1
|
Thomas N, Combs W, Mandadapu KK, Agrawal A. Preferential electrostatic interactions of phosphatidic acid with arginines. SOFT MATTER 2024; 20:2998-3006. [PMID: 38482724 DOI: 10.1039/d4sm00088a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Phosphatidic acid (PA) is an anionic lipid that preferentially interacts with proteins in a diverse set of cellular processes such as transport, apoptosis, and neurotransmission. One such interaction is that of the PA lipids with the proteins of voltage-sensitive ion channels. In comparison to several other similarly charged anionic lipids, PA lipids exhibit much stronger interactions. Intrigued and motivated by this finding, we sought out to gain deeper understanding into the electrostatic interactions of anionic lipids with charged proteins. Using the voltage sensor domain (VSD) of the KvAP channel as a model system, we performed long-timescale atomistic simulations to analyze the interactions of POPA, POPG, and POPI lipids with arginines (ARGs). Our simulations reveal two mechanisms. First, POPA is able to interact not only with surface ARGs but is able to snorkel and interact with a buried arginine. POPG and POPI lipids on the other hand show weak interactions even with both the surface and buried ARGs. Second, deprotonated POPA with -2 charge is able to break the salt-bridge connection between VSD protein segments and establish its own electrostatic bond with the ARG. Based on these findings, we propose a headgroup size hypothesis for preferential solvation of proteins by charged lipids. These findings may be valuable in understanding how PA lipids could be modulating kinematics of transmembrane proteins in cellular membranes.
Collapse
Affiliation(s)
- Nidhin Thomas
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Wesley Combs
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Kranthi K Mandadapu
- Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Bolik S, Albrieux C, Schneck E, Demé B, Jouhet J. Sulfoquinovosyldiacylglycerol and phosphatidylglycerol bilayers share biophysical properties and are good mutual substitutes in photosynthetic membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184037. [PMID: 36041508 DOI: 10.1016/j.bbamem.2022.184037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Stéphanie Bolik
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France; Institut Laue-Langevin, 38000 Grenoble, France
| | - Catherine Albrieux
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Emanuel Schneck
- Institute for Condensed Matter Physics, TU Darmstadt, 64289 Darmstadt, Germany
| | - Bruno Demé
- Institut Laue-Langevin, 38000 Grenoble, France.
| | - Juliette Jouhet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
3
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Sivaramakrishna D, Choudhury SK, Swamy MJ. Thermotropic phase behavior and supramolecular organization of N,O-diacyl-l-alaninols: effect on stratum corneum model membrane. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Dargel C, Gräbitz-Bräuer F, Geisler R, Fandrich P, Hannappel Y, Porcar L, Hellweg T. Stable DOPG/Glycyrrhizin Vesicles with a Wide Range of Mixing Ratios: Structure and Stability as Seen by Scattering Experiments and Cryo-TEM. Molecules 2021; 26:molecules26164959. [PMID: 34443547 PMCID: PMC8399256 DOI: 10.3390/molecules26164959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays (SANS and SAXS). Small-angle scattering data are first evaluated by the model-independent modified Kratky–Porod method and afterwards fitted by a model describing the shape of small unilamellar vesicles (SUV) with an internal head-tail contrast. Complete miscibility of DOPG and glycyrrhizin was revealed even at a ratio of lipid:saponin of 1:1. Additional information about the chain-chain correlation distance of the lipid/saponin mixtures in the SUV structures is obtained from wide-angle X-ray scattering (WAXS).
Collapse
Affiliation(s)
- Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Friederike Gräbitz-Bräuer
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Ramsia Geisler
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Pascal Fandrich
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Yvonne Hannappel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
- Correspondence: ; Tel.: +49-0521-106-2055
| |
Collapse
|
6
|
Rehal RP, Marbach H, Hubbard AT, Sacranie AA, Sebastiani F, Fragneto G, Harvey RD. The influence of mild acidity on lysyl-phosphatidylglycerol biosynthesis and lipid membrane physico-chemical properties in methicillin-resistant Staphylococcus aureus. Chem Phys Lipids 2017. [DOI: 10.1016/j.chemphyslip.2017.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Kerek EM, Prenner EJ. Inorganic cadmium affects the fluidity and size of phospholipid based liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:3169-3181. [DOI: 10.1016/j.bbamem.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
8
|
Fillion M, Goudreault M, Voyer N, Bechinger B, Auger M. Amphiphilicity Is a Key Determinant in the Membrane Interactions of Synthetic 14-mer Cationic Peptide Analogues. Biochemistry 2016; 55:6919-6930. [DOI: 10.1021/acs.biochem.6b00961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | | | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, Institut de
Chimie, 4, Rue Blaise
Pascal, 67070 Strasbourg, France
| | | |
Collapse
|
9
|
SIVARAMAKRISHNA D, SWAMY MUSTIJ. Differential scanning calorimetric and powder X-ray diffraction studies on a homologous series of N-acyl-L-alanine esters with matched chains (n = 9-18). J CHEM SCI 2015. [DOI: 10.1007/s12039-015-0928-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Matsumoto K, Hara H, Fishov I, Mileykovskaya E, Norris V. The membrane: transertion as an organizing principle in membrane heterogeneity. Front Microbiol 2015; 6:572. [PMID: 26124753 PMCID: PMC4464175 DOI: 10.3389/fmicb.2015.00572] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/25/2015] [Indexed: 01/05/2023] Open
Abstract
