1
|
Mezzetti A, Leibl W, Johnson JA, Beatty JT. Monitoring molecular events during photo-driven ubiquinone pool reduction in PufX + and PufX - membranes from Rhobobacter capsulatus by time-resolved FTIR difference spectroscopy. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109139. [PMID: 39357196 DOI: 10.1016/j.plaphy.2024.109139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/21/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
The PufX protein is found in the photosynthetic membranes of several purple bacteria and is involved in ubiquinol-ubiquinone exchange at the QB site of the reaction center. We have studied quinone pool reduction in chromatophores from PufX+ and PufX- strains of Rhodobacter capsulatus by time-resolved FTIR difference spectroscopy under and after continuous illumination. To our knowledge, it is the first time that quinone pool reduction has been directly followed in real time in Rba. capsulatus membranes. Thanks to the availability in the literature of IR marker bands for protein conformational changes, ubiquinone consumption, ubiquinol production, Q---QH2 quinhydrone complex formation, as well as for RC-bound QA- and QB- semiquinone species, it is possible to follow all the molecular events associated with light-induced quinone pool reduction. In Rba. capsulatus PufX + chromatophores, these events resemble the ones found in Rba. sphaeroides wild-type membranes. In PufX- chromatophores the situation is different. Spectra recorded during 22.7 s of illumination showed a much smaller amount of photoreduced quinol, consistent with previous observations that PufX is required for efficient QH2/Q exchange at the QB site of the RC. Q consumption and QH2 formation are rapidly associated with QA- formation, showing that the structure of the RC-LH1 complex in PufX- membranes does not provide efficient access to the QB site of the RC to a large fraction of the quinone pool, evidently because the LH1 ring increases in size to impair access to the RC. The presence of a positive band at 1560 cm-1 suggests also the transient formation, in a fraction of chromatophores or of RC-LH1 complexes, of a Q---QH2 quinhydrone complex. Experiments carried out after 2-flash and 10-flash sequences make it possible to estimate that the size of the quinone pool with access to the QB site in PufX- membranes is ≥ 5 ubiquinone molecules per RC. The results are discussed in the framework of the current knowledge of protein organization and quinone pool reduction in bacterial photosynthetic membranes.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Université, Laboratoire de Réactivité de Surface, Paris, France; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jeanette A Johnson
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| | - J Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
2
|
Darole RS, Choudhary SS, Sharma H, Mali BP, Gopu B, Vanka K, Senthilkumar B. Brønsted acid- and Ni(II)-catalyzed C-H oxidation/rearrangement of cyclotriveratrylenes (CTVs) to cyclic and acyclic quinones as potential anti-cancer agents. Org Biomol Chem 2024; 22:1038-1046. [PMID: 38197499 DOI: 10.1039/d3ob01428b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.
Collapse
Affiliation(s)
- Ratanamala S Darole
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Shailendra Singh Choudhary
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Himanshu Sharma
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Bhupendra P Mali
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Booblan Gopu
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-18000, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Kumar Vanka
- Physical/Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.
- Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
3
|
Kiriyanthan RM, Radha A, Pandikumar P, Azhahianambi P, Madan N, Ignacimuthu S. Growth inhibitory effect of selected quinones from Indian medicinal plants against Theileria annulata. Exp Parasitol 2023; 254:108622. [PMID: 37758051 DOI: 10.1016/j.exppara.2023.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Tropical Bovine Theileriosis, caused by the protozoan parasite Theileria annulata, poses a significant threat to cattle populations. Currently, Buparvaquone is the sole effective naphthoquinone drug commercially available for its treatment. In our research, we delved into the potential of naturally occurring quinones as alternative treatments. We isolated two quinones, emodin and chrysophanol, from Rheum emodi Wall, and two more, embelin and lawsone, from Embelia ribes Burm.f. and Lawsonia inermis L. respectively. We assessed the anti-Theileria efficacy of these quinones in vitro using MTT and flow cytometric assays on T. annulata-infected bovine lymphocytes. Additionally, we evaluated their safety on uninfected bovine Peripheral Blood Mononuclear Cells (PBMC) and Vero cells. Emodin emerged as a promising candidate, exhibiting an IC50 value of 4 μM, surpassing that of buparvaquone. Emodin also displayed relatively low LD50 values of 1.74 mM against uninfected PBMC and 0.87 mM against Vero cells, suggesting potential safety. Remarkably, emodin demonstrated a high cell absorption rate of 71.32%. While emodin's efficacy and bioavailability are encouraging, further research is imperative to validate its safety and effectiveness for treating Tropical Bovine Theileriosis.
Collapse
Affiliation(s)
- Rose Mary Kiriyanthan
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India
| | - A Radha
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, 600108, India.
| | - Perumal Pandikumar
- Xavier Research Foundation, St Xavier's College, Palayamkottai, Tamil Nadu, 627 002, India
| | - Palavesam Azhahianambi
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | - N Madan
- Translational Research Platform for Veterinary Biologicals, Centre for Animal Health Studies, Tamil Nadu Veterinary and Animal Sciences University, Chennai, 600 051, India
| | | |
Collapse
|
4
|
Agarwala N, Rohani L, Hastings G. Experimental and calculated infrared spectra of disubstituted naphthoquinones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120674. [PMID: 34894562 DOI: 10.1016/j.saa.2021.120674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
In recent years there has been interest in incorporating substituted 1,4-naphthoquinones (NQs) into the A1 binding site in photosystem I (PSI) photosynthetic protein complexes. This interest in part stems from the considerably altered bioenergetics of electron transfer that occur in PSI with such substitutions. Time resolved FTIR studies of PSI complexes with disubstituted NQs incorporated have and currently are being undertaken, and with this in mind it is worth considering FTIR absorption spectra of these disubstituted NQs in solution. Here we present FTIR absorbance spectra for 2-bromo-3-methyl-1,4-naphthoquinone (BrMeNQ), 2-chloromethyl-3-methyl-1,4-naphthoquinone (CMMeNQ) and 2-ethylthio-3-methyl-1,4-naphthoquinone (ETMeNQ) in tetrahydrofuran (THF). The FTIR spectra of these di-substituted naphthoquinones (NQs) were compared to FTIR spectra of 2-methyl-3-phytyl-1,4-naphthoquinone [phylloquinone (PhQ)], 2,3-dimethyl-1,4-naphthoquinone (DMNQ), and 2-methyl-1,4-naphthoquinone (2MNQ). To aid in the assignment of bands in the experimental spectra, density functional theory (DFT) based vibrational frequency calculations for all the substituted NQs in solution were undertaken. The calculated and experimental spectra agree well. By calculating normal mode potential energy distributions, unambiguous quantitative band assignments were made. The calculated and experimental spectra together make predictions about what may be observable in time resolved FTIR difference spectra obtained using PSI with the different NQs incorporated. Time resolved FTIR difference spectra are presented that support these predictions.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Leyla Rohani
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
5
|
Mohamed Abdelmoniem A, Abdelshafy Abdelhamid I, Butenschön H. Bidirectional Synthesis, Photophysical and Electrochemical Characterization of Polycyclic Quinones Using Benzocyclobutenes and Benzodicyclobutenes as Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amr Mohamed Abdelmoniem
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
- Department of Chemistry Faculty of Science Cairo University 12613 Giza A. R. Egypt
| | | | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
6
|
Nain-Perez A, Barbosa LCA, Rodríguez-Hernández D, Mota YCC, Silva TF, Ramalho TC, Modolo LV. Antiureolytic Activity of Substituted 2,5-Diaminobenzoquinones. Chem Biodivers 2019; 16:e1900503. [PMID: 31660678 DOI: 10.1002/cbdv.201900503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023]
Abstract
A series of 2,5-bis(alkyl/arylamino)-1,4-benzoquinones (1-12) were investigated in vitro for their potential to inhibit the activity of jack bean urease. Compounds 1-6, 8, 9, 11 and 12 effectively inhibited the jack bean urease activity by 90.8 % when tested at 5 μm, whereas 7 and 10 had relatively little effect. The IC50 for most compounds was in the nanomolar range (31.4 nm and 36.0 nm for 2 and 8, respectively). The mechanism of enzyme inhibition shown by 2 and 8 is typical of mixed-type inhibitors, whose affinity for the active site is over 6- and 2-fold higher (Ki =30.0 and 22.8 nm, for 2 and 8, respectively) than that of an allosteric site. Molecular docking studies revealed that both 2 and 8 establish hydrogen bonds with the amino acids residues Asp494, Met588, His593 and Ala636 in the active site of jack bean urease. These results indicate that such aminoquinones are useful leads for the development of more efficient urease inhibitors of wider utility.
