1
|
Chaudhuri A, Chattopadhyay A. Lipid binding specificity of bovine α-lactalbumin: A multidimensional approach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2078-86. [DOI: 10.1016/j.bbamem.2014.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
2
|
Barbana C, Pérez MD. Interaction of α-lactalbumin with lipids and possible implications for its emulsifying properties – A review. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.04.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Barbana C, Sánchez L, Pérez MD. Bioactivity of α-Lactalbumin Related to its Interaction with Fatty Acids: A Review. Crit Rev Food Sci Nutr 2011; 51:783-94. [DOI: 10.1080/10408398.2010.481368] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Martos G, Contreras P, Molina E, López-Fandiño R. Egg white ovalbumin digestion mimicking physiological conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:5640-5648. [PMID: 20345099 DOI: 10.1021/jf904538w] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gastrointestinal digestion of ovalbumin (OVA) was simulated using an in vitro system in two steps, which mimicked digestion in the stomach and duodenum, to assess the effect of different gastric pHs, different concentrations of proteases, and the presence of surfactants, such as phosphatidylcholine (PC) and bile salts (BS). OVA was very resistant to pepsin action at an enzyme/substrate ratio that would resemble a physiological situation (1:20 w/w, 172 units/mg) at pH values equal or above 2. The presence of PC did not change the susceptibility of OVA to proteolysis with pepsin. Fluorescence experiments showed that OVA interacted with PC vesicles, particularly at acidic pH, but it is likely that the protein maintained a high degree of conformational stability, resisting pepsin action. The presence of BS at physiological concentrations considerably increased the proteolysis of OVA by a mixture of pancreatic enzymes. The addition of PC made OVA even more sensitive to proteolytic degradation, suggesting that OVA could associate with the surfactants under duodenal conditions, increasing its exposure to pancreatic proteinases. Immunoreactivity against IgE from sera of allergic patients was retained after in vitro gastric digestion, depending on the reactivity of the sera, but it decreased considerably after in vitro duodenal digestion.
Collapse
Affiliation(s)
- Gustavo Martos
- Instituto de Fermentaciones Industriales, CSIC C/ Juan de la Cierva 3, Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Kim JY, Dungan SR. alpha-lactalbumin-AOT charge interactions tune phase structures in isooctane/brine mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7918-7926. [PMID: 19594179 DOI: 10.1021/la900572z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembly of the anionic surfactant AOT with the protein alpha-lactalbumin in isooctane/brine mixtures results in phase structures whose type, size, and shape differ considerably from those formed by the surfactant alone. Small-angle X-ray scattering was used to determine the size and shape of these structures for 5.4 < pH < 11.2 and 0.25, 0.33, and 0.4 wt % NaCl. All pH values were above the reported isoelectric point for the protein. The composition of the system (except for salt) was fixed, with 2.5 wt % surfactant in equivolume mixtures of oil and water and either 0 or 0.4 wt % protein. Under these conditions, AOT in the absence of protein always formed spherical, water-in-oil (w/o) microemulsion droplets in the organic phase with no self-assembly in the aqueous phase. In the presence of alpha-lactalbumin, self-assembled structures were formed in both aqueous and organic phases, and the size and shape of these was tuned by both pH and [NaCl]. Protein-surfactant interaction was weakest at the most alkaline pH, with protein-free, spherical droplets forming in the organic phase and surfactant-decorated soluble protein clusters forming in the aqueous phase. As pH was decreased, protein increasingly partitioned to the organic phase and droplets became ellipsoidal and much larger in volume, with these effects enhanced at lower salt concentration. Aqueous structures were also strongly affected by pH, shifting from prolate protein/surfactant aggregates at alkaline pH to oil-in-water, oblate microemulsion droplets at neutral pH. At acidic pH and higher salt concentration, self-assembly shifted toward a third, anisotropic aqueous phase, which contained discoid bilayer structures. It is proposed that hydrophobic attraction causes association of the protein with the surfactant monolayer, and pH and [salt] tune the system via the protein by modifying electrostatic repulsion and monolayer curvature.
