1
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Ketamine Action on Astrocytes Provides New Insights into Rapid Antidepressant Mechanisms. ADVANCES IN NEUROBIOLOGY 2021; 26:349-365. [PMID: 34888841 DOI: 10.1007/978-3-030-77375-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, exerts rapid, potent and long-lasting antidepressant effect already after a single administration of a low dose into depressed individuals. Apart from targeting neuronal NMDARs essential for synaptic transmission, ketamine also interacts with astrocytes, the principal homoeostatic cells of the central nervous system. The cellular mechanisms underlying astrocyte-based rapid antidepressant effect are incompletely understood. Here we overview recent data that describe ketamine-dependent changes in astrocyte cytosolic cAMP activity ([cAMP]i) and ketamine-induced modifications of stimulus-evoked Ca2+ signalling. The latter regulates exocytotic release of gliosignalling molecules and stabilizes the vesicle fusion pore in a narrow configuration that obstructs cargo discharge or vesicle membrane recycling. Ketamine also instigates rapid redistribution of cholesterol in the astrocyte plasmalemma that may alter flux of cholesterol to neurones, where it is required for changes in synaptic plasticity. Finally, ketamine attenuates mobility of vesicles carrying the inward rectifying potassium channel (Kir4.1) and reduces the surface density of Kir4.1 channels that control extracellular K+ concentration, which tunes the pattern of action potential firing in neurones of lateral habenula as demonstrated in a rat model of depression. Thus, diverse, but not mutually exclusive, mechanisms act synergistically to evoke changes in synaptic plasticity leading to sustained strengthening of excitatory synapses necessary for rapid antidepressant effect of ketamine.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, China.,Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Ljubljana, Slovenia.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
| | - Robert Zorec
- Celica BIOMEDICAL, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Ketamine Alters Functional Plasticity of Astroglia: An Implication for Antidepressant Effect. Life (Basel) 2021; 11:life11060573. [PMID: 34204579 PMCID: PMC8234122 DOI: 10.3390/life11060573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Ketamine, a non-competitive N–methyl–d–aspartate receptor (NMDAR) antagonist, exerts a rapid, potent and long-lasting antidepressant effect, although the cellular and molecular mechanisms of this action are yet to be clarified. In addition to targeting neuronal NMDARs fundamental for synaptic transmission, ketamine also affects the function of astrocytes, the key homeostatic cells of the central nervous system that contribute to pathophysiology of major depressive disorder. Here, I review studies revealing that (sub)anesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signaling, which regulates exocytotic secretion of gliosignaling molecules, and stabilize the vesicle fusion pore in a narrow configuration, possibly hindering cargo discharge or vesicle recycling. Next, I discuss how ketamine affects astrocyte capacity to control extracellular K+ by reducing vesicular delivery of the inward rectifying potassium channel (Kir4.1) to the plasmalemma that reduces the surface density of Kir4.1. Modified astroglial K+ buffering impacts upon neuronal firing pattern as demonstrated in lateral habenula in a rat model of depression. Finally, I highlight the discovery that ketamine rapidly redistributes cholesterol in the astrocyte plasmalemma, which may alter the flux of cholesterol to neurons. This structural modification may further modulate a host of processes that synergistically contribute to ketamine’s rapid antidepressant action.
Collapse
|
3
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Astrocyte Specific Remodeling of Plasmalemmal Cholesterol Composition by Ketamine Indicates a New Mechanism of Antidepressant Action. Sci Rep 2019; 9:10957. [PMID: 31358895 PMCID: PMC6662760 DOI: 10.1038/s41598-019-47459-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
Ketamine is an antidepressant with rapid therapeutic onset and long-lasting effect, although the underlying mechanism(s) remain unknown. Using FRET-based nanosensors we found that ketamine increases [cAMP]i in astrocytes. Membrane capacitance recordings, however, reveal fundamentally distinct mechanisms of effects of ketamine and [cAMP]i on vesicular secretion: a rise in [cAMP]i facilitated, whereas ketamine inhibited exocytosis. By directly monitoring cholesterol-rich membrane domains with a fluorescently tagged cholesterol-specific membrane binding domain (D4) of toxin perfringolysin O, we demonstrated that ketamine induced cholesterol redistribution in the plasmalemma in astrocytes, but neither in fibroblasts nor in PC 12 cells. This novel mechanism posits that ketamine affects density and distribution of cholesterol in the astrocytic plasmalemma, consequently modulating a host of processes that may contribute to ketamine's rapid antidepressant action.