Collapse
Affiliation(s)
- Amalyn Nain-Perez
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Luiz C A Barbosa
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil.,Department of Chemistry, Universidade Federal de Viçosa, Av. P. H. Rofls, s/n, 36570-000, Viçosa, MG, Brazil
| | - Diego Rodríguez-Hernández
- Department of Chemistry, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Yane C C Mota
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Thamara F Silva
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Teodorico C Ramalho
- Department of Chemistry, Campus Universitário, Universidade Federal de Lavras, 37200-000, Lavras, MG, Brazil
| | - Luzia V Modolo
- Departamento de Botânica, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Calculated vibrational properties of semiquinones in the A1 binding site in photosystem I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:699-707. [DOI: 10.1016/j.bbabio.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/17/2022]
|
8
|
Mathis P, Nabedryk E, Verméglio A. Tribute in memory of Jacques Breton (1942-2018). PHOTOSYNTHESIS RESEARCH 2019; 140:263-274. [PMID: 30712213 DOI: 10.1007/s11120-019-00618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Jacques Breton spent his 39 years of professional life at Saclay, a center of the French Atomic Energy Commission. He studied photosynthesis with various advanced biophysical tools, often developed by himself and his numerous coworkers, obtaining a large number of new information on the structure and the functioning of antenna and of reaction centers of plants and bacteria: excitation migration in the antenna, orientation of molecules, rate of primary reactions, binding of pigments and electron transfer cofactors. Although it is much too short to illustrate his impressive work, we hope that this contribution will help maintaining the souvenir of Jacques Breton as an active and enthusiastic person, full of qualities, devoted to research and to his family as well. We include personal comments from N. E. Geacintov, A. Dobek, W. Leibl, M. Vos and W. W. Parson.
Collapse
Affiliation(s)
- Paul Mathis
- Section de Bioénergétique, CEA Saclay, 91191, Gif-sur-Yvette, France.
| | - Eliane Nabedryk
- Service de Bioénergétique Biologie Structurale et Mécanismes, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - André Verméglio
- Laboratoire de Bioénergétique Cellulaire, CEA Cadarache, 13108, Saint-Paul-lez-Durance, France
| |
Collapse
|
9
|
Mezzetti A, Leibl W. Time-resolved infrared spectroscopy in the study of photosynthetic systems. PHOTOSYNTHESIS RESEARCH 2017; 131:121-144. [PMID: 27678250 DOI: 10.1007/s11120-016-0305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
Time-resolved (TR) infrared (IR) spectroscopy in the nanosecond to second timescale has been extensively used, in the last 30 years, in the study of photosynthetic systems. Interesting results have also been obtained at lower time resolution (minutes or even hours). In this review, we first describe the used techniques-dispersive IR, laser diode IR, rapid-scan Fourier transform (FT)IR, step-scan FTIR-underlying the advantages and disadvantages of each of them. Then, the main TR-IR results obtained so far in the investigation of photosynthetic reactions (in reaction centers, in light-harvesting systems, but also in entire membranes or even in living organisms) are presented. Finally, after the general conclusions, the perspectives in the field of TR-IR applied to photosynthesis are described.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7197, Laboratoire de Réactivité de Surfaces, 4 Pl. Jussieu, 75005, Paris, France.
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| | - Winfried Leibl
- Institut de Biologie Intégrative de la Cellule (I2BC), IBITECS, CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette, France
| |
Collapse
|
10
|
Hellwig P. Infrared spectroscopic markers of quinones in proteins from the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:126-33. [PMID: 25026472 DOI: 10.1016/j.bbabio.2014.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/12/2023]
Abstract
In bioenergetic systems quinones play a central part in the coupling of electron and proton transfer. The specific function of each quinone binding site is based on the protein-quinone interaction that can be described by means of reaction induced FTIR difference spectroscopy, induced for example by light or electrochemically. The identification of sites in enzymes from the respiratory chain is presented together with the analysis of the accommodation of different types of quinones to the same enzyme and the possibility to monitor the interaction with inhibitors. Reaction induced FTIR difference spectroscopy is shown to give an essential information on the general geometry of quinone binding sites, the conformation of the ring and of the substituents as well as essential structural information on the identity of the amino-acid residues lining this site. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Petra Hellwig
- Laboratoire de bioélectrochimie et spectroscopie, UMR 7140, Chimie de la matière complexe, Université de Strasbourg, 1, rue Blaise Pascal, 67008 Strasbourg, France.