Collapse
Affiliation(s)
- Jun Y Kim
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
6
|
Interaction of bovine -lactalbumin with fatty acids as determined by partition equilibrium and fluorescence spectroscopy. Int Dairy J 2006. [DOI: 10.1016/j.idairyj.2005.01.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Anton M, Mine Y. Ingredient Interactions. FOOD SCIENCE AND TECHNOLOGY 2005. [DOI: 10.1201/9781420028133.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Chenal A, Vernier G, Savarin P, Bushmarina NA, Gèze A, Guillain F, Gillet D, Forge V. Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge. J Mol Biol 2005; 349:890-905. [PMID: 15893324 DOI: 10.1016/j.jmb.2005.04.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 04/08/2005] [Accepted: 04/18/2005] [Indexed: 11/20/2022]
Abstract
The study of the conformational changes of bovine alpha-lactalbumin, switching from soluble states to membrane-bound states, deepens our knowledge of the behaviour of amphitropic proteins. The binding and the membrane-bound conformations of alpha-lactalbumin are highly sensitive to environmental factors, like calcium and proton concentrations, curvature and charge of the lipid membrane. The interactions between the protein and the membrane result from a combination of hydrophobic and electrostatic interactions and the respective weights of these interactions depend on the physicochemical conditions. As inferred by macroscopic as well as residue-level methods, the conformations of the membrane-bound protein range from native-like to molten globule-like states. However, the regions anchoring the protein to the membrane are similar and restricted to amphiphilic alpha-helices. H/(2)H-exchange experiments also yield residue-level data that constitute comprehensive information providing a new point of view on the thermodynamics of the interactions between the protein and the membrane.
Collapse
Affiliation(s)
- Alexandre Chenal
- Biophysique Moléculaire et Cellulaire, Unité Mixte de Recherche 5090, Département Réponse et Dynamique Cellulaires, CEA-Grenoble, 38054 Grenoble cedex 9, France.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Shimek JW, Rohloff CM, Goldberg J, Dungan SR. Effect of alpha-lactalbumin on the phase behavior of AOT-brine-isooctane mixtures: role of charge interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5931-9. [PMID: 15952844 DOI: 10.1021/la047464l] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have found that both electrostatic and hydrophobic interactions are involved in the ability of the protein alpha-lactalbumin (alpha-LA) to affect the self-assembly of the anionic surfactant sodium bis(ethylhexyl) sulfosuccinate (AOT, 3.5 wt %) in equivolume mixtures of organic and aqueous solutions. The composition and size of AOT phase structures that form in the presence of 0.35 wt % protein were evaluated as a function of pH and ionic strength. In the absence of protein, AOT forms water-in-oil microemulsion droplets for all pH and salt concentrations studied here. The presence of the protein in the water-in-oil microemulsion phase boosts water solubilization and droplet size, as the spontaneous curvature of the surfactant interface becomes less negative. Aggregates of protein, surfactant, and oil also form in the water-continuous phase. The size and composition of structures in both phases can be tuned in the presence of protein by varying the pH and ionic strength. alpha-LA induces the appearance of an anisotropic surfactant phase at pH <5.8. At intermediate salt concentrations, a third isotropic, viscous aqueous phase appears that contains 55-60% of the protein, 10-14% of the surfactant, and significant amounts of oil. Circular dichroism and fluorescence spectroscopy indicate that the protein contains enhanced alpha-helical secondary structure when self-assembling with surfactant, and has a loosened tertiary structure. The protein does not interact with the surfactant as an unfolded random coil. Although the conformation of alpha-LA in aqueous salt solutions is known to depend on pH, when self-assembling with AOT the protein adopts a structure whose features are quite pH insensitive, and likely reflect an intrinsic interaction with the interface.