Collapse
|
5
|
Stenovec M, Božić M, Pirnat S, Zorec R. Astroglial Mechanisms of Ketamine Action Include Reduced Mobility of Kir4.1-Carrying Vesicles. Neurochem Res 2019; 45:109-121. [PMID: 30793220 DOI: 10.1007/s11064-019-02744-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
The finding that ketamine, an anaesthetic, can elicit a rapid antidepressant effect at low doses that lasts for weeks in patients with depression is arguably a major achievement in psychiatry in the last decades. However, the mechanisms of action are unclear. The glutamatergic hypothesis of ketamine action posits that ketamine is a N-methyl-D-aspartate receptor (NMDAR) antagonist modulating downstream cytoplasmic events in neurons. In addition to targeting NMDARs in synaptic transmission, ketamine may modulate the function of astroglia, key homeostasis-providing cells in the central nervous system, also playing a role in many neurologic diseases including depression, which affects to 20% of the population globally. We first review studies on astroglia revealing that (sub)anaesthetic doses of ketamine attenuate stimulus-evoked calcium signalling, a process of astroglial cytoplasmic excitability, regulating the exocytotic release of gliosignalling molecules. Then we address how ketamine alters the fusion pore activity of secretory vesicles, and how ketamine affects extracellular glutamate and K+ homeostasis, both considered pivotal in depression. Finally, we also provide evidence indicating reduced cytoplasmic mobility of astroglial vesicles carrying the inward rectifying potassium channel (Kir4.1), which may regulate the density of Kir4.1 at the plasma membrane. These results indicate that the astroglial capacity to control extracellular K+ concentration may be altered by ketamine and thus indirectly affect the action potential firing of neurons, as is the case in lateral habenula in a rat disease model of depression. Hence, ketamine-altered functions of astroglia extend beyond neuronal NMDAR antagonism and provide a basis for its antidepressant action through glia.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia
| | - Samo Pirnat
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki park 24, 1000, Ljubljana, Slovenia. .,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Polyelectrolyte-coated liposomes: stabilization of the interfacial complexes. Adv Colloid Interface Sci 2008; 142:43-52. [PMID: 18571615 DOI: 10.1016/j.cis.2008.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 04/07/2008] [Accepted: 04/16/2008] [Indexed: 12/28/2022]
Abstract
Anionic liposomes, composed of egg lecithin (EL) or dipalmitoylphosphatidylcholine (DPPC) with 20 mol% of cardiolipin (CL(2-)), were mixed with cationic polymers, poly(4-vinylpyridine) fully quaternized with ethyl bromide (P2) or poly-L-lysine (PL). Polymer/liposome binding studies were carried out using electrophoretic mobility (EPM), fluorescence, and conductometry as the main analytical tools. Binding was also examined in the presence of added salt and polyacrylic acid (PAA). The following generalizations arose from the experiments: (a) Binding of P2 and PL to small EL/CL(2-) liposomes (60-80 nm in diameter) is electrostatic in nature and completely reversed by addition of salt or PAA. (b) Binding can be enhanced by hydrophobization of the polymer with cetyl groups. (c) Binding can also be enhanced by changing the phase state of the lipid bilayer from liquid to solid (i.e. going from EL to DPPC) or by increasing the size of the liposomes (i.e. going from 60-80 to 300 nm). By far the most promising systems, from the point of view of constructing polyelectrolyte multilayers on liposome cores without disruption of liposome integrity, involve small, liquid, anionic liposomes coated initially with polycations carrying pendant alkyl groups.