| |
Collapse
|
11
|
Ashizawa R, Noguchi T. Effects of hydrogen bonding interactions on the redox potential and molecular vibrations of plastoquinone as studied using density functional theory calculations. Phys Chem Chem Phys 2014; 16:11864-76. [DOI: 10.1039/c3cp54742f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zhao N, Lamichhane HP, Hastings G. Comparison of calculated and experimental isotope edited FTIR difference spectra for purple bacterial photosynthetic reaction centers with different quinones incorporated into the QA binding site. FRONTIERS IN PLANT SCIENCE 2013; 4:328. [PMID: 24009618 PMCID: PMC3757576 DOI: 10.3389/fpls.2013.00328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Previously we have shown that ONIOM type (QM/MM) calculations can be used to simulate isotope edited FTIR difference spectra for neutral ubiquinone in the QA binding site in Rhodobacter sphaeroides photosynthetic reaction centers. Here we considerably extend upon this previous work by calculating isotope edited FTIR difference spectra for reaction centers with a variety of unlabeled and (18)O labeled foreign quinones incorporated into the QA binding site. Isotope edited spectra were calculated for reaction centers with 2,3-dimethoxy-5,6-dimethyl-1,4-benzoquinone (MQ0), 2,3,5,6-tetramethyl-1, 4-benzoquinone (duroquinone, DQ), and 2,3-dimethyl-l,4-naphthoquinone (DMNQ) incorporated, and compared to corresponding experimental spectra. The calculated and experimental spectra agree well, further demonstrating the utility and applicability of our ONIOM approach for calculating the vibrational properties of pigments in protein binding sites. The normal modes that contribute to the bands in the calculated spectra, their composition, frequency, and intensity, and how these quantities are modified upon (18)O labeling, are presented. This computed information leads to a new and more detailed understanding/interpretation of the experimental FTIR difference spectra. Hydrogen bonding to the carbonyl groups of the incorporated quinones is shown to be relatively weak. It is also shown that there is some asymmetry in hydrogen bonding, accounting for 10-13 cm(-1) separation in the frequencies of the carbonyl vibrational modes of the incorporated quinones. The extent of asymmetry in H-bonding could only be established by considering the spectra for various types of quinones incorporated into the QA binding site. The quinones listed above are "tail-less." Spectra were also calculated for reaction centers with corresponding "tail" containing quinones incorporated, and it is found that replacement of the quinone methyl group by a phytyl or prenyl chain does not alter ONIOM calculated spectra.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University Atlanta, GA, USA
| | | | | |
Collapse
|
13
|
Zhao N, Hastings G. On the Nature of the Hydrogen Bonds to Neutral Ubiquinone in the QA Binding Site in Purple Bacterial Photosynthetic Reaction Centers. J Phys Chem B 2013; 117:8705-13. [DOI: 10.1021/jp403833y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nan Zhao
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
14
|
Taguchi AT, O'Malley PJ, Wraight CA, Dikanov SA. Conformational differences between the methoxy groups of QA and QB site ubisemiquinones in bacterial reaction centers: a key role for methoxy group orientation in modulating ubiquinone redox potential. Biochemistry 2013; 52:4648-55. [PMID: 23745576 DOI: 10.1021/bi400489b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ubiquinone is an almost universal, membrane-associated redox mediator. Its ability to accept either one or two electrons allows it to function in critical roles in biological electron transport. The redox properties of ubiquinone in vivo are determined by its environment in the binding sites of proteins and by the dihedral angle of each methoxy group relative to the ring plane. This is an attribute unique to ubiquinone among natural quinones and could account for its widespread function with many different redox complexes. In this work, we use the photosynthetic reaction center as a model system for understanding the role of methoxy conformations in determining the redox potential of the ubiquinone/semiquinone couple. Despite the abundance of X-ray crystal structures for the reaction center, quinone site resolution has thus far been too low to provide a reliable measure of the methoxy dihedral angles of the primary and secondary quinones, QA and QB. We performed 2D ESEEM (HYSCORE) on isolated reaction centers with ubiquinones (13)C-labeled at the headgroup methyl and methoxy substituents, and have measured the (13)C isotropic and anisotropic components of the hyperfine tensors. Hyperfine couplings were compared to those derived by DFT calculations as a function of methoxy torsional angle allowing estimation of the methoxy dihedral angles for the semiquinones in the QA and QB sites. Based on this analysis, the orientation of the 2-methoxy groups are distinct in the two sites, with QB more out of plane by 20-25°. This corresponds to an ≈50 meV larger electron affinity for the QB quinone, indicating a substantial contribution to the experimental difference in redox potentials (60-75 mV) of the two quinones. The methods developed here can be readily extended to ubiquinone-binding sites in other protein complexes.
Collapse
Affiliation(s)
- Alexander T Taguchi
- Center for Biophysics and Computational Biology, §Department of Biochemistry, and ‡Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | | | | | | |
Collapse
|
15
|
Abstract
Density functional theory has been used to calculate harmonic normal mode vibrational frequencies for unlabeled and isotope-labeled ubisemiquinones in both the gas phase and in several solvents. It is shown that four methoxy group conformations are likely to be present in solution at room temperature. Boltzmann weighted infrared and Raman spectra for the four conformers were calculated, and composite spectra that are the sum of the Boltzmann weighted spectra were produced. These composite spectra were compared to experimental FTIR and resonance Raman spectra, and it is shown that the calculated band frequencies, relative band intensities, and C13 and O18 isotope-induced band shifts are in excellent agreement with experiment. The calculations show that the C=O and C=C modes of ubisemiquinone strongly mix with methoxy methyl CH bending vibrations, and that the degree of mixing is altered upon isotope labeling, resulting in complicated changes in mode frequencies, intensities, and composition upon isotope labeling. Upon consideration of the calculated potential energy distributions of the normal modes of ubisemiquinone, and how they change upon isotope labeling, an explanation of some puzzling features in previously published Raman spectra is provided.
Collapse
|
16
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Calculated vibrational properties of pigments in protein binding sites. Proc Natl Acad Sci U S A 2011; 108:10526-31. [PMID: 21670247 DOI: 10.1073/pnas.1104046108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
FTIR difference spectroscopy is widely used to probe molecular bonding interactions of protein-bound electron transfer cofactors. The technique is particularly attractive because it provides information on both neutral and radical cofactor states. Such dual information is not easily obtainable using other techniques. Although FTIR difference spectroscopy has been used to study cofactors in biological protein complexes, in nearly all cases interpretation of the spectra has been purely qualitative. Virtually no computational work has been undertaken in an attempt to model the spectra. To address this problem we have developed the use of ONIOM (our own N-layered integrated molecular Orbital + Molecular mechanics package) (quantum mechanical:molecular mechanics) methods to calculate FTIR difference spectra associated with protein-bound cofactors. As a specific example showing the utility of the approach we have calculated isotope edited FTIR difference spectra associated with unlabeled and labeled ubiquinones in the Q(A) binding site in Rhodobacter sphaeroides photosynthetic reaction centers. The calculated spectra are in remarkable agreement with experiment. Such agreement cannot be obtained by considering ubiquinone molecules in the gas phase or in solution. A calculation including the protein environment is required. The ONIOM calculated spectra agree well with experiment but indicate a very different interpretation of the experimental data compared to that proposed previously. In particular the calculations do not predict that one of the carbonyl groups of Q(A) is very strongly hydrogen bonded. We show that a computational-based interpretation of FTIR difference spectra associated with protein-bound cofactors is now possible. This approach will be applicable to FTIR studies of many cofactor-containing proteins.