Collapse
Affiliation(s)
- Justin W Shimek
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
10
|
Rohloff CM, Shimek JW, Dungan SR. Effect of added α-lactalbumin protein on the phase behavior of AOT–brine–isooctane systems. J Colloid Interface Sci 2003; 261:514-23. [PMID: 16256563 DOI: 10.1016/s0021-9797(03)00079-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2002] [Accepted: 01/14/2003] [Indexed: 10/27/2022]
Abstract
We have found that the presence of <1 wt% of the globular protein alpha-lactalbumin has a significant impact on the equilibrium phase behavior of dilute sodium bis(ethylhexyl) sulfosuccinate (AOT)/brine/isooctane systems. Nuclear magnetic resonance (NMR), Karl Fischer titration, and ultraviolet spectroscopy were used to determine the surfactant, oil, water, and protein content of the organic and aqueous phases as a function of the total surfactant and protein present. As a small amount of alpha-lactalbumin is added to the mixture, there is a substantial increase (up to 80%) in the maximum water solubility in the water-in-oil microemulsion phase. Dynamic light scattering measurements indicate that this increase is due to a decrease in the magnitude of the (negative) spontaneous curvature of the surfactant monolayer, as droplets swell in size. As the molar ratio of alpha-lactalbumin to AOT surpasses approximately 1:300, the partitioning of water, protein, and surfactant shifts to the excess aqueous phase, where soluble assemblies with positive curvature are detected by dynamic light scattering. Significant amounts of isooctane are solubilized in these aggregates, consistent with the formation of oil-in-water microemulsion droplets. Circular dichroism studies showed that the tertiary structure of the protein in the microemulsion is disrupted while the secondary structure is increased. In light of these findings, the protein most likely expands to a molten-globule type conformation in the AOT interfacial environment, but does not substantially unfold to become an extended chain.
Collapse
Affiliation(s)
- Catherine M Rohloff
- Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
11
|
Lefèvre T, Subirade M. Conformational rearrangement of beta-lactoglobulin upon interaction with an anionic membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1549:37-50. [PMID: 11566367 DOI: 10.1016/s0167-4838(01)00242-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions between beta-lactoglobulin (beta-lg) and dimyristoylphosphatidylglycerol (DMPG) bilayers were studied using one- and two-dimensional infrared spectroscopy above (pD 7.4) and below (pD 4.4) the protein's (beta-lg's) isoelectric point (pI=5.2). The aim of the study was threefold: (1) gain a better understanding of beta-lg-phospholipid interaction; (2) provide information relative to the structure of beta-lg as it interacts with membranes; (3) determine whether the conformational modifications of the protein in the presence of lipids are strictly caused by thermal effects or whether they are modulated by the chain-melting phase transition. At pD 7.4, the lipid thermotropism, the acyl-chain order, and the membrane interfacial region were essentially unaffected by the presence of beta-lg, whereas the protein amide I region showed dramatic alterations. The results suggested the predominance of beta-sheets and alpha-helix elements, with a lost of structural integrity. At pD 4.4, beta-lg induced an approximately 2 degrees C downshift of the transition temperature, whereas the conformational order of the lipid chain decreased in the gel phase and increased in the liquid-crystalline phase. The hydration state of the DMPG C==O groups increased in the liquid-crystalline phase. The conformation of beta-lg at pD 4.4 in the presence of DMPG showed similarities with that observed at pD 7.4, but an increase in the alpha-helix content and a reduced thermal stability were noticed. In contrast to the protein alone, beta-lg aggregates in the presence of DMPG at pD 4.4 above 50 degrees C. At both pD values, the charged surface of the membrane seemed to be the main factor for inducing protein conformational changes by altering the intramolecular interactions that stabilize the native structure. However, protein incorporation within the membrane seemed to be involved at pD 4.4. The two-dimensional analysis performed with spectra recorded upon heating showed that spectral intensity changes at pD 4.4 and 7.4 occurred at the same frequencies in the amide I' region. The heat-induced structural changes of beta-lg were not correlated with the conformational modifications of the phospholipids along the phase transition, indicating that the thermal behavior of the protein was not modulated by the lipid chain melting, but rather represented the heat-induced protein rearrangement in the presence of DMPG.