Collapse
|
7
|
Preston E, Slinn J, Vinokourov I, Stanimirovic D. Graded reversible opening of the rat blood-brain barrier by intracarotid infusion of sodium caprate. J Neurosci Methods 2007; 168:443-9. [PMID: 18155299 DOI: 10.1016/j.jneumeth.2007.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 10/20/2007] [Accepted: 11/12/2007] [Indexed: 12/01/2022]
Abstract
The fatty acid salt, sodium caprate (C10) is a well recognized drug absorption enhancer in intestine because of its ability to widen tight junctions in the epithelial cell lining. Caprate's potential usefulness to similarly alter the blood-brain barrier (BBB) tight junctions of brain vasculature and enhance CNS drug delivery has undergone little investigation. Adult SD rats were anesthetized and C10 was infused into the left internal carotid artery (dosing parameters: 10-30 mM, 1 or 2 ml min(-1), for 0.5-1.5 min). Beginning 5 or 60 min after infusion an i.v. bolus of [3H]mannitol was allowed to circulate for 30 min and degree of BBB leakiness measured as magnitude of the transfer constant (Ki, nl g(-1)s(-1)) for blood to brain mannitol permeation determined from brain and plasma samples. In initial experiments identical C10 infusions caused dramatic BBB opening in some rats, e.g., 10-fold increase in Ki, but not in others. Higher dosing produced consistent opening measured 5-35 or 60-90 min post-infusion but was also toxic as shown by severe brain edema and cardio-respiratory failure. The variable effect of moderate doses was attributed to the fact that arterial blood pressure markedly increased during C10 infusion and may have altered the flow dynamics of cerebrovascular caprate distribution from rat to rat. We modified the procedure by temporarily withdrawing blood to produce hypovolemia and systemic arterial hypotension during C10 infusion. Caprate infusions of 15-25 mM, 2 ml min(-1) for 1 min, produced reliable dose-related openings that lasted as much as an hour, were reversible, and accompanied by little or moderate edema, depending on dose. These findings confirm an earlier report showing that intracarotid caprate infusion opens the BBB but also show that control of the temporary hypertensive response produced by intracarotid caprate infusion is key to tailoring the dosage to consistently achieve graded, reversible BBB opening.
Collapse
Affiliation(s)
- Edward Preston
- Cerebrovascular Research Group, Institute for Biological Sciences, Building M54, 1200 Montreal Road, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | | | | |
Collapse
|
8
|
Yu BZ, Apitz-Castro RJ, Jain MK, Berg OG. Role of 57-72 loop in the allosteric action of bile salts on pancreatic IB phospholipase A(2): regulation of fat and cholesterol homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:2478-90. [PMID: 17603006 DOI: 10.1016/j.bbamem.2007.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 05/08/2007] [Accepted: 05/22/2007] [Indexed: 11/22/2022]
Abstract
Mono- and biphasic kinetic effects of bile salts on the pancreatic IB phospholipase A2 (PLA2) catalyzed interfacial hydrolysis are characterized. This novel phenomenon is modeled as allosteric action of bile salts with PLA2 at the interface. The results and controls also show that these kinetic effects are not due to surface dilution or solubilization or disruption of the bilayer interface where in the mixed-micelles substrate replenishment becomes the rate-limiting step. The PLA2-catalyzed rate of hydrolysis of zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles depends on the concentration and structure of the bile salt. The sigmoidal rate increase with cholate saturates at 0.06 mole fraction and changes little at the higher mole fractions. Also, with the rate-lowering bile salts (B), such as taurochenodeoxycholate (TCDOC), the initial sigmoidal rate increase at lower mole fraction is followed by nearly complete reversal to the rate at the pre-activation level at higher mole fractions. The rate-lowering effect of TCDOC is not observed with the (62-66)-loop deleted DeltaPLA2, or with the Naja venom PLA2 that is evolutionarily devoid of the loop. The rate increase is modeled with the assumption that the binding of PLA2 to DMPC interface is