Collapse
|
18
|
Burggraf F, Koslowski T. The simulation of interquinone charge transfer in a bacterial photoreaction center highlights the central role of a hydrogen-bonded non-heme iron complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:53-8. [DOI: 10.1016/j.bbabio.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 08/02/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
|
19
|
Mezzetti A, Blanchet L, de Juan A, Leibl W, Ruckebusch C. Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Anal Bioanal Chem 2010; 399:1999-2014. [DOI: 10.1007/s00216-010-4325-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 11/24/2022]
|
20
|
Bao D, Ramu S, Contreras A, Upadhyayula S, Vasquez JM, Beran G, Vullev VI. Electrochemical Reduction of Quinones: Interfacing Experiment and Theory for Defining Effective Radii of Redox Moieties. J Phys Chem B 2010; 114:14467-79. [DOI: 10.1021/jp101730e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Duoduo Bao
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Sangeetha Ramu
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Antonio Contreras
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Srigokul Upadhyayula
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Jacob M. Vasquez
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Gregory Beran
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
21
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. An investigation of slow charge separation in a Tyrosine M210 to Tryptophan mutant of the Rhodobacter sphaeroides reaction center by femtosecond mid-infrared spectroscopy. Phys Chem Chem Phys 2010; 12:2693-705. [DOI: 10.1039/b905934b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Maréchal A, Kido Y, Kita K, Moore AL, Rich PR. Three redox states of Trypanosoma brucei alternative oxidase identified by infrared spectroscopy and electrochemistry. J Biol Chem 2009; 284:31827-33. [PMID: 19767647 DOI: 10.1074/jbc.m109.059980] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrochemistry coupled with Fourier transform infrared (IR) spectroscopy was used to investigate the redox properties of recombinant alternative ubiquinol oxidase from Trypanosoma brucei, the organism responsible for African sleeping sickness. Stepwise reduction of the fully oxidized resting state of recombinant alternative ubiquinol oxidase revealed two distinct IR redox difference spectra. The first of these, signal 1, titrates in the reductive direction as an n = 2 Nernstian component with an apparent midpoint potential of 80 mV at pH 7.0. However, reoxidation of signal 1 in the same potential range under anaerobic conditions did not occur and only began with potentials in excess of 500 mV. Reoxidation by introduction of oxygen was also unsuccessful. Signal 1 contained clear features that can be assigned to protonation of at least one carboxylate group, further perturbations of carboxylic and histidine residues, bound ubiquinone, and a negative band at 1554 cm(-1) that might arise from a radical in the fully oxidized protein. A second distinct IR redox difference spectrum, signal 2, appeared more slowly once signal 1 had been reduced. This component could be reoxidized with potentials above 100 mV. In addition, when both signals 1 and 2 were reduced, introduction of oxygen caused rapid oxidation of both components. These data are interpreted in terms of the possible active site structure and mechanism of oxygen reduction to water.
Collapse
Affiliation(s)
- Amandine Maréchal
- Glynn Laboratory of Bioenergetics, Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Pawlowicz NP, van Stokkum IHM, Breton J, van Grondelle R, Jones MR. Identification of the intermediate charge-separated state P+betaL- in a leucine M214 to histidine mutant of the Rhodobacter sphaeroides reaction center using femtosecond midinfrared spectroscopy. Biophys J 2009; 96:4956-65. [PMID: 19527655 DOI: 10.1016/j.bpj.2009.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/25/2009] [Accepted: 03/27/2009] [Indexed: 11/27/2022] Open
Abstract
Energy and electron transfer in a Leu M214 to His (LM214H) mutant of the Rhodobacter sphaeroides reaction center (RC) were investigated by applying time-resolved visible pump/midinfrared probe spectroscopy at room temperature. This mutant replacement of the Leu at position M214 resulted in the incorporation of a bacteriochlorophyll (BChl) in place of the native bacteriopheophytin in the L-branch of cofactors (denoted betaL). Purified LM214H RCs were excited at 600 nm (unselective excitation), at 800 nm (direct excitation of the monomeric BChl cofactors B(L) and B(M)), and at 860 nm (direct excitation of the primary donor (P) BChl pair (P(L)/P(M))). Absorption changes associated with carbonyl (C=O) stretch vibrational modes (9-keto, 10a-ester, and 2a-acetyl) of the cofactors and of the protein were recorded in the region between 1600 cm(-1) and 1770 cm(-1), and the data were subjected to both a sequential analysis and a simultaneous target analysis. After photoexcitation of the LM214H RC, P* decayed on a timescale of approximately 6.3 ps to P+BL-. The decay of P+BL- occurred with a lifetime of approximately 2 ps, approximately 3 times slower than that observed in wild-type and R-26 RCs (approximately 0.7 ps). Further electron transfer to the betaL BChl resulted in formation of the P+betaL- state, and its infrared absorbance difference spectrum is reported for the first time, to our knowledge. The fs midinfrared spectra of P+BL- and P+betaL- showed clear differences related to the different environments of the two BChls in the mutant RC.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Photoreaction centres are Nature's solar batteries. These nanometre-scale power producers are responsible for transducing the energy of sunlight into a form that can be used by biological systems, thereby powering most of the biological activity on the planet. Although to the layman the word 'photosynthesis' is usually associated with green plants, much of our understanding of the molecular basis of biological transduction of light energy has come from studies of purple photosynthetic bacteria. Their RCs (reaction centres) and attendant light-harvesting complexes have been subjected to an intensive spectroscopic scrutiny, coupled with genetic manipulation and structural studies, that has revealed many of the molecular and mechanistic details of biological energy transfer, electron transfer and coupled proton translocation. This review provides a short overview of the structure and mechanism of the purple bacterial RC, focusing in the main on the most heavily studied complex from Rhodobacter sphaeroides.