Collapse
Affiliation(s)
- T Lefèvre
- Centre de Recherches en Sciences et Technologie du Lait (STELA), Département d'Alimentation et de Nutrition, Faculté des Sciences de l'Agriculture et de l'Alimentation, Pavillon Paul Comtois, Université Laval, Sainte-Foy, QC, Canada G1K 7P4
| | | |
Collapse
|
12
|
Montich GG. Partly folded states of bovine carbonic anhydrase interact with zwitterionic and anionic lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1468:115-26. [PMID: 11018657 DOI: 10.1016/s0005-2736(00)00250-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The acidic, partly folded states of bovine carbonic anhydrase II (BCAII) were used as an experimental system to study the interactions of partly denatured proteins with lipid membranes. The pH dependence of their interactions with palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidylglycerol (POPG) membranes was studied. A filtration binding assay shows that acidic partly folded states of BCAII bind to POPC membranes. Fluorescence emission spectra from Trp residues of the bound protein are slightly shifted to shorter wavelength and can be quenched by a water-soluble quencher of fluorescence, indicating that the binding occurs without deep penetration of Trp residues into the membrane. The content of beta-structures of the protein in solution, as revealed by FT-IR spectroscopy, decreases in the partly folded states and the binding to POPC membrane occurs without further changes of secondary structure. In the presence of 0.1 M NaCl, a partly folded state self-aggregates and does not bind to POPC membrane. At acidic pH, BCAII binds to POPG membranes both at high and low ionic strength. The binding to the anionic lipid occurs with protein self-aggregation within the lipid-protein complexes and with changes in the secondary structure; large blue shifts in the fluorescence emission spectra and the decrease in the exposure to water-soluble acrylamide quencher of Trp fluorescence strongly suggest that BCAII penetrates the hydrocarbon domain in the POPG-protein complexes.
Collapse
Affiliation(s)
- G G Montich
- Centro de Investigaciones en Química Biológica de Córdoba, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Pabellón Argentina, Ciudad Universitaria, 5000, Córdoba, Argentina
| |
Collapse
|
13
|
Cawthern KM, Narayan M, Chaudhuri D, Permyakov EA, Berliner LJ. Interactions of alpha-lactalbumin with fatty acids and spin label analogs. J Biol Chem 1997; 272:30812-6. [PMID: 9388223 DOI: 10.1074/jbc.272.49.30812] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bovine alpha-lactalbumin (alpha-LA) has been shown by intrinsic protein fluorescence and electron spin resonance methods to interact with the spin-labeled fatty acid analog, 5-doxylstearic acid, as well as stearic acid. An intrinsic fluorescence titration of various alpha-LA forms with 5-doxylstearic acid causes first an increase and then a decrease in emission intensity with concomitant shifts in tryptophan emission wavelength. In some cases, up to three steps in the fluorescence titration curves were visible, which were fit to apparent binding steps from 10(-6) to 10(-4) M. The binding parameters of 5-doxylstearic acid for apo- and Ca2+-alpha-LA were an order of magnitude different from one another; the stronger one, apo-alpha-lactalbumin, exhibited a Kd of 35 microM. Electron spin resonance titrations of 5-doxylstearic acid-loaded apo-alpha-LA with stearate (micelles) seem to suggest separate binding loci if alpha-LA indeed binds stearate at these concentrations. The titration of alpha-LA by stearic acid results in a fluorescence emission red shift and an apparent stepped increase in fluorescence intensity. Lipid-protein association occurred at concentrations at which stearic acid micelles and aggregates begin to form in the absence of protein. Nonetheless, the relatively strong association between stearic acid and apo-alpha-LA was also confirmed by means of the fluorescent indicator acrylodated fatty acid binding protein, in which addition of alpha-LA to the stearate-loaded indicator protein reverses the decrease in fluorescence of the acrylodan chromophore conjugated to the protein.