cooperatively promoted by bile salt followed by allosteric k(cat)(*)-activation of the bound enzyme by the anionic interface. The rate-lowering effect of bile salts is attributed to the formation of a specific catalytically inert E(*)B complex in the interface, which is noticeably different than the 1:1 EB complex in the aqueous phase. The cholate-activated rate of hydrolysis is lowered by hypolidemic ezetimibe and guggul extract which are not interfacial competitive inhibitors of PLA2. We propose that the biphasic modulation of the pancreatic PLA2 activity by bile salts regulates gastrointestinal fat metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Bao-Zhu Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|
9
|
Kaklamani VG, Gradishar WJ. Epirubicin versus doxorubicin: which is the anthracycline of choice for the treatment of breast cancer? Clin Breast Cancer 2003; 4 Suppl 1:S26-33. [PMID: 12756076 DOI: 10.3816/cbc.2003.s.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women in the United States. The addition of anthracyclines to adjuvant therapy regimens has resulted in improvement in overall survival of patients. The 2 most commonly used anthracyclines are doxorubicin and epirubicin. Comparison studies in the metastatic setting have shown that, at similar doses, these 2 anthracyclines provide similar response rates. However, their toxicity profiles differ somewhat. The major side effects of anthracyclines are cardiotoxicity and myelosuppression. The equimolar dose ratios of doxorubicin to epirubicin for myelosuppression and cardiotoxicity are 1:1.2 and 1:1.7-2.0, respectively. There have been many studies comparing different schedules and doses of anthracyclines in the adjuvant setting. However, direct comparisons between doxorubicin and epirubicin in early-stage breast cancer have not been performed to date. In this article, we are attempting to provide an overview of current use of doxorubicin and epirubicin in breast cancer
Collapse
Affiliation(s)
- Virginia G Kaklamani
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
10
|
Eytan GD, Regev R, Oren G, Assaraf YG. The role of passive transbilayer drug movement in multidrug resistance and its modulation. J Biol Chem 1996; 271:12897-902. [PMID: 8662680 DOI: 10.1074/jbc.271.22.12897] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The successful lowering of the intracellular concentration of multidrug resistance (MDR)-type drugs by P-glycoprotein (Pgp) relies on its ability to overcome the passive influx rate of each MDR-type drug. Thus, the aim of the present work was to study the effect of passive transbilayer drug movement on the multidrug resistance and its modulation. Fluorescence quenching studies indicated that whereas the Pgp substrate rhodamine 123 traverses an artificial lipid membrane with a lifetime of 3 min, the transbilayer movement rate of the MDR modulators, quinidine and quinine, was too fast to be detected with present methods. Transbilayer movement rates of drugs and modulators were estimated from their equilibration rate throughout artificial multilamellar vesicles. The equilibration rate of five selected modulators was faster than the equilibration rate of five representative MDR-type drugs tested, which was comparable with the rate of rhodamine 123 equilibration. Moreover, the carrier-type peptide ionophore, valinomycin, which is freely mobile in the membrane, inhibited Pgp-mediated efflux of rhodamine 123 from MDR cells. In contrast, the channel-forming ionophore gramicidin D, a Pgp substrate that flip-flops slowly across the membrane, did not modulate cellular Pgp activity. Pgp, with a turnover number of about 900 min-1 can keep pace with the influx of an MDR-drug like rhodamine 123 exhibiting a transbilayer movement with a lifetime of minutes. On the other hand, Pgp would fail to protect MDR cells against cytotoxic drugs that are freely mobile through biological membranes and that re-enter cells faster than their Pgp-mediated active efflux rate. The relatively fast transbilayer movement exhibited by MDR modulators suggest that in contrast to MDR-type drugs, MDR modulators traverse the plasma membrane faster than the maximal expulsion rate of Pgp.