Collapse
|
25
|
Wraight CA, Gunner MR. The Acceptor Quinones of Purple Photosynthetic Bacteria — Structure and Spectroscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_20] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Nabedryk E, Breton J. Coupling of electron transfer to proton uptake at the QB site of the bacterial reaction center: A perspective from FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1229-48. [DOI: 10.1016/j.bbabio.2008.06.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/26/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
|
27
|
Takano A, Takahashi R, Suzuki H, Noguchi T. Herbicide effect on the hydrogen-bonding interaction of the primary quinone electron acceptor QA in photosystem II as studied by Fourier transform infrared spectroscopy. PHOTOSYNTHESIS RESEARCH 2008; 98:159-167. [PMID: 18425599 DOI: 10.1007/s11120-008-9302-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/31/2008] [Indexed: 05/26/2023]
Abstract
The redox potential of Q(A) in photosystem II (PSII) is known to be lower by approximately 100 mV in the presence of phenolic herbicides compared with the presence of DCMU-type herbicides. In this study, the structural basis underlying the herbicide effects on the Q(A) redox potential was studied using Fourier transform infrared (FTIR) spectroscopy. Light-induced Q(A)(-)/Q(A) FTIR difference spectra of Mn-depleted PSII membranes in the presence of DCMU, atrazine, terbutryn, and bromacil showed a strong CO stretching peak of Q(A)(-) at 1,479 cm(-1), while binding of phenolic herbicides, bromoxynil and ioxynil, induced a small but clear downshift by approximately 1 cm(-1). The CO peak positions and the small frequency difference were reproduced in the S(2)Q(A)(-)/S(1)Q(A) spectra of oxygen-evolving PSII membranes with DCMU and bromoxynil. The relationship of the CO frequency with herbicide species correlated well with that of the peak temperatures of thermoluminescence due to S(2)Q(A)(-) recombination. Density functional theory calculations of model hydrogen-bonded complexes of plastoquinone radical anion showed that the small shift of the CO frequency is consistent with a change in the hydrogen-bond structure most likely as a change in its strength. The Q(A)(-)/Q(A) spectra in the presence of bromoxynil, and ioxynil, which bear a nitrile group in the phenolic ring, also showed CN stretching bands around 2,210 cm(-1). Comparison with the CN frequencies of bromoxynil in solutions suggested that the phenolic herbicides take a phenotate anion form in the Q(B) pocket. It was proposed that interaction of the phenolic C-O(-) with D1-His215 changes the strength of the hydrogen bond between the CO of Q(A) with D2-His214 via the iron-histidine bridge, causing the decrease in the Q(A) redox potential.
Collapse
Affiliation(s)
- Akira Takano
- Institute of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | | | | | | |
Collapse
|
28
|
Pawlowicz NP, van Grondelle R, van Stokkum IHM, Breton J, Jones MR, Groot ML. Identification of the first steps in charge separation in bacterial photosynthetic reaction centers of Rhodobacter sphaeroides by ultrafast mid-infrared spectroscopy: electron transfer and protein dynamics. Biophys J 2008; 95:1268-84. [PMID: 18424493 PMCID: PMC2479572 DOI: 10.1529/biophysj.108.130880] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Time-resolved visible pump/mid-infrared (mid-IR) probe spectroscopy in the region between 1600 and 1800 cm(-1) was used to investigate electron transfer, radical pair relaxation, and protein relaxation at room temperature in the Rhodobacter sphaeroides reaction center (RC). Wild-type RCs both with and without the quinone electron acceptor Q(A), were excited at 600 nm (nonselective excitation), 800 nm (direct excitation of the monomeric bacteriochlorophyll (BChl) cofactors), and 860 nm (direct excitation of the dimer of primary donor (P) BChls (P(L)/P(M))). The region between 1600 and 1800 cm(-1) encompasses absorption changes associated with carbonyl (C=O) stretch vibrational modes of the cofactors and protein. After photoexcitation of the RC the primary electron donor P excited singlet state (P*) decayed on a timescale of 3.7 ps to the state P(+)B(L)(-) (where B(L) is the accessory BChl electron acceptor). This is the first report of the mid-IR absorption spectrum of P(+)B(L)(-); the difference spectrum indicates that the 9-keto C=O stretch of B(L) is located around 1670-1680 cm(-1). After subsequent electron transfer to the bacteriopheophytin H(L) in approximately 1 ps, the state P(+)H(L)(-) was formed. A sequential analysis and simultaneous target analysis of the data showed a relaxation of the P(+)H(L)(-) radical pair on the approximately 20 ps timescale, accompanied by a change in the relative ratio of the P(L)(+) and P(M)(+) bands and by a minor change in the band amplitude at 1640 cm(-1) that may be tentatively ascribed to the response of an amide C=O to the radical pair formation. We conclude that the drop in free energy associated with the relaxation of P(+)H(L)(-) is due to an increased localization of the electron hole on the P(L) half of the dimer and a further consequence is a reduction in the electrical field causing the Stark shift of one or more amide C=O oscillators.
Collapse
Affiliation(s)
- Natalia P Pawlowicz
- Faculty of Sciences, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Wraight CA, Vakkasoglu AS, Poluektov Y, Mattis AJ, Nihan D, Lipshutz BH. The 2-methoxy group of ubiquinone is essential for function of the acceptor quinones in reaction centers from Rba. sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:631-6. [DOI: 10.1016/j.bbabio.2008.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 04/15/2008] [Indexed: 11/25/2022]
|
30
|
Breton J, Lavergne J, Wakeham MC, Nabedryk E, Jones MR. The Unusually Strong Hydrogen Bond between the Carbonyl of QAand His M219 in theRhodobacter sphaeroidesReaction Center Is Not Essential for Efficient Electron Transfer from QA-to QB. Biochemistry 2007; 46:6468-76. [PMID: 17497939 DOI: 10.1021/bi700057f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In native reaction centers (RCs) from photosynthetic purple bacteria the primary quinone (QA) and the secondary quinone (QB) are interconnected via a specific His-Fe-His bridge. In Rhodobacter sphaeroides RCs the C4=O carbonyl of QA forms a very strong hydrogen bond with the protonated Npi of His M219, and the Ntau of this residue is in turn coordinated to the non-heme iron atom. The second carbonyl of QA is engaged in a much weaker hydrogen bond with the backbone N-H of Ala M260. In previous work, a Trp side chain was introduced by site-directed mutagenesis at the M260 position in the RC of Rb. sphaeroides, resulting in a complex that is completely devoid of QA and therefore nonfunctional. A photochemically competent derivative of the AM260W mutant was isolated that contains a Cys side chain at the M260 position (denoted AM260(W-->C)). In the present work, the interactions between the carbonyl groups of QA and the protein in the AM260(W-->C) suppressor mutant have been characterized by light-induced FTIR difference spectroscopy of the photoreduction of QA. The QA-/QA difference spectrum demonstrates that the strong interaction between the C4=O carbonyl of QA and His M219 is lost in the mutant, and the coupled CO and CC modes of the QA- semiquinone are also strongly perturbed. In parallel, a band assigned to the perturbation of the C5-Ntau mode of His M219 upon QA- formation in the native RC is lacking in the spectrum of the mutant. Furthermore, a positive band between 2900 and 2400 cm-1 that is related to protons fluctuating within a network of highly polarizable hydrogen bonds in the native RC is reduced in amplitude in the mutant. On the other hand, the QB-/QB FTIR difference spectrum is essentially the same as for the native RC. The kinetics of electron transfer from QA- to QB were measured by the flash-induced absorption changes at 780 nm. Compared to native RCs the absorption transients are slowed by a factor of about 2 for both the slow phase (in the hundreds of microseconds range) and fast phase (microseconds to tens of microseconds range) in AM260(W-->C) RCs. We conclude that the unusually strong hydrogen bond between the carbonyl of QA and His M219 in the Rb. sphaeroides RC is not obligatory for efficient electron transfer from QA- to QB.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France, UMR 6191 CNRS-CEA-Aix-Marseille II, DEVM-CEA-Cadarache, 13108 St Paul lez Durance, France.