Collapse
Affiliation(s)
- K M Cawthern
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
14
|
DICKINSON ERIC, YAMAMOTO YUKIKO. Viscoelastic Properties of Heat-Set Whey Protein-Stabilized Emulsion Gels with Added Lecithin. J Food Sci 1996. [DOI: 10.1111/j.1365-2621.1996.tb12208.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Cawthern KM, Permyakov E, Berliner LJ. Membrane-bound states of alpha-lactalbumin: implications for the protein stability and conformation. Protein Sci 1996; 5:1394-405. [PMID: 8819172 PMCID: PMC2143454 DOI: 10.1002/pro.5560050718] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
alpha-Lactalbumin (alpha-LA) associates with dimyristoylphosphatidylcholine (DMPC) or egg lecithin (EPC) liposomes. Thermal denaturation of isolated DMPC or EPC alpha-LA complexes was dependent on the metal bound state of the protein. The intrinsic fluorescence of thermally denatured DMPC-alpha-LA was sensitive to two thermal transitions: the Tc of the lipid vesicles, and the denaturation of the protein. Quenching experiments suggested that tryptophan accessibility increased upon protein-DMPC association, in contrast with earlier suggestions that the limited emission red shift upon association with the liposome was due to partial insertion of tryptophan into the apolar phase of the bilayer (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). On the other hand, above the protein transition (70 degrees C), the spectral blue shifts and reduced accessibility to quencher suggested that tryptophan interacts significantly with the apolar phase of either DMPC and EPC. At pH 2, where the protein inserts into the bilayer rapidly, the isolated DMPC-alpha-LA complex showed a distinct fluorescence thermal transition between 40 and 60 degrees C, consistent with a partially inserted form that possesses some degree of tertiary structure and unfolds cooperatively. This result is significant in light of earlier findings of increased helicity for the acid form, i.e., molten globule state of the protein (Hanssens I et al., 1985, Biochim Biophys Acta 817:154-166). These results suggest a model where a limited expansion of conformation occurs upon association with the membrane at neutral pH and physiological temperatures, with a concomitant increase in the exposure of tryptophan to external quenchers; i.e., the current data do not support a model where an apolar, tryptophan-containing surface is covered by the lipid phase of the bilayer.
Collapse
Affiliation(s)
- K M Cawthern
- Department of Chemistry, Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
16
|
Lala AK, Kaul P, Ratnam PB. Membrane-protein interaction and the molten globule state: interaction of alpha-lactalbumin with membranes. JOURNAL OF PROTEIN CHEMISTRY 1995; 14:601-9. [PMID: 8561856 DOI: 10.1007/bf01886886] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The insertion of soluble proteins into membranes has been a topic of considerable interest. We have studied the insertion of bovine alpha-lactalbumin into single-bilayer vesicles prepared from egg phosphatidylcholine (PC). Fluorescence studies indicated rapid and tight binding of apo-alpha-lactalbumin (apo-alpha-LA) to PC vesicles as a function of pH. The binding was maximal at pH values which favor the formation of the molten globule state. As an increase of hydrophobic surface is observed in the molten globule state, this conformational state can provide a molecular basis for insertion of soluble proteins into membranes. The membrane-bound complex formed at low pH (3.0) could be isolated and was found to be stable at neutral pH. The structural characterization of the apo-alpha-LA-PC complex was studied by fluorescence quenching using iodide, acrylamide, and 9,10-dibromostearic acid. The results obtained indicated that some of the tryptophans of apo-alpha-LA were buried in the membrane interior and some were exposed on the outer side. Fluorescence quenching and CD studies indicated the membrane-bound conformation of apo-alpha-LA was some conformational state that is between the soluble, fully folded conformation and the molten globule state.