The bacterial membrane exhibits a significantly heterogeneous distribution of lipids and proteins. This heterogeneity results mainly from lipid-lipid, protein-protein, and lipid-protein associations which are orchestrated by the coupled transcription, translation and insertion of nascent proteins into and through membrane (transertion). Transertion is central not only to the individual assembly and disassembly of large physically linked groups of macromolecules (alias hyperstructures) but also to the interactions between these hyperstructures. We review here these interactions in the context of the processes in Bacillus subtilis and Escherichia coli of nutrient sensing, membrane synthesis, cytoskeletal dynamics, DNA replication, chromosome segregation, and cell division.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Hiroshi Hara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, SaitamaJapan
| | - Itzhak Fishov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-ShevaIsrael
| | - Eugenia Mileykovskaya
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at HoustonHouston, TX, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment EA 4312, Department of Science, University of Rouen, Mont-Saint-AignanFrance
| |
Collapse
|
11
|
Resveratrol interferes with the aggregation of membrane-bound human-IAPP: A molecular dynamics study. Eur J Med Chem 2015; 92:876-81. [DOI: 10.1016/j.ejmech.2015.01.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
|
12
|
Blume A, Hübner W, Müller M, Bäuerle HD. Structure and Dynamics of Lipid Model Membranes: FT-IR- and2H-NMR-Spectroscopic Studies. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/bbpc.198800242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Blosser MC, Starr JB, Turtle CW, Ashcraft J, Keller SL. Minimal effect of lipid charge on membrane miscibility phase behavior in three ternary systems. Biophys J 2014; 104:2629-38. [PMID: 23790371 DOI: 10.1016/j.bpj.2013.04.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 03/11/2013] [Accepted: 04/08/2013] [Indexed: 11/15/2022] Open
Abstract
Giant unilamellar vesicles composed of a ternary mixture of phospholipids and cholesterol exhibit coexisting liquid phases over a range of temperatures and compositions. A significant fraction of lipids in biological membranes are charged. Here, we present phase diagrams of vesicles composed of phosphatidylcholine (PC) lipids, which are zwitterionic; phosphatidylglycerol (PG) lipids, which are anionic; and cholesterol (Chol). Specifically, we use DiPhyPG-DPPC-Chol and DiPhyPC-DPPG-Chol. We show that miscibility in membranes containing charged PG lipids occurs over similarly high temperatures and broad lipid compositions as in corresponding membranes containing only uncharged lipids, and that the presence of salt has a minimal effect. We verified our results in two ways. First, we used mass spectrometry to ensure that charged PC/PG/Chol vesicles formed by gentle hydration have the same composition as the lipid stocks from which they are made. Second, we repeated the experiments by substituting phosphatidylserine for PG as the charged lipid and observed similar phenomena. Our results consistently support the view that monovalent charged lipids have only a minimal effect on lipid miscibility phase behavior in our system.
Collapse
Affiliation(s)
- Matthew C Blosser
- Departments of Chemistry and Physics, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
14
|
Marsh D, Páli T. Orientation and conformation of lipids in crystals of transmembrane proteins. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 42:119-46. [PMID: 22644500 DOI: 10.1007/s00249-012-0816-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/04/2012] [Accepted: 04/15/2012] [Indexed: 11/24/2022]
Abstract
Orientational order parameters and individual dihedral torsion angles are evaluated for phospholipid and glycolipid molecules that are resolved in X-ray structures of integral transmembrane proteins in crystals. The order parameters of the lipid chains and glycerol backbones in protein crystals are characterised by a much wider distribution of orientational order than is found in fluid lipid bilayers and reconstituted lipid-protein membranes. This indicates that the lipids that are resolved in crystals of membrane proteins are mostly not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from C-C bonds in energetically disallowed skew conformations. This suggests configurational heterogeneity of the lipids at a single binding site: eclipsed conformations occur also in the glycerol backbone torsion angles and the C-C torsion angles of the lipid head groups. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid head-group conformations in the protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phosphodiester, that is characteristic of phospholipid bilayer membranes. Stereochemical violations in the protein-bound lipids are evidenced by ester carboxyl groups in non-planar configurations, and even in the cis configuration. Some lipids have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in the phytanyl chains associated with bacteriorhodopsin have the incorrect S configuration.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070, Göttingen, Germany.
| | | |
Collapse
|
15
|
Lateral order in gel, subgel and crystalline phases of lipid membranes: Wide-angle X-ray scattering. Chem Phys Lipids 2012; 165:59-76. [DOI: 10.1016/j.chemphyslip.2011.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 11/21/2022]
|
16
|
Abstract
We describe the specific spectral signature of different phospholipids and sphingolipids in the far infrared. Three specific spectral domains have been found: the head group contributions (600 and 480 cm−1); the modes of the torsion motion of the hydrocarbon chains and of the skeleton vibration (460 to 180 cm−1); and the hydrogen-bonding continuum (below 300 cm−1). Marker bands for individual phospholipids are distinguished.
Collapse
|
17
|
Mishra D, Pal S, Krishnamurty S. Understanding the molecular conformations of Na-dimyristoylphosphatidylglycerol (DMPG) using DFT-based method. MOLECULAR SIMULATION 2011. [DOI: 10.1080/08927022.2011.582105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Loew C, Riske KA, Lamy MT, Seelig J. Thermal phase behavior of DMPG bilayers in aqueous dispersions as revealed by 2H- and 31P-NMR. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10041-10049. [PMID: 21732628 DOI: 10.1021/la201027p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures >30 °C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 °C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 °C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.