| | | | | | | | | |
Collapse
|
31
|
Breton J. Steady-state FTIR spectra of the photoreduction of QA and QB in Rhodobacter sphaeroides reaction centers provide evidence against the presence of a proposed transient electron acceptor X between the two quinones. Biochemistry 2007; 46:4459-65. [PMID: 17381130 DOI: 10.1021/bi700297b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides, two ubiquinone molecules, QA and QB, play a pivotal role in the conversion of light energy into chemical free energy by coupling electron transfer to proton uptake. In native RCs, the transfer of an electron from QA to QB takes place in the time range of 5-200 micros. On the basis of time-resolved FTIR step-scan measurements in native RCs, a new and unconventional mechanism has been proposed in which QB- formation precedes QA- oxidation [Remy, A., and Gerwert, K. (2003) Nat. Struct. Biol. 10, 637-644]. The IR signature of the proposed transient intermediary electron acceptor (denoted X) operating between QA and QB has been recently measured by the rapid-scan technique in the DN(L210) mutant RCs, in which the QA to QB electron transfer is slowed 8-fold compared to that in native RCs. This IR signature has been reported as a difference spectrum involving states X+, X, QA, and QA- [Hermes, S., et al. (2006) Biochemistry 45, 13741-13749]. Here, we report the steady-state FTIR difference spectra of the photoreduction of either QA or QB measured in both native and DN(L210) mutant RCs in the presence of potassium ferrocyanide. In these spectra, the CN stretching marker modes of ferrocyanide and ferricyanide allow the extent of the redox reactions to be quantitatively compared and are used for a precise normalization of the QA-/QA and QB-/QB difference spectra. The calculated QA- QB/QA QB- double-difference spectrum in DN(L210) mutant RCs is closely equivalent to the reported QA- X+/QA X spectrum in the rapid-scan measurement. We therefore conclude that species X+ and X are spectrally indistinguishable from QB and QB-, respectively. Further comparison of the QA- QB/QA QB- double-difference spectra in native and DN(L210) RCs also allows the possibility that QB- formation precedes QA- reoxidation to be ruled out for native RCs.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
32
|
Blanchet L, Mezzetti A, Ruckebusch C, Huvenne JP, de Juan A. Multivariate curve resolution of rapid-scan FTIR difference spectra of quinone photoreduction in bacterial photosynthetic membranes. Anal Bioanal Chem 2007; 387:1863-73. [PMID: 17203250 DOI: 10.1007/s00216-006-0981-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/26/2006] [Accepted: 11/02/2006] [Indexed: 10/23/2022]
Abstract
Photosynthetic reaction centres and membranes are systems of particular interest and are often taken as models to investigate the molecular mechanisms of selected bioenergetic reactions. In this work, a multivariate curve resolution by alternating least squares procedure is detailed for resolution of time-resolved difference FTIR spectra probing the evolution of quinone reduction in photosynthetic membranes from Rhodobacter sphaeroides under photoexcitation. For this purpose, different data sets were acquired in the same time range and spectroscopic domain under slightly different experimental conditions. To enable resolution and provide meaningful results the different data sets were arranged in an augmented matrix. This strategy enabled recovery of three different species despite rank-deficiency conditions. It also results in better definition (identity and evolution) of the contributions. From the resolved spectra, the species have been attributed to: 1. the formation of ubiquinol, more precisely the disappearance of Q/appearance of QH(2); 2. conformational change of the protein in the surrounding biological medium; 3. oxidation of diaminodurene, a redox mediator. Because, moreover, results obtained from augmented data sets strategies enable quantitative and qualitative interpretation of concentration profiles, other effects, for example the consequence of repeated light excitation of the same sample, choice of illumination power, or the number of spectra accumulated could be compared and discussed.
Collapse
Affiliation(s)
- L Blanchet
- Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR CNRS 8516, Université des Sciences et Technologies de Lille (USTL), bât C5, 59655 Villeneuve d'Ascq, France
| | | | | | | | | |
Collapse
|
33
|
Li WW, Hellwig P, Ritter M, Haehnel W. De Novo Design, Synthesis, and Characterization of Quinoproteins. Chemistry 2006; 12:7236-45. [PMID: 16819733 DOI: 10.1002/chem.200501212] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones and quinoproteins are essential redox components and enzymes in biological systems. Here, we report the de novo design, synthesis, and properties of model four-alpha-helix bundle quinoproteins. The proteins were designed and constructed from three different helices with 21 or 22 amino acid residues by chemoselective ligation to a cyclic decapeptide template. A free cysteine unit is placed at the hydrophobic core of the protein for binding of ubiquinone-0 and menaquinone-0 through a thioether bond. The quinoproteins with molecular weights of 11-12 kDa were characterized by electrospray ionization mass spectrometry, UV/Vis spectroscopy, size-exclusion chromatography, circular dichroism measurements, (1)H NMR spectroscopy, cyclic voltammetry, and redox-induced FTIR difference spectroscopy. The midpoint redox potentials at pH 8 in aqueous solution E(m,8) of thioether conjugates with N-acetyl cysteine methyl ester were 89 mV and -63 mV and with a synthetic protein 229 mV and 249 mV versus standard hydrogen electrode (SHE) for ubiquinone-0 and menaquinone-0, respectively. Detailed redox-induced FTIR difference spectroscopic studies of the model compounds and quinoproteins show the special resonance features for C=O bands at 1656-1660 and 1655-1665 cm(-1) due to the sulfur substitution to ubiquinone-0 and menaquinone-0, respectively. The construction of model quinoproteins represents a significant step toward more complex artificial redox systems.