Collapse
Affiliation(s)
- A K Lala
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, India
| | | | | |
Collapse
|
17
|
Casein adsorption on the surfaces of oil-in-water emulsions modified by lecithin. Colloids Surf B Biointerfaces 1993. [DOI: 10.1016/0927-7765(93)80030-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Bergers JJ, Vingerhoeds MH, van Bloois L, Herron JN, Janssen LH, Fischer MJ, Crommelin DJ. The role of protein charge in protein-lipid interactions. pH-dependent changes of the electrophoretic mobility of liposomes through adsorption of water-soluble, globular proteins. Biochemistry 1993; 32:4641-9. [PMID: 8485142 DOI: 10.1021/bi00068a023] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of electrostatics in the adsorption process of proteins to preformed negatively-charged (phosphatidylcholine/phosphatidylglycerol) and neutral (phosphatidylcholine) liposomes was studied. The interaction was monitored at low ionic strength for a set of model proteins as a function of pH. The adsorption behavior of trypsin inhibitor (pI = 4.6), myoglobin (pI = 7.4), ribonuclease (pI = 9.6), and lysozyme (pI = 10.7) with preformed liposomes was investigated, along with changes in the electrophoretic mobility of liposomes through the adsorption of charged proteins. Mean protein charge was determined by acid/base titration. Significant adsorption of the proteins to negatively-charged liposomes was only found at pH values where the number of positive charge moieties exceeds the number of negative charge moieties on the protein by at least three charge units. Negligible adsorption to liposomes composed of zwitterionic lipids was observed in the pH range tested (4-9). The absolute value of the electrophoretic mobilities of negatively-charged, empty liposomes decreased after adsorption of positively-charged proteins. With increasing protein to phospholipid ratio, the drop in the electrophoretic mobility leveled off and reached a plateau; protein adsorption profiles showed a similar shape. Analysis of the data demonstrated that neutralization of the liposome charge due to the adsorption of the positively-charged proteins is the controlling factor in their adsorption. The plateau level reached depended on the type of protein and the pH of the incubation medium. This pH dependency could be ascribed to the mean positive charge of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J J Bergers
- Department of Pharmaceutics, Faculty of Pharmacy, Utrecht University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The lysozyme-induced fusion of phosphatidylserine/phosphatidylethanolamine vesicles as studied at a wide range of pH is found to correlate well with the binding of this protein to the vesicles. An identical 6000 molecular weight segment of lysozyme at the N-terminal region is found to be protected from tryptic digestion when initially incubated with vesicles at several pH values. Only this segment is labeled by dansyl chloride, which is partitioned into the bilayer. These results suggest the penetration of one segment of lysozyme into the bilayer. Photoactivated labeling of the membrane-penetrating segment of lysozyme with 3-(trifluoromethyl)-3-([125I]iodophenyl)diazirine ([125I]TID) and subsequent identification of the labeled residues by Edman degradation and gamma-ray counting indicate that four amino acids from the N-terminal are located outside the hydrophobic core of the bilayer. Although treatment of the membrane-embedded segment with aminopeptidase failed to cleave any amino acids from the N-terminal, it appears that a loop of lysozyme segment near the N-terminal penetrates into the bilayer at acidic pH. A helical wheel diagram shows that the labeling is done mainly on one surface of the alpha-helix. The penetration kinetics as studied by time-dependent [125I]TID labeling coincide with the fusion kinetics, strongly suggesting that the penetration of the lysozyme segment into the vesicles is the cause of the fusion.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Science and Engineering, Korea Advanced Institute of Science and Technology, Seoul
| | | |
Collapse
|
20
|
Kim J, Kim H. Interaction of alpha-lactalbumin with phospholipid vesicles as studied by photoactivated hydrophobic labeling. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 983:1-8. [PMID: 2758043 DOI: 10.1016/0005-2736(89)90372-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The alpha-lactalbumin segment which penetrates into phosphatidylserine/phosphatidylethanolamine vesicle bilayer under acidic condition was photoactively labeled with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine [( 125I]TID) which had been partitioned into the hydrophobic interior of the bilayer. The hydrophobically labeled amino acid residues were identified by trypsin digestion of the alpha-lactalbumin/vesicle complex, extraction and Edman degradation of the membrane embedded fragment. The results are consistent with a notion that the segment exists in the membrane as an alpha-helix and that only one surface of this alpha-helix is exposed to the hydrophobic interior of the bilayer. Possible models are: (a) a loop of tightly held alpha-helix penetrating deep into the bilayer and (b) the helix being located on the interface between bilayer and the aqueous solution. The time-dependent [125I]TID labeling process revealed that the middle part of this segment goes into the bilayer first and is then followed by both ends. The penetration rate is comparable to that of the fusion of the lipid vesicles of the same composition by alpha-lactalbumin at the same pH, which further supports that the penetration is the cause of fusion.