Collapse
Affiliation(s)
- Caroline Loew
- Biozentrum, Division of Biophysical Chemistry, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
19
|
Epand RF, Mor A, Epand RM. Lipid complexes with cationic peptides and OAKs; their role in antimicrobial action and in the delivery of antimicrobial agents. Cell Mol Life Sci 2011; 68:2177-88. [PMID: 21573783 PMCID: PMC11114973 DOI: 10.1007/s00018-011-0711-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/31/2022]
Abstract
Antimicrobial agents are toxic to bacteria by a variety of mechanisms. One mechanism that is very dependent on the lipid composition of the bacterial membrane is the clustering of anionic lipid by cationic antimicrobial agents. Certain species of oligo-acyl-lysine (OAK) antimicrobial agents are particularly effective in clustering anionic lipids in mixtures mimicking the composition of bacterial membranes. The clustering of anionic lipids by certain cationic antimicrobial agents contributes to the anti-bacterial action of these agents. Bacterial membrane lipids are a determining factor, resulting in some species of bacteria being more susceptible than others. In addition, lipids can be used to increase the effectiveness of antimicrobial agents when administered in vivo. Therefore, we review some of the structures in which lipid mixtures can assemble, to more effectively be utilized as antimicrobial delivery systems. We describe in more detail the complexes formed between mixtures of lipids mimicking bacterial membranes and an OAK and their usefulness in synergizing with antibiotics to overcome bacterial multidrug resistance.
Collapse
Affiliation(s)
- Raquel F Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada.
| | | | | |
Collapse
|
20
|
Epand RF, Sarig H, Ohana D, Papahadjopoulos-Sternberg B, Mor A, Epand RM. Physical Properties Affecting Cochleate Formation and Morphology Using Antimicrobial Oligo-acyl-lysyl Peptide Mimetics and Mixtures Mimicking the Composition of Bacterial Membranes in the Absence of Divalent Cations. J Phys Chem B 2011; 115:2287-93. [DOI: 10.1021/jp111242q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. F. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - H. Sarig
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | - D. Ohana
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | | | - A. Mor
- Department of Biotechnology & Food Engineering, Technion−Israel Institute of Technology, Haifa, Israel
| | - R. M. Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
21
|
Marsh D. Molecular volumes of phospholipids and glycolipids in membranes. Chem Phys Lipids 2010; 163:667-77. [DOI: 10.1016/j.chemphyslip.2010.06.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/17/2022]
|
22
|
Goursot A, Mineva T, Krishnamurty S, Salahub DR. Structural analysis of phosphatidyl choline lipids and glycerol precursors. CAN J CHEM 2009. [DOI: 10.1139/v09-056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures and stabilities of the glycerol (G) and glycerol 3-phosphate (G3P) isomers have been calculated in the gas phase, using an ab initio density functional theory (DFT) method. The different conformational structures are shown to be at the origin of the various phospholipid conformers, except, obviously, for the alkyl chain torsions. The G3P conformations have been examined taking into account the experimental structures of the complexation sites in the glycerol kinase (GK) and glycerol 3-phosphate acyl transferase (G3PAT) enzymes, which correspond to the first and second steps of the “de novo” phospholipid biogenesis, respectively. The conformational analysis of the glycerophosphate skeleton is shown to determine most of the structural characteristics of the phosphatidyl choline lipids, which differ by the length of their diacyl chains, i.e., dilauroyl (DL), dimyristoyl (DM), and dipalmitoyl (DP) phosphatidylcholines (PC). Higher energy conformers with kinks in the acyl chains have been found, in preparation for molecular dynamics studies of the chain melting phase transformation.
Collapse
Affiliation(s)
- Annick Goursot
- UMR 5253 CNRS/ENSCM/UM2/UM1, Institut Charles Gerhardt Montpellier, 8 rue de l’École Normale, 34296 Montpellier cedex 5, France
- Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630 006, Tamilnadu, India
- Department of Chemistry and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Tzonka Mineva
- UMR 5253 CNRS/ENSCM/UM2/UM1, Institut Charles Gerhardt Montpellier, 8 rue de l’École Normale, 34296 Montpellier cedex 5, France
- Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630 006, Tamilnadu, India
- Department of Chemistry and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Sailaja Krishnamurty
- UMR 5253 CNRS/ENSCM/UM2/UM1, Institut Charles Gerhardt Montpellier, 8 rue de l’École Normale, 34296 Montpellier cedex 5, France
- Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630 006, Tamilnadu, India
- Department of Chemistry and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Dennis R. Salahub
- UMR 5253 CNRS/ENSCM/UM2/UM1, Institut Charles Gerhardt Montpellier, 8 rue de l’École Normale, 34296 Montpellier cedex 5, France
- Functional Materials Division, Central Electrochemical Research Institute, Karaikudi 630 006, Tamilnadu, India
- Department of Chemistry and Institute for Biocomplexity and Informatics, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
23
|
Tolokh IS, Vivcharuk V, Tomberli B, Gray CG. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:031911. [PMID: 19905150 DOI: 10.1103/physreve.80.031911] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 05/28/2009] [Indexed: 05/28/2023]
Abstract
Molecular dynamics (MD) simulations are used to study the interaction of an anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) bilayer with the cationic antimicrobial peptide bovine lactoferricin (LFCinB) in a 100 mM NaCl solution at 310 K. The interaction of LFCinB with a POPG bilayer is employed as a model system for studying the details of membrane adsorption selectivity of cationic antimicrobial peptides. Seventy eight 4 ns MD production run trajectories of the equilibrated system, with six restrained orientations of LFCinB at 13 different separations from the POPG membrane, are generated to determine the free energy profile for the peptide as a function of the distance between LFCinB and the membrane surface. To calculate the profile for this relatively large system, a variant of constrained MD and thermodynamic integration is used. A simplified method for relating the free energy profile to the LFCinB-POPG membrane binding constant is employed to predict a free energy of adsorption of -5.4+/-1.3 kcal/mol and a corresponding maximum adsorption binding force of about 58 pN. We analyze the results using Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions and polarized water from the region between the charged membrane and peptide, as the two approach each other. We contrast these results with those found earlier for adsorption of LFCinB on the mammalianlike palmitoyl-oleoyl-phosphatidylcholine membrane.