Collapse
Affiliation(s)
- G D Eytan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | |
Collapse
|
11
|
Schwichtenhövel C, Deuticke B, Haest CW. Alcohols produce reversible and irreversible acceleration of phospholipid flip-flop in the human erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1111:35-44. [PMID: 1390862 DOI: 10.1016/0005-2736(92)90271-m] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The slow, non-mediated transmembrane movement of the lipid probes lysophosphatidylcholine, NBD-phosphatidylcholine and NBD-phosphatidylserine in human erythrocytes becomes highly enhanced in the presence of 1-alkanols (C2-C8) and 1,2-alkane diols (C4-C8). Above a threshold concentration characteristic for each alcohol, flip rates increase exponentially with the alcohol concentration. The equieffective concentrations of the alcohols decrease about 3-fold per methylene added. All 1-alkanols studied are equieffective at comparable calculated membrane concentrations. This is also observed or the 1,2-alkane diols, albeit at a 5-fold lower membrane concentration. At low alcohol concentrations, flip enhancement is reversible to a major extent upon removal of the alcohol. In contrast, a residual irreversible flip acceleration is observed following removal of the alcohol after a treatment at higher concentrations. The threshold concentrations to produce irreversible flip acceleration by 1-alkanols and 1,2-alkane diols are 1.5- and 3-fold higher than those for flip acceleration in the presence of the corresponding alcohols. A causal role in reversible flip-acceleration of a global increase of membrane fluidity or membrane polarity seems to be unlikely. Alcohols may act by increasing the probability of formation of transient structural defects in the hydrophobic barrier that already occur in the native membrane. Membrane defects responsible for irreversible flip-acceleration may result from alterations of membrane skeletal proteins by alcohols.
Collapse
Affiliation(s)
- C Schwichtenhövel
- Institut für Physiologie, Medizinische Fakultät der RWTH, Aachen, Germany
| | | | | |
Collapse
|
12
|
Jain MK, Tao WJ, Rogers J, Arenson C, Eibl H, Yu BZ. Active-site-directed specific competitive inhibitors of phospholipase A2: novel transition-state analogues. Biochemistry 1991; 30:10256-68. [PMID: 1931954 DOI: 10.1021/bi00106a025] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
More than 100 amphiphilic phosphoesters, possible tetrahedral transition-state analogues capable of coordinating to the calcium ion at the active site of phospholipase A2, were designed, synthesized, and tested as inhibitors for the hydrolysis of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol vesicles in the scooting mode. This assay system permits the study of structurally diverse inhibitors with phospholipase A2S from different sources, and it is not perturbed by factors that change the quality of the interface. As a prototype, 1-hexadecyl-3-trifluoroethylglycero-2-phosphomethanol (MJ33) was investigated in detail. Only the (S)-(+) analogue of MJ33 is inhibitory, and it is as effective as the sn-2 phosphonate or the sn-2 amide analogues of sn-3 phospholipids. The inhibitory potencies of the various phosphoesters depended strongly on the stereochemical and structural features, and the mole fractions of inhibitors required for 50% inhibition, X1(50), ranged from more than 1 to less than 0.001 mole fraction. The affinity of certain inhibitors for enzymes from different sources differed by more than 200-fold. The inhibitors protected the catalytic site residue His-48 from alkylation in the presence of calcium but not barium as expected if the formation of the EI complex is supported only by calcium. The equilibrium dissociation constant for the inhibitor bound to the enzyme at the interface was correlated with the XI(50) values, which were different if the inhibition was monitored in the pseudo-zero-order or the first-order region of the progress curve. These results show that the inhibitors described here interfered only with the catalytic turnover by phospholipase A2's bound to the interface, their binding to the enzyme occurred through calcium, and the inhibitors did not have any effect on the dissociation of the enzyme bound to the interface.