Collapse
Affiliation(s)
- J Kim
- Department of Biological Science and Engineering, Korea Advanced Institute of Science, Seoul
| | | |
Collapse
|
21
|
Kronman MJ. Metal-ion binding and the molecular conformational properties of alpha lactalbumin. Crit Rev Biochem Mol Biol 1989; 24:565-667. [PMID: 2691213 DOI: 10.3109/10409238909080054] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mammary galactosyltransferase and alpha lactalbumin are the two protein components of lactose synthase which catalyze the transfer of galactose from UDP-gal to glucose in the presence of divalent cations. Recent studies suggest that alpha lactalbumin may have a broader function in modifying cell surface carbohydrates in cell-cell interactions and cell differentiation. Since the discovery that alpha lactalbumin, like galactosyltransferase, is a metalloprotein, there has been a great deal of interest in the metal-binding properties of this protein and how these relate to the metal-ion requirements of the lactose synthase reaction. The recent availability of an X-ray crystal structure of alpha lactalbumin has provided further impetus for establishing the molecular determinants of its biological activity. This review is directed toward critically examining and integrating our present knowledge of the properties of this protein, particularly the relationship between metal-ion binding and conformational state, and how these might relate to its biological function.
Collapse
Affiliation(s)
- M J Kronman
- Department of Biochemistry and Molecular Biology, SUNY Health Center, Syracuse
| |
Collapse
|
22
|
Van Dael H, Van Cauwelaert F. The effect of alpha-lactalbumin on the thermotropic phase behaviour of phosphatidylcholine bilayers, studied by fluorescence polarization, differential scanning calorimetry and Raman spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 943:126-36. [PMID: 3401474 DOI: 10.1016/0005-2736(88)90544-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effects of bovine alpha-lactalbumin on the thermotropic properties of dimyristoylphosphatidylcholine liposomes are studied by Raman spectroscopy, fluorescence polarization and differential scanning calorimetry. The Raman spectrum reveals the drastic effects of the protein on the phospholipid structure. The transition temperature shifts downwards and the inter- and intrachain order in the lipid matrix progressively diminish with increasing protein concentration. Up to a lipid to protein molar ratio R = 25, the bilayer structure however is maintained. From fluorescence polarization data we conclude that the protein restricts the mobility of the DPH probe. In view of the Raman results, the lower probe mobility obviously cannot be associated with a more rigid lipid matrix. Nevertheless the transition temperatures of the alpha-lactalbumin-phospholipid complex increases. DSC measurements give no decisive way out for this discrepancy. These results confirm that different types of lipid order are involved in lipid-protein interactions. Compared to the free protein, the alpha-helicity of the protein has increased in the complex.