Collapse
Affiliation(s)
- Igor S Tolokh
- Department of Physics, University of Guelph, Guelph, Ontario, Canada.
| | | | | | | |
Collapse
|
24
|
Kinoshita M, Kato S, Takahashi H. NaCl-dependent formation of the highly crystalline phase in sufficiently hydrated dimyristoylphosphatidylglycerol bilayers. Chem Phys Lipids 2009; 161:1-10. [DOI: 10.1016/j.chemphyslip.2009.06.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/01/2009] [Accepted: 06/18/2009] [Indexed: 11/15/2022]
|
25
|
Liu J, Yang L, Hopfinger AJ. Affinity of drugs and small biologically active molecules to carbon nanotubes: a pharmacodynamics and nanotoxicity factor? Mol Pharm 2009; 6:873-82. [PMID: 19281188 DOI: 10.1021/mp800197v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The MM-PBSA MD method was used to estimate the affinity, as represented by log k(b), of each of a variety of biologically active molecules to a carbon nanotube in an aqueous environment. These ligand-receptor binding simulations were calibrated by first estimating the log k(b) values for eight ligands to human serum albumin, HSA, whose log k(b) values have been observed. A validation linear correlation equation was established [R(2) = 0.888, Q(2) = 0.603] between the observed and estimated log k(b) values to HSA. This correlation equation was then used to rescale all MM-PBSA MD log k(b) values using a carbon nanotube as the receptor. The log k(b) of the eight HSA ligands, nine polar and/or rigid ligands and six nonpolar and/or flexible ligands to a carbon nanotube were estimated. The range in rescaled log k(b) values across this set of 23 ligands is 0.25 to 7.14, essentially 7 orders of magnitude. Some ligands, like PGI2, bind in the log k(b) = 7 range which corresponds to the lower limits of known drugs. Thus, such significant levels of binding of biologically relevant compounds to carbon nanotubes might lead to alterations in the normal pharmacodynamic profiles of these compounds and be a source of toxicity. Ligand binding potency to a carbon nanotube is largely controlled by the shape, polarity/nonpolarity distribution and flexibility of the ligand. HSA ligands exhibit the most limited binding to a carbon nanotube, and they are relatively rigid and of generally spherical shape. Polar and/or rigid ligands bind less strongly to the carbon nanotube, on average, than nonpolar and/or flexible ligands even though the chosen members of both classes of ligands in this study have chainlike shapes that facilitate binding. The introduction of only a few strategically spaced single bonds in the polar and/or rigid ligands markedly increases their binding to a carbon nanotube.
Collapse
Affiliation(s)
- John Liu
- The Chem21 Group, Inc., Lake Forest, IL 60045, USA
| | | | | |
Collapse
|
26
|
The interactions between phosphatidylglycerol and phosphatidylethanolamines in model bacterial membranes. Colloids Surf B Biointerfaces 2009; 72:32-9. [DOI: 10.1016/j.colsurfb.2009.03.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/08/2009] [Accepted: 03/17/2009] [Indexed: 11/24/2022]
|
27
|
Hénin J, Shinoda W, Klein ML. Models for phosphatidylglycerol lipids put to a structural test. J Phys Chem B 2009; 113:6958-63. [PMID: 19371035 DOI: 10.1021/jp900645z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three atomistic empirical models for phosphatidylglycerol (PG) lipids are tested against structural data in the crystal and liquid crystal states. Simulations of the anhydrous crystal of dimyristoyl-phosphatidylglycerol (DMPG) show that only the CHARMM force field describes the conformation and interactions of PG head groups accurately. The other two models do not reproduce the native network of hydrogen bonds, suggesting the presence of biases in their conformational and nonbonded interaction properties. The CHARMM model is further validated in the biologically relevant liquid crystal phase by comparing experimental small-angle X-ray scattering spectra from DMPG unilamellar vesicles with data calculated from fluid bilayer simulations. The good agreement found in this model-free comparison implies that liquid crystal PG bilayers as described by CHARMM exhibit realistic bilayer thickness and lateral packing. Last, this model is used to simulate a fluid bilayer of palmitoyl-oleoyl-phosphatidylglycerol (POPG). The resulting view of the POPG bilayer structure is at variance with that proposed previously based on simulations, in particular, with respect to lateral packing of head groups and the role of counterions.