Collapse
Affiliation(s)
- M K Jain
- Department of Chemistry, University of Delaware, Newark 19716
| | | | | | | | | | | |
Collapse
|
13
|
Kaszuba M, Hunt GR. 31P- and 1H-NMR investigations of the effect of n-alcohols on the hydrolysis by phospholipase A2 of phospholipid vesicular membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1030:88-93. [PMID: 2265195 DOI: 10.1016/0005-2736(90)90242-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
31P- and 1H-NMR spectroscopy of small, unilamellar egg yolk phosphatidylcholine (PC) vesicles in the presence of the lanthanide ion Dy3+ have been used to study the effect of various n-alcohols on the permeability induced by the action of the enzyme phospholipase A2 (PLA2). The method allows the monitoring of the number of PC and lysoPC molecules in the outer and inner monolayers. The results indicate that the initial rate of hydrolysis of PC by PLA2 is increased by all the n-alcohols but in a chain-length dependent manner and that the maximum rate occurs at n = 8 (octan-1-ol). The subsequent rate is dependent upon the rate of transbilayer lipid exchange (flip-flop) of PC molecules from the inner to the outer monolayer. The vesicles only become permeable to the Dy3+ ions when lysoPC is mobilised in the flip-flop process of exchange of lipid molecules between the two monolayers. The n-alcohols affect both the time taken to initiate flip-flop of inner monolayer PC and the subsequent rate of permeability to Dy3+. The n-alcohols are seen to affect all the above rates in an identical chain-length dependent manner, indicating a common cause for all observations which we identify as the degree of clustering of the n-alcohol molecules in the bilayer. The results are discussed in terms of the chain-length dependent mechanism of n-alcohol interactions with the membrane and the mechanism by which the vesicles become permeable to Dy3+ ions.
Collapse
Affiliation(s)
- M Kaszuba
- Department of Science and Chemical Engineering, Polytechnic of Wales, Pontypridd, U.K
| | | |
Collapse
|
14
|
Jain MK, Berg OG. The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: hopping versus scooting. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:127-56. [PMID: 2649150 DOI: 10.1016/0005-2760(89)90281-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M K Jain
- Department of Chemistry, University of Delaware, Newark 19716
| | | |
Collapse
|
15
|
Jain MK, Vaz WL. Dehydration of the lipid-protein microinterface on binding of phospholipase A2 to lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 905:1-8. [PMID: 3676302 DOI: 10.1016/0005-2736(87)90002-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel method is described to demonstrate inaccessibility to the bulk aqueous phase of the microinterface between pig pancreatic phospholipase A2 and lipid bilayers to which this protein is bound. The method is based on the fact that the fluorescence emission quantum yields of the tryptophan residue of the protein and of a 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) chromophore attached to a lipid are lower in water as compared to that in deuterated water. The fluorescence emission quantum yield of these chromophores is measured in water and in deuterated water under conditions where the protein is either bound or not bound to the surface of a lipid bilayer containing the dansyl chromophore. Under conditions where the protein is tightly bound to the surface of the bilayer, desolvation of both fluorophores abolishes the observed effect of deuterated water. The tryptophan residue in the bound phospholipase A2 also becomes inaccessible to fluorescence quenching by acrylamide or succinimide. Desolvation of the microinterface is observed only under conditions that are significant for the catalytic action of phospholipase A2 in the scooting mode and not in the hopping mode. Also, under similar conditions, binding of pro-phospholipase A2 to anionic vesicles does not cause dehydration of the microinterface. The mechanistic significance of these observations for lipid-protein interactions, in general, and for interfacial catalysis and interfacial activation, in particular, is discussed.
Collapse
Affiliation(s)
- M K Jain
- Department of Chemistry, University of Delaware, Newark 19716
| | | |
Collapse
|