOLOGY 2006; 140:1222-32. [PMID: 16428598 PMCID: PMC1435826 DOI: 10.1104/pp.105.073072] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Extracellular ATP can serve as a signaling agent in animal cells, and, as suggested by recent reports, may also do so in plant cells. In animal cells it induces the production of reactive oxygen species through the mediation of NADPH oxidase. Similarly, here we report that in leaves of Arabidopsis (Arabidopsis thaliana), applied ATP, but not AMP or phosphate, induces the accumulation of superoxide (O2-) in a biphasic, dose-dependent manner, with a threshold at 500 nm ATP. This effect did not require ATP hydrolysis for it was mimicked by ATPgammaS. ATP also induced increased levels of Arabidopsis respiratory burst oxidase homolog D (AtrbohD) mRNA, but ATP-treated plants that had disrupted AtrbohD and AtrbohF genes did not accumulate O2-, indicating that NADPH oxidases are responsible for the induced O2- accumulation. Inhibitors of mammalian P2-type ATP receptors abolished ATP-induced O2- production, suggesting that the ATP effects may be mediated through P2-like receptors in plants. Cytosolic Ca2+ and calmodulin are likely to help transduce the ATP responses, as they do in animal cells, because a Ca2+ channel blocker, a Ca2+ chelator, and calmodulin antagonist all reduced ATP-induced O2- accumulation. Furthermore, ATP treatment enhanced the expression of genes that are induced by wounds and other stresses. The ATP measured at wound sites averaged 40 microm, well above the level needed to induce O2- accumulation and gene expression changes. Transgenic plants overexpressing an apyrase gene had reduced O2- production in response to applied ATP and wounding. Together, these data suggest a possible role for extracellular ATP as a signal potentially in wound and stress responses.
Collapse
Affiliation(s)
- Charlotte J Song
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | |
Collapse
|
46
|
Tastekin A, Gepdiremen A, Ors R, Emin Buyukokuroglu M, Halici Z. L-carnitine protects against glutamate- and kainic acid-induced neurotoxicity in cerebellar granular cell culture of rats. Brain Dev 2005; 27:570-3. [PMID: 16310592 DOI: 10.1016/j.braindev.2005.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 02/15/2005] [Accepted: 02/15/2005] [Indexed: 11/20/2022]
Abstract
Glutamate mediated intracellular calcium accumulation and free radical generation are thought to be major mechanisms that contribute to cell death in hypoxic-ischemic brain injury. For this reason, various glutamate receptor antagonists and antioxidants have been investigated for their therapeutic potential. To assess whether L-carnitine, a possible antioxidant, is able to prevent glutamate- and kainic acid (KA)-induced neurotoxicity. Glutamate (10(-7) M) and one of its receptor agonists, KA (10(-4) M) were administered to cerebellar granular cell cultures that were prepared from 1-day-old Sprague-Dawley rats. The neuroprotective effect of L-carnitine was examined. L-carnitine at doses of 10(-6), 10(-5), 10(-4), 10(-3) M was applied to culture flasks. L-carnitine at doses of 10(-4) and 10(-3) M significantly blocked glutamate-induced neurotoxicity. 10(-4) M dose of L-carnitine proved to be more effective than 10(-3)M. L-carnitine also blocked KA-induced neurotoxicity only at the dose of 10(-4) M. 10(-4) M L-carnitine, the most effective dose in both glutamate- and KA-induced neurotoxicity, decreased glutamate-induced neuronal cell death from 36.14+/-2.95% to 17.59+/-2.25%; (P<0.001) and KA-induced neuronal cell death from 21.4+/-0.41 to 13.4+/-1.38%; (P<0.001). The present study demonstrates that L-carnitine protects against glutamate- and KA-induced neurotoxicity. Protective effect of L-carnitine may result from its antioxidant activity because free radical generation is a common result in either glutamate- or KA-induced neurotoxicity. L-carnitine merits further investigation as a therapeutic option in hypoxic-ischemic brain injury of newborn.