Collapse
Affiliation(s)
- Jérôme Hénin
- Center for Molecular Modeling, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA.
| | | | | |
Collapse
|
28
|
Pimthon J, Willumeit R, Lendlein A, Hofmann D. All-atom molecular dynamics simulation studies of fully hydrated gel phase DPPG and DPPE bilayers. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652048709021819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Kamidate T, Komatsu K, Tani H, Ishida A. Direct determination of horseradish peroxidase encapsulated in liposomes by using luminol chemiluminescence. ANAL SCI 2008; 24:477-81. [PMID: 18403838 DOI: 10.2116/analsci.24.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Horseradish peroxidase (HRP) encapsulated in liposomes was directly detected by using luminol chemiluminescence (CL) with H2O2 without lysis of liposomes. At a low concentration of H2O2, the initial rate of HRP-catalyzed luminol CL in liposomes was slower than that of HRP-catalyzed luminol CL in a lipid-free bulk solution. The decrease in the initial rate of the CL reaction in liposomes was due to the membrane permeation of luminol and H2O2. At a high concentration of H2O2, the initial rate of the CL reaction in liposomes was the same as that in a lipid-free bulk solution. The CL measurement conditions in both a lipid-free bulk solution and in liposomes were optimized in the concentrations of luminol and H2O2 by measuring the CL response curves, in which only one peak appeared and the CL intensity was maximal. The CL intensity observed in HRP-catalyzed luminol CL in liposomes was a factor of seven greater than that observed in a lipid-free bulk solution. The CL intensity was dependent on the amount of HRP-encapsulated liposomes used. The detection limit in the direct detection of HRP encapsulated in liposomes was sensitive by a factor of 3 compared with that in HRP-catalyzed luminol CL in a lipid-free bulk solution.
Collapse
Affiliation(s)
- Tamio Kamidate
- Division of Biotechnology and Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
31
|
Kim JH, Kim MW. Temperature effect on the transport dynamics of a small molecule through a liposome bilayer. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 23:313-7. [PMID: 17665090 DOI: 10.1140/epje/i2006-10212-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 06/15/2007] [Indexed: 05/16/2023]
Abstract
An ion having hydrophobic parts can directly transport through the liposome bilayer without an ion channel and its transport mechanism can be explained by the free-volume theory. This was confirmed by investigating the temperature effect on the transport dynamics of organic cations through anionic liposome bilayers made of unsaturated and saturated lipids by using optical second-harmonic generation (SHG) technique. This study provides useful information to design practical temperature-controlled drug delivery systems.
Collapse
Affiliation(s)
- J H Kim
- Department of Physics, Korea Advanced Institute of Science and Technology, 305-701 Daejeon, Korea
| | | |
Collapse
|
32
|
Qiang W, Yang J, Weliky DP. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide to lipid distances reveal the intimate contact of beta strand peptide with membranes and the proximity of the Ala-14-Gly-16 region with lipid headgroups. Biochemistry 2007; 46:4997-5008. [PMID: 17417873 PMCID: PMC2631438 DOI: 10.1021/bi6024808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) infection begins with fusion between viral and host cell membranes and is catalyzed by the HIV gp41 fusion protein. The approximately 20 N-terminal apolar residues of gp41 are called the HIV fusion peptide (HFP), interact with the host cell membrane, and play a key role in fusion. In this study, the membrane location of peptides which contained the HFP sequence (AVGIGALFLGFLGAAGSTMGARS) was probed in samples containing either only phospholipids or phospholipids and cholesterol. Four HFPs were examined which each contained 13CO labeling at three sequential residues between G5 and G16. The 13CO chemical shifts indicated that HFP had predominant beta strand conformation over the labeled residues in the samples. The internuclear distances between the HFP 13CO groups and the lipid 31P atoms were measured using solid-state nuclear magnetic resonance rotational-echo double-resonance experiments. The shortest 13CO-31P distances of 5-6 A were observed for HFP labeled between A14 and G16 and correlated with intimate association of beta strand HFP and membranes. These results were confirmed with measurements using HFPs singly labeled with 13CO at A6 or A14. To our knowledge, these data are the first measurements of distances between HIV fusion peptide nuclei and lipid P, and qualitative models of the membrane location of oligomeric beta strand HFP which are consistent with the experimental data are presented. Observation of intimate contact between beta strand HFP and membranes provides a rationale for further investigation of the relationship between structure and fusion activity for this conformation.