Collapse
Affiliation(s)
- Wen-Wu Li
- Institut für Biologie II/Biochemie, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
34
|
Nabedryk E, Paddock ML, Okamura MY, Breton J. An Isotope-Edited FTIR Investigation of the Role of Ser-L223 in Binding Quinone (QB) and Semiquinone (QB-) in the Reaction Center from Rhodobacter sphaeroides. Biochemistry 2005; 44:14519-27. [PMID: 16262252 DOI: 10.1021/bi051328d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the photosynthetic reaction center (RC) from the purple bacterium Rhodobacter sphaeroides, proton-coupled electron-transfer reactions occur at the secondary quinone (Q(B)) site. Several nearby residues are important for both binding and redox chemistry involved in the light-induced conversion from Q(B) to quinol Q(B)H(2). Ser-L223 is one of the functionally important residues located near Q(B). To obtain information on the interaction between Ser-L223 and Q(B) and Q(B)(-), isotope-edited Q(B)(-)/Q(B) FTIR difference spectra were measured in a mutant RC in which Ser-L223 is replaced with Ala and compared to the native RC. The isotope-edited IR fingerprint spectra for the C=O [see text] and C=C [see text] modes of Q(B) (Q(B)(-)) in the mutant are essentially the same as those of the native RC. These findings indicate that highly equivalent interactions of Q(B) and Q(B)(-) with the protein occur in both native and mutant RCs. The simplest explanation of these results is that Ser-L223 is not hydrogen bonded to Q(B) or Q(B)(-) but presumably forms a hydrogen bond to a nearby acid group, preferentially Asp-L213. The rotation of the Ser OH proton from Asp-L213 to Q(B)(-) is expected to be an important step in the proton transfer to the reduced quinone. In addition, the reduced quinone remains firmly bound, indicating that other distinct hydrogen bonds are more important for stabilizing Q(B)(-). Implications on the design features of the Q(B) binding site are discussed.
Collapse
Affiliation(s)
- Eliane Nabedryk
- Service de Bioénergétique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | |
Collapse
|
35
|
Mezzetti A, Leibl W. Investigation of ubiquinol formation in isolated photosynthetic reaction centers by rapid-scan Fourier transform IR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 34:921-36. [PMID: 15909199 DOI: 10.1007/s00249-005-0469-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 01/27/2005] [Accepted: 01/30/2005] [Indexed: 10/25/2022]
Abstract
Light-induced formation of ubiquinol-10 in Rhodobacter sphaeroides reaction centers was followed by rapid-scan Fourier transform IR difference spectroscopy, a technique that allows the course of the reaction to be monitored, providing simultaneously information on the redox states of cofactors and on protein response. The spectrum recorded between 4 and 29 ms after the second flash showed bands at 1,470 and 1,707 cm(-1), possibly due to a QH(-) intermediate state. Spectra recorded at longer delay times showed a different shape, with bands at 1,388 (+) and 1,433 (+) cm(-1) characteristic of ubiquinol. These spectra reflect the location of the ubiquinol molecule outside the Q(B) binding site. This was confirmed by Fourier transform IR difference spectra recorded during and after continuous illumination in the presence of an excess of exogenous ubiquinone molecules, which revealed the process of ubiquinol formation, of ubiquinone/ubiquinol exchange at the Q(B) site and between detergent micelles, and of Q(B)(-) and QH(2) reoxidation by external redox mediators. Kinetics analysis of the IR bands allowed us to estimate the ubiquinone/ubiquinol exchange rate between detergent micelles to approximately 1 s. The reoxidation rate of Q(B)(-) by external donors was found to be much lower than that of QH(2), most probably reflecting a stabilizing/protecting effect of the protein for the semiquinone form. A transient band at 1,707 cm(-1) observed in the first scan (4-29 ms) after both the first and the second flash possibly reflects transient protonation of the side chain of a carboxylic amino acid involved in proton transfer from the cytoplasm towards the Q(B) site.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Service de Bioénergétique, CEA-Saclay, 91191, Gif-sur-Yvette, France.
| | | |
Collapse
|
36
|
Breton J, Wakeham MC, Fyfe PK, Jones MR, Nabedryk E. Characterization of the bonding interactions of QB upon photoreduction via A-branch or B-branch electron transfer in mutant reaction centers from Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:127-38. [PMID: 15178474 DOI: 10.1016/j.bbabio.2004.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2003] [Revised: 02/18/2004] [Accepted: 02/18/2004] [Indexed: 11/22/2022]
Abstract
In Rhodobacter sphaeroides reaction centers (RCs) containing the mutation Ala M260 to Trp (AM260W), transmembrane electron transfer along the full-length of the A-branch of cofactors is prevented by the loss of the Q(A) ubiquinone, but it is possible to generate the radical pair P(+)H(A)(-) by A-branch electron transfer or the radical pair P(+)Q(B)(-) by B-branch electron transfer. In the present study, FTIR spectroscopy was used to provide direct evidence for the complete absence of the Q(A) ubiquinone in mutant RCs with the AM260W mutation. Light-induced FTIR difference spectroscopy of isolated RCs was also used to probe the neutral Q(B) and the semiquinone Q(B)(-) states in two B-branch active mutants, a double AM260W-LM214H mutant, denoted WH, and a quadruple mutant, denoted WAAH, in which the AM260W, LM214H, and EL212A-DL213A mutations were combined. The data were compared to those obtained with wild-type (Wt) RCs and the double EL212A-DL213A (denoted AA) mutant which exhibit the usual A-branch electron transfer to Q(B). The Q(B)(-)/Q(B) spectrum of the WH mutant is very close to that of Wt RCs indicating similar bonding interactions of Q(B) and Q(B)(-) with the protein in both RCs. The Q(B)(-)/Q(B) spectra of the AA and WAAH mutants are also closely related to one another, but are very different to that of the Wt complex. Isotope-edited IR fingerprint spectra were obtained for the AA and WAAH mutants reconstituted with site-specific (13)C-labeled ubiquinone. Whilst perturbations of the interactions of the semiquinone Q(B)(-) with the protein are observed in the AA and WAAH mutants, the FTIR data show that the bonding interaction of neutral Q(B) in these two mutants are essentially the same as those for Wt RCs. Therefore, it is concluded that Q(B) occupies the same binding position proximal to the non-heme iron prior to reduction by either A-branch or B-branch electron transfer.
Collapse
Affiliation(s)
- Jacques Breton
- Service de Bioénergétique, Bât. 532, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | | | | | | | | |
Collapse
|
37
|
Mezzetti A, Leibl W, Breton J, Nabedryk E. Photoreduction of the quinone pool in the bacterial photosynthetic membrane: identification of infrared marker bands for quinol formation. FEBS Lett 2003; 537:161-5. [PMID: 12606050 DOI: 10.1016/s0014-5793(03)00118-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The photoreduction of the quinone (Q) pool in the photosynthetic membrane of the purple bacterium Rhodobacter sphaeroides was investigated by steady-state and time-resolved Fourier transform infrared difference spectroscopy. The results are consistent with the existence of a homogeneous Q pool inside the chromatophore membrane, with a size of around 20 Q molecules per reaction center. IR marker bands for the quinone/quinol (Q/QH(2)) redox couple were recognized. QH(2) bands are identified at 1491, 1470, 1433 and 1388-1375 cm(-1). The 1491 cm(-1) band, which is sensitive to (1)H/(2)H exchange, is assigned to a C-C ring mode coupled to a C-OH mode. A feature at approximately 1743/1720 cm(-1) is tentatively related to a perturbation of the carbonyl modes of phospholipid head groups induced by QH(2) formation. Complex conformational changes of the protein in the amide I and II spectral ranges are also apparent during reduction and reoxidation of the Q pool.