Collapse
Affiliation(s)
- Ayhan Tastekin
- Division of Neonatology, School of Medicine, Atatürk University Erzurum, Turkey
| | | | | | | | | |
Collapse
|
47
|
Bergin D, Reeves EP, Renwick J, Wientjes FB, Kavanagh K. Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 2005; 73:4161-70. [PMID: 15972506 PMCID: PMC1168619 DOI: 10.1128/iai.73.7.4161-4170.2005] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The insect immune response has a number of structural and functional similarities to the innate immune response of mammals. The objective of the work presented here was to establish the mechanism by which insect hemocytes produce superoxide and to ascertain whether the proteins involved in superoxide production are similar to those involved in the NADPH oxidase-induced superoxide production in human neutrophils. Hemocytes of the greater wax moth (Galleria mellonella) were shown to be capable of phagocytosing bacterial and fungal cells. The kinetics of phagocytosis and microbial killing were similar in the insect hemocytes and human neutrophils. Superoxide production and microbial killing by both cell types were inhibited in the presence of the NADPH oxidase inhibitor diphenyleneiodonium chloride. Immunoblotting of G. mellonella hemocytes with antibodies raised against human neutrophil phox proteins revealed the presence of proteins homologous to gp91phox, p67phox, p47phox, and the GTP-binding protein rac 2. A protein equivalent to p40phox was not detected in insect hemocytes. Immunofluorescence analysis localized insect 47-kDa and 67-kDa proteins throughout the cytosol and in the perinuclear region. Hemocyte 67-kDa and 47-kDa proteins were immunoprecipitated and analyzed by matrix-assisted laser desorption ionization--time of flight analysis. The results revealed that the hemocyte 67-kDa and 47-kDa proteins contained peptides matching those of p67phox and p47phox of human neutrophils. The results presented here indicate that insect hemocytes phagocytose and kill bacterial and fungal cells by a mechanism similar to the mechanism used by human neutrophils via the production of superoxide. We identified proteins homologous to a number of proteins essential for superoxide production in human neutrophils and demonstrated that significant regions of the 67-kDa and 47-kDa insect proteins are identical to regions of the p67phox and p47phox proteins of neutrophils.
Collapse
Affiliation(s)
- David Bergin
- Medical Mycology Unit, National Institute of Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | | | | | | | | |
Collapse
|
48
|
van Manen HJ, Kraan YM, Roos D, Otto C. Single-cell Raman and fluorescence microscopy reveal the association of lipid bodies with phagosomes in leukocytes. Proc Natl Acad Sci U S A 2005; 102:10159-64. [PMID: 16002471 PMCID: PMC1177376 DOI: 10.1073/pnas.0502746102] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular imaging techniques based on vibrational spectroscopy have become powerful tools in cell biology because the molecular composition of subcellular compartments can be visualized without the need for labeling. Using high-resolution, nonresonant confocal Raman microscopy on individual cells, we demonstrate here that lipid bodies (LBs) rich in arachidonate as revealed by their Raman spectra associate with latex bead-containing phagosomes in neutrophilic granulocytes. This finding was corroborated in macrophages and in PLB-985 cells, which can be induced to differentiate into neutrophil-like cells, by selective staining of LBs and visualization by confocal fluorescence microscopy. We further show that the accumulation of LBs near phagosomes is mediated at least in part by the flavohemoprotein gp91phox (in which "phox" is phagocyte oxidase), because different LB distributions around phagocytosed latex beads were observed in WT and gp91phox-deficient PLB-985 cells. gp91phox, which accumulates in the phagosomal membrane, is the catalytic subunit of the leukocyte NADPH oxidase, a critical enzyme in the innate immune response. Finally, time-lapse fluorescence microscopy experiments on neutrophils revealed that the LB-phagosome association is transient, similar to the "kiss-and-run" behavior displayed by endosomes involved in phagosome maturation. Because arachidonic acid (AA) has been shown to be involved in NADPH oxidase activation and phagosome maturation in neutrophils and macrophages, respectively, the findings reported here suggest that LBs may provide a reservoir of AA for local activation of these essential leukocyte functions.