Collapse
Affiliation(s)
- Wei Qiang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Jun Yang
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - David P. Weliky
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
33
|
Mansour HM, Zografi G. The relationship between water vapor absorption and desorption by phospholipids and bilayer phase transitions. J Pharm Sci 2007; 96:377-96. [PMID: 17080427 DOI: 10.1002/jps.20810] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Water vapor absorption and desorption at 25 degrees C and phase transition temperatures of phospholipid bilayers were measured as a function of relative humidity (RH) to better understand how the patterns of water vapor absorption and desorption are linked to corresponding phase changes induced by the level of hydration. Comparisons were made of the dipalmitoyl and palmitoyloleyol esters of glycerol derivatized with phosphatidyl-choline, -glycerol, -ethanolamine and with phosphatidic acid. The results suggest that the extent of water vapor absorption and desorption at a given RH reflects the combined effects of water-polar group interaction and access of water to the polar region as controlled by intra- and interbilayer molecular packing and intermolecular attractive and repulsive interactions. The results further suggest that the extent of water vapor absorption and desorption over a range of relative humidities reflects the combined effects of the polar group's ability to interact with water, the access that water has to the polar groups as determined by molecular size and various intermolecular and intrabilayer forces of attraction and repulsion, and interbilayer interactions which influence the degree of order/disorder present in the overall solid-state structure. This behavior is also reflected in the changes observed in the various bilayer phase transition temperatures as a function of RH. Analyses of absorption isotherms suggests that after exceeding a critical RH, water initially interacting with these phospholipids most likely forms either stoichiometric or nonstoichiometric crystal hydrates, as with the disaturated derivatives, or hydrated mesophases, as with the gel states of the monounsaturated derivatives.
Collapse
Affiliation(s)
- Heidi M Mansour
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA.
| | | |
Collapse
|
34
|
Lewis RNAH, Zweytick D, Pabst G, Lohner K, McElhaney RN. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes. Biophys J 2007; 92:3166-77. [PMID: 17293402 PMCID: PMC1852355 DOI: 10.1529/biophysj.106.094003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The thermotropic phase behavior and organization of aqueous dispersions of the quadruple-chained, anionic phospholipid tetramyristoyl diphosphatidylglycerol or tetramyristoyl cardiolipin (TMCL) was studied by differential scanning calorimetry, x-ray diffraction, (31)P NMR, and Fourier-transform infrared (FTIR) spectroscopy. At physiological pH and ionic strength, our calorimetric studies indicate that fully equilibrated aqueous dispersions of TMCL exhibit two thermotropic phase transitions upon heating. The lower temperature transition is much less cooperative but of relatively high enthalpy and exhibits marked cooling hysteresis, whereas the higher temperature transition is much more cooperative and also exhibits a relatively high enthalpy but with no appreciable cooling hysteresis. Also, the properties of these two-phase transitions are sensitive to the ionic strength of the dispersing buffer. Our spectroscopic and x-ray diffraction data indicate that the lower temperature transition corresponds to a lamellar subgel (L(c)') to gel (L(beta)) phase transition and the higher temperature endotherm to a L(beta) to lamellar liquid-crystalline (L(alpha)) phase transition. At the L(c)'/L(beta) phase transition, there is a fivefold increase of the thickness of the interlamellar aqueous space from approximately 11 A to approximately 50 A, and this value decreases slightly at the L(beta)/L(alpha) phase transition. The bilayer thickness (i.e., the mean phosphate-phosphate distance across the bilayer) increases from 42.8 A to 43.5 A at the L(c)'/L(beta) phase transition, consistent with the loss of the hydrocarbon chain tilt of approximately 12 degrees , and decreases to 37.8 A at the L(beta)/L(alpha) phase transition. The calculated cross-sectional areas of the TMCL molecules are approximately 79 A(2) and approximately 83 A(2) in the L(c)' and L(beta) phases, respectively, and we estimate a value of approximately 100 A(2) in the L(alpha) phase. The combination of x-ray and FTIR spectroscopic data indicate that in the L(c)' phase, TMCL molecules possess tilted all-trans hydrocarbon chains packed into an orthorhombic subcell in which the zig-zag planes of the chains are parallel, while in the L(beta) phase the untilted, all-trans hydrocarbon chains possess rotational mobility and are packed into a hexagonal subcell, as are the conformationally disordered hydrocarbon chains in the L(alpha) phase. Our FTIR spectroscopic results demonstrate that the four carbonyl groups of the TMCL molecule become progressively more hydrated as one proceeds from the L(c)' to the L(beta) and then to the L(alpha) phase, while the two phosphate moieties of the polar headgroup are comparably well hydrated in all three phases. Our (31)P-NMR results indicate that although the polar headgroup retains some mobility in the L(c)' phase, its motion is much more restricted in the L(beta) and especially in the L(alpha) phase than that of other phospholipids. We can explain most of our experimental results on the basis of the relatively small size of the polar headgroup of TMCL relative to other phospholipids and the covalent attachment of the two phosphate moieties to a single glycerol moiety, which results in a partially immobilized polar headgroup that is more exposed to the solvent than in other glycerophospholipids. Finally, we discuss the biological relevance of the unique properties of TMCL to the structure and function of cardiolipin-containing biological membranes.
Collapse
Affiliation(s)
- Ruthven N A H Lewis
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
35
|
Abstract
The recent development of specific probes for lipid molecules has led to the discovery of lipid domains in bacterial membranes, that is, of membrane areas differing in lipid composition. A view of the membrane as a patchwork is replacing the assumption of lipid homogeneity inherent in the fluid mosaic model of Singer and Nicolson (Science 1972, 175: 720-731). If thus membranes have complex lipid structure, questions arise about how it is generated and maintained, and what its function might be. How do lipid domains relate to the functionally distinct regions in bacterial cells as they are identified by protein localization techniques? This review assesses the current knowledge on the existence of cardiolipin (CL) and phosphatidylethanolamine (PE) domains in bacterial cell membranes and on the specific cellular localization of certain membrane proteins, which include phospholipid synthases, and discusses possible mechanisms, both chemical and physiological, for the formation of the lipid domains. We propose that bacterial membranes contain a mosaic of microdomains of CL and PE, which are to a significant extent self-assembled according to their respective intrinsic chemical characteristics. We extend the discussion to the possible relevance of the domains to specific cellular processes, including cell division and sporulation.