Collapse
Affiliation(s)
- Alberto Mezzetti
- Service de Bioénergétique, Bâtiment 532, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
38
|
Iwaki M, Andrianambinintsoa S, Rich P, Breton J. Attenuated total reflection Fourier transform infrared spectroscopy of redox transitions in photosynthetic reaction centers: comparison of perfusion- and light-induced difference spectra. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2002; 58:1523-1533. [PMID: 12083676 DOI: 10.1016/s1386-1425(02)00040-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chemically induced Fourier transform infrared difference spectra associated with redox transitions of several primary electron donors and acceptors in photosynthetic reaction centers (RCs) have been compared with the light-induced FTIR difference spectra involving the same cofactors. The RCs are deposited on an attenuated total reflection (ATR) prism and form a film that is enclosed in a flow cell. Redox transitions in the film of RCs can be repetitively induced either by perfusion of buffers poised at different redox potentials or by illumination. The perfusion-induced ATR-FTIR difference spectra for the oxidation of the primary electron donor P in the RCs of the purple bacteria Rb. sphaeroides and Rp. viridis and P700 in the photosystem 1 of Synechocystis 6803, as well as the Q(A)/Q(A) transition of the quinone acceptor (Q(A)) in Rb. sphaeroides RCs are reported for the first time. They are compared with the light-induced ATR-FTIR difference spectra P+Q(A)/PQ(A) for the RCs of Rb. sphaeroides and P700+/P700 for photosystem 1. It is shown that the perfusion-induced and light-induced ATR-FTIR difference spectra recorded on the same RC film display identical signal to noise ratios when they are measured under comparable conditions. The ATR-FTIR difference spectra are very similar to the equivalent FTIR difference spectra previously recorded upon photochemical or electrochemical excitation of these RCs in the more conventional transmission mode. The ATR-FTIR technique requires a smaller amount of sample compared with transmission FTIR and allows precise control of the aqueous environment of the RC films.
Collapse
|
39
|
Mezzetti A, Nabedryk E, Breton J, Okamura MY, Paddock ML, Giacometti G, Leibl W. Rapid-scan Fourier transform infrared spectroscopy shows coupling of GLu-L212 protonation and electron transfer to Q(B) in Rhodobacter sphaeroides reaction centers. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1553:320-30. [PMID: 11997141 DOI: 10.1016/s0005-2728(02)00186-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid-scan Fourier transform infrared (FTIR) difference spectroscopy was used to investigate the electron transfer reaction Q(A-)Q(B)-->Q(A)Q(B-) (k(AB)(1)) in mutant reaction centers of Rhodobacter sphaeroides, where Asp-L210 and/or Asp-M17 have been replaced with Asn. Mutation of both residues decreases drastically k(AB)(1)), attributed to slow proton transfer to Glu-L212, which becomes rate limiting for electron transfer to Q(B) [M.L. Paddock et al., Biochemistry 40 (2001) 6893]. In the double mutant, the FTIR difference spectrum recorded during the time window 4-29 ms following a flash showed peaks at 1670 (-), 1601 (-) and 1467 (+) cm(-1), characteristic of Q(A) reduction. The time evolution of the spectra shows reoxidation of Q(A-) and concomitant reduction of Q(B) with a kinetics of about 40 ms. In native reaction centers and in both single mutants, formation of Q(B-) occurs much faster than in the double mutant. Within the time resolution of the technique, protonation of Glu-L212, as characterized by an absorption increase at 1728 cm(-1) [E. Nabedryk et al., Biochemistry 34 (1995) 14722], was found to proceed with the same kinetics as reduction of Q(B) in all samples. These rapid-scan FTIR results support the model of proton uptake being rate limiting for the first electron transfer from Q(A-) to Q(B) and the identification of Glu-L212 as the main proton acceptor in the state Q(A)Q(B-).
Collapse
Affiliation(s)
- Alberto Mezzetti
- Section de Bioénergétique, CEA Saclay, Bât 532, 91191, Gif-sur-Yvette, France
| | | | | | | | | | | | | |
Collapse
|
40
|
NILSSON JARVID, LYUBARTSEV ALEXANDER, ERIKSSON LEIFA, LAAKSONEN AATTO. Molecular dynamics simulations of ubiquinone; a survey over torsional potentials and hydrogen bonds. Mol Phys 2001. [DOI: 10.1080/00268970110072403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Peluso A, Di Donato M, Saracino GAA. An alternative way of thinking about electron transfer in proteins: Proton assisted electron transfer between the primary and the secondary quinones in photosynthetic reaction centers. J Chem Phys 2000. [DOI: 10.1063/1.1286918] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Breton J. Efficient exchange of the primary quinone acceptor Q(A) in isolated reaction centers of Rhodopseudomonas viridis. Proc Natl Acad Sci U S A 1997; 94:11318-23. [PMID: 11038584 PMCID: PMC23455 DOI: 10.1073/pnas.94.21.11318] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key step in the conversion of solar energy into chemical energy by photosynthetic reaction centers (RCs) occurs at the level of the two quinones, Q(A) and Q(B), where electron transfer couples to proton transfer. A great deal of our understanding of the mechanisms of these coupled reactions relies on the seminal work of Okamura et al. [Okamura, M. Y., Isaacson, R. A., & Feher, G. (1975) Proc. Natl. Acad. Sci. USA 88, 3491-3495], who were able to extract with detergents the firmly bound ubiquinone Q(A) from the RC of Rhodobacter sphaeroides and reconstitute the site with extraneous quinones. Up to now a comparable protocol was lacking for the RC of Rhodopseudomonas viridis despite the fact that its Q(A) site, which contains 2-methyl-3-nonaprenyl-1,4-naphthoquinone (menaquinone-9), has provided the best x-ray structure available. Fourier transform infrared difference spectroscopy, together with the use of isotopically labeled quinones, can probe the interaction of Q(A) with the RC protein. We establish that a simple incubation procedure of isolated RCs of Rp. viridis with an excess of extraneous quinone allows the menaquinone-9 in the Q(A) site to be almost quantitatively replaced either by vitamin K(1), a close analogue of menaquinone-9, or by ubiquinone. To our knowledge, this is the first report of quinone exchange in bacterial photosynthesis. The Fourier transform infrared data on the quinone and semiquinone vibrations show a close similarity in the bonding interactions of vitamin K(1) with the protein at the Q(A) site of Rp. viridis and Rb. sphaeroides, whereas for ubiquinone these interactions are significantly different. The results are interpreted in terms of slightly inequivalent quinone-protein interactions by comparison with the crystallographic data available for the Q(A) site of the two RCs.
Collapse
Affiliation(s)
- J Breton
- Section de Bioénergétique, Département de Biologie Cellulaire et Moléculaire, Commissariat à l'Energie Atomique, Saclay, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|