Collapse
Affiliation(s)
- H Van Dael
- Interdisciplinair Research Centrum, K.U. Leuven Campus Kortrijk, Belgium
| | | |
Collapse
|
23
|
|
24
|
Haeyaert P, Verdonck A, Van Cauwelaert FH. Influence of acylcarnitines of different chain length on pure and mixed phospholipid vesicles and on sarcoplasmic reticulum vesicles. Chem Phys Lipids 1987; 45:49-63. [PMID: 2965625 DOI: 10.1016/0009-3084(87)90039-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Palmitoyl-, myristoyl- and lauroylcarnitine destabilize small unilamellar vesicles of 1,2-dipalmitoyl-n-glycero-3-phosphorylcholine (DPPC) and 1,2-dimyristoyl-n-glycero-3-phosphorylcholine (DMPC) into multilamellar liposomes. Their effect on the bilayer is dependent on the acyl chain length of the acylcarnitine, the ratio of the lengths of the acyl chains of the phospholipid and the acylcarnitine and the molar ratio of the phospholipid to acylcarnitine but not the absolute concentration of the acylcarnitine in the solute. Sarcoplasmic reticulum vesicles are broken down by each of the acylcarnitines at concentrations below their critical micellar concentrations (CMC). These three acylcarnitines stimulate the Mg2+, Ca2+-ATPase activity in SR-vesicles to a certain maximum, after which a net inhibition is observed. The maximum degree of stimulation depends highly on acyl chain length: the shorter the chain length, the more effective. In the same concentration range where the Mg2+, Ca2+-ATPase activity is increased, the net Ca2+-uptake is markedly decreased.
Collapse
Affiliation(s)
- P Haeyaert
- Interdisciplinary Research Center, Katholieke Universiteit Leuven, Kortrijk, Belgium
| | | | | |
Collapse
|
25
|
Desmet J, Hanssens I, van Cauwelaert F. Comparison of the binding of Na+ and Ca2+ to bovine alpha-lactalbumin. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 912:211-9. [PMID: 3828361 DOI: 10.1016/0167-4838(87)90091-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
alpha-Lactalbumin is a metal-binding protein which binds Ca2+- and Na+-ions competitively to one specific site, giving rise to a large conformational change of the protein. For this reason, the enthalpy change of binding Ca2+ to apo-alpha-lactalbumin (delta Ho) is strongly dependent on the concentration of Na+ ions in the medium. From that relationship a molar enthalpy of -145 +/- 3 kJ X mol-1 is calculated for the Ca2+-binding at pH 7.4 and 25 degrees C, while a delta Ho of -5 +/- 3 kJ X mol-1 is found to substitute a complexed Na+ by a Ca2+-ion. These measurements also allowed us to calculate a binding constant for Na+ of 195 +/- 18 M-1. The molar enthalpy of Na+-loading was found to be -142 +/- 3 kJ X mol-1, a value very close to delta Ho of the binding of Ca2+ to alpha-lactalbumin. Both enthalpy changes in binding Ca2+ and Na+ are independent of the protein concentration. These exothermic values are in agreement with the hypothesis that both Na+- and Ca2+-ions are able to induce the same conformational change in alpha-lactalbumin upon which hydrophobic regions are removed from the solvent, yielding a less hydrophobic protein. The latter is confirmed by means of affinity measurements of the hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulphonate](bis-ANS) to alpha-lactalbumin. The association constant (Ka) decreased from (6.6 +/- 0.5) X 10(4) M-1 in the absence of NaCl to (2.7 +/- 0.2) X 10(4) M-1 in 75 mM NaCl, while the maximum intensity (Imax) of the binary bis-ANS-alpha-lactalbumin complex remained constant at 0.44 +/- 0.02 (arbitrary units). The Ka value of bis-ANS for Ca2+-alpha-lactalbumin was determined at (1.7 +/- 0.2) X 10(4) M-1 and Imax was 0.43 +/- 0.02 (arbitrary units). The difference in hydrophobicity between the two conformational states of the protein was further demonstrated by adsorption experiments of both conformers to phenyl-Sepharose. Apo-alpha-lactalbumin, hydrophobically bound to phenyl-Sepharose, can be eluted by adding Ca2- or Na+-solutions.
Collapse
|