Collapse
Affiliation(s)
- Kouji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Technology, Saitama University, 255 Shimo-ohkubo, Saitama 338-8570, Japan.
| | | | | | | |
Collapse
|
36
|
Zhao W, Róg T, Gurtovenko AA, Vattulainen I, Karttunen M. Atomic-scale structure and electrostatics of anionic palmitoyloleoylphosphatidylglycerol lipid bilayers with Na+ counterions. Biophys J 2006; 92:1114-24. [PMID: 17114222 PMCID: PMC1783877 DOI: 10.1529/biophysj.106.086272] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Anionic palmitoyloleoylphosphatidylglycerol (POPG) is one of the most abundant lipids in nature, yet its atomic-scale properties have not received significant attention. Here we report extensive 150-ns molecular dynamics simulations of a pure POPG lipid membrane with sodium counterions. It turns out that the average area per lipid of the POPG bilayer under physiological conditions is approximately 19% smaller than that of a bilayer built from its zwitterionic phosphatidylcholine analog, palmitoyloleoylphosphatidylcholine. This suggests that there are strong attractive interactions between anionic POPG lipids, which overcome the electrostatic repulsion between negative charges of PG headgroups. We demonstrate that interlipid counterion bridges and strong intra- and intermolecular hydrogen bonding play a key role in this seemingly counterintuitive behavior. In particular, the substantial strength and stability of ion-mediated binding between anionic lipid headgroups leads to complexation of PG molecules and ions and formation of large PG-ion clusters that act in a concerted manner. The ion-mediated binding seems to provide a possible molecular-level explanation for the low permeability of PG-containing bacterial membranes to organic solvents: highly polar interactions at the water/membrane interface are able to create a high free energy barrier for hydrophobic molecules such as benzene.
Collapse
Affiliation(s)
- Wei Zhao
- Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki Institute of Physics, Helsinki University of Technology, Espoo
| | | | | | | | | |
Collapse
|
37
|
Miano F, Zhao X, Lu JR, Penfold J. Coadsorption of human milk lactoferrin into the dipalmitoylglycerolphosphatidylcholine phospholipid monolayer spread at the air/water interface. Biophys J 2006; 92:1254-62. [PMID: 17114223 PMCID: PMC1783875 DOI: 10.1529/biophysj.105.078592] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coadsorption of human milk lactoferrin into a spread monolayer of dipalmitoylglycerol phosphatidylcholine (DPPC) at the air/water interface has been studied by neutron reflection. The system is a good model of the preocular tear film outer interface, which was the motivation for the study. The association of the protein with the surface was indicated by an increase of the surface pressure exerted by the DPPC monolayer. The extent of lactoferrin coadsorption was found to decrease with increasing surface pressure in the lipid monolayer, a trend consistent with the observation reported for other proteins, such as lysozyme and beta-lactoglobulin. The neutron reflectivity measurements were subsequently carried out at the three surface pressures of 8, 15, and 35 mN/m to examine the structure and composition of lactoferrin coadsorbed at the interface. Whereas the DPPC monolayer effectively prevented lactoferrin insertion at the high surface pressure, a measurable amount of lactoferrin was found at the air/water interface at the two lower surface pressures. At 15 mN/m it was difficult to identify the distribution of lactoferrin with respect to the DPPC monolayer, due to its relatively low adsorbed amount and much broader distribution. At the lowest surface pressure of 8 mN/m, the lactoferrin coadsorption was found to increase with time over the first few hours. After 5 h the distribution of the lactoferrin layer became similar to, though quantitatively lower than, that adsorbed in the absence of the DPPC monolayer. It is characterized by a top dense sublayer of 15 A with a bottom diffuse sublayer of 60 A, indicating structural unfolding induced by surface adsorption under these conditions.
Collapse
Affiliation(s)
- Fausto Miano
- Società Industria Farmaceutica Italiana SpA, Lavinaio (Catania), Italy
| | | | | | | |
Collapse
|
38
|
Marsh D, Páli T. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Chem Phys Lipids 2006; 141:48-65. [PMID: 16603141 DOI: 10.1016/j.chemphyslip.2006.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Accepted: 02/20/2006] [Indexed: 11/27/2022]
Abstract
Dihedral torsion angles evaluated for the phospholipid molecules resolved in the X-ray structures of transmembrane proteins in crystals are compared with those of phospholipids in bilayer crystals, and with the phospholipid conformations in fluid membranes. Conformations of the lipid glycerol backbone in protein crystals are not restricted to the gauche C1-C2 rotamers found invariably in phospholipid bilayer crystals. Lipid headgroup conformations in protein crystals also do not conform solely to the bent-down conformation, with gauche-gauche configuration of the phospho-diester, that is characteristic of phospholipid bilayer membranes. This suggests that the lipids that are resolved in crystals of membrane proteins are not representative of the entire lipid-protein interface. Much of the chain configurational disorder of the membrane-bound lipids in crystals arises from energetically disallowed skew conformations. This indicates a configurational heterogeneity in the lipids at a single binding site: eclipsed conformations occur also in some glycerol backbone torsion angles and C-C torsion angles in the lipid headgroups. Stereochemical violations in the protein-bound lipids are evidenced by one-third of the ester carboxyl groups in non-planar configurations, and certain of the carboxyls in the cis configuration. Some of the lipid structures in protein crystals have the incorrect enantiomeric configuration of the glycerol backbone, and many of the branched methyl groups in structures of the phytanyl chains associated with bacteriorhodopsin crystals are in the incorrect S-configuration.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abteilung Spektroskopie, Göttingen, Germany.