Collapse
Affiliation(s)
- Henk-Jan van Manen
- Biophysical Engineering Group, Faculty of Science and Technology, Institute for Biomedical Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | |
Collapse
|
49
|
Baker MA, Krutskikh A, Curry BJ, Hetherington L, Aitken RJ. Identification of cytochrome-b5 reductase as the enzyme responsible for NADH-dependent lucigenin chemiluminescence in human spermatozoa. Biol Reprod 2005; 73:334-42. [PMID: 15858218 DOI: 10.1095/biolreprod.104.037960] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Lucigenin-dependent chemiluminescence together with 2-[4-iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H tetrazolium monosodium salt (WST-1) reduction can be detected following addition of NADH to many cell types, including human sperm suspensions. Although many reports suggest that such a phenomenon is due to reactive oxygen species production, other oxygen detecting metabolite probes, such as MCLA and luminol, do not produce a chemiluminescent signal in this model system. The enzyme responsible for NADH-dependent lucigenin chemiluminescence was purified and identified as cytochrome-b5 reductase. In support of this concept, COS-7 cells overexpressing cytochrome-b5 reductase displayed at least a 3-fold increase in the previously mentioned activity compared with mock-transfected cells. Fractions containing cytochrome-b5 reductase were capable of inducing both lucigenin-dependent chemiluminescence and WST-1 reduction. Oxygen radicals clearly did not mediate the cytochrome b5-mediated activation of these probes in vitro since neither luminol nor MCLA gave a chemiluminescence response in the presence of the enzyme and the cofactor NADH. These results emphasize the importance of the direct NADH-dependent reduction of these putative superoxide-sensitive probes by cytochrome-b5 reductase even though this enzyme does not, on its own accord, produce reactive oxygen species.
Collapse
Affiliation(s)
- Mark A Baker
- The ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Sciences, and Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | | | | | | | |
Collapse
|
50
|
Brecht M, Sewald K, Schiene K, Keen G, Fricke M, Sauer M, Niehaus K. The use of surface plasmon resonance (SPR) and fluorescence resonance energy transfer (FRET) to monitor the interaction of the plant G-proteins Ms-Rac1 and Ms-Rac4 with GTP. J Biotechnol 2005; 112:151-64. [PMID: 15288950 DOI: 10.1016/j.jbiotec.2004.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 03/19/2004] [Accepted: 04/01/2004] [Indexed: 10/26/2022]
Abstract
Using an RT-PCR approach a cDNA clone, designated Ms-Rac4 and putatively coding for a small GTPase was isolated from Medicago sativa. Ms-Rac4 and the earlier described Ms-Rac1 [Mol. Gen. Genet. 263 (2000) 761] belong to the class of GTP-binding Rho of plants (Rop) proteins. At the amino acid level they display all conserved regions that are common to GTP-binding proteins. Phylogenetically both are located in the group Ia, but within this group they are well-separated. Computed structure models of both proteins revealed a high degree of structural conservation. Particularly the switch I and switch II region are 100% conserved between Ms-Rac1 and Ms-Rac4 and highly conserved as compared to other Rac-like G-proteins. Both GTPases differ in structure within the fourth loop and the fourth helix. GTP-binding properties of the heterologously expressed Ms-Rac1 and Ms-Rac4 was shown by fluorescence resonance energy transfer (FRET) using mantGTP and by surface plasmon resonance (SPR). By this method the specificity of the G-protein/GTP interaction was shown and the inhibitory effect of GTP, EDTA and Mg(2+) on the Ms-Rac1 and Ms-Rac4 binding to immobilized GTP was characterized. Ms-Rac1 and Ms-Rac4 exhibited the same affinity to GTP and are similarly affected by GTP, EDTA and Mg(2+). Thus, the predicted structural differences do not result in different GTP-binding properties of Ms-Rac1 and Ms-Rac4.
Collapse
Affiliation(s)
- Martina Brecht
- Faculty of Biology, Genetics, University of Bielefeld, D-33501 Bielefeld, Germany
| | | | | | | | | | | | | |
Collapse
|