| | | |
Collapse
|
39
|
Elmore DE. Molecular dynamics simulation of a phosphatidylglycerol membrane. FEBS Lett 2005; 580:144-8. [PMID: 16359668 DOI: 10.1016/j.febslet.2005.11.064] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 11/25/2005] [Indexed: 11/19/2022]
Abstract
Although molecular dynamics simulations are an important tool for studying membrane systems, relatively few simulations have used anionic lipids. This paper reports the first simulation of a pure phosphatidylglycerol (PG) bilayer. The properties of this equilibrated palmitoyloleoylphosphatidylglycerol membrane agree with experimental observations of PG membranes and with previous simulations of monolayers and mixed bilayers containing PG lipids. These simulations also provide interesting insights into hydrogen bonding interactions in PG membranes. This equilibrated membrane will be a useful starting point for simulations of membrane proteins interacting with PG lipids.
Collapse
Affiliation(s)
- Donald E Elmore
- Department of Chemistry, Wellesley College, 106 Central St., Wellesley, MA 02481, USA.
| |
Collapse
|
40
|
Liu J, Li Y, Pan D, Hopfinger AJ. Predicting permeability coefficient in ADMET evaluation by using different membranes-interaction QSAR. Int J Pharm 2005; 304:115-23. [PMID: 16182478 DOI: 10.1016/j.ijpharm.2005.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/07/2005] [Accepted: 08/01/2005] [Indexed: 11/22/2022]
Abstract
Membrane-interaction quantitative structure activity relationship (MI-QSAR) analysis was applied to a data set with 18 compounds in 18 different membranes. MI-QSAR was used to estimate the ADMET properties including the transport of organic solutes through biological membranes. The most important descriptors are the aqueous solvation free energy, FH2O, and diffusion coefficient for all membranes. The correlation coefficient, r2, and cross-validation correlation coefficient, q2, for DMPG membrane is 0.850 and 0.770, respectively. The relationship between FH2O and permeability is nonlinear. But the detail effect of aqueous solvation free energy and diffusion coefficient to the permeability depends on the type of membrane. The final models also support the solution-diffusion mechanism of transport is important in membrane.
Collapse
Affiliation(s)
- Jianzhong Liu
- Laboratory of Molecular Modeling and Design (M/C 781), College of Pharmacy, The University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA.
| | | | | | | |
Collapse
|
41
|
Marsh D, Páli T. The protein–lipid interface: perspectives from magnetic resonance and crystal structures. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:118-41. [PMID: 15519312 DOI: 10.1016/j.bbamem.2004.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 08/13/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
Lipid-protein interactions in membranes are dynamic, and consequently are well studied by magnetic resonance spectroscopy. More recently, lipids associated with integral membrane proteins have been resolved in crystals by X-ray diffraction, mostly at cryogenic temperatures. The conformation and chain ordering of lipids in crystals of integral proteins are reviewed here and are compared and contrasted with results from magnetic resonance and with the crystal structures of phospholipid bilayers. Various aspects of spin-label magnetic resonance studies on lipid interactions with single integral proteins are also reviewed: specificity for phosphatidylcholine, competition with local anaesthetics, oligomer formation of single transmembrane helices, and protein-linked lipid chains. Finally, the interactions between integral proteins and peripheral or lipid-linked proteins, as reflected by the lipid-protein interactions in double reconstitutions, are considered.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, Abt. Spektroskopie, 37070 Göttingen, Germany.
| | | |
Collapse
|
42
|
Grigoriev D, Miller R, Wüstneck R, Wüstneck N, Pison U, Möhwald H. A Novel Method To Evaluate the Phase Transition Thermodynamics of Langmuir Monolayers. Application to DPPG Monolayers Affected by Subphase Composition. J Phys Chem B 2003. [DOI: 10.1021/jp0308662] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D. Grigoriev
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| | - R. Miller
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| | - R. Wüstneck
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| | - N. Wüstneck
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| | - U. Pison
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| | - H. Möhwald
- Max-Planck Institut für Kolloid- und Grenzflächenforschung, D-14424 Potsdam, Germany, St.-Petersburg State University, Institute of Chemistry, Universitetskiy pr. 2, St.-Petersburg, 198904 Russia, Sodtkestrasse 20, 10409 Berlin, Germany, and Humboldt University, Virchow Klinikum, Augustenburger Pl. 1, D-13344 Berlin, Germany
| |
Collapse
|
43
|
Abstract
Dihedral angles are evaluated for the phospholipid ligands of the lipid-binding proteins found in the Protein Data Base (PDB). Phospholipid structures occur with a trans C1-C2 configuration of the glycerol backbone and oppositely extended chains, in addition to the gauche C1-C2 rotamers found in membranes. Headgroup conformations are not restricted to the single bent-down configuration and gauche-gauche configuration of the phosphodiester that is found in phospholipid crystals. Additionally, fully extended headgroups and orientations directed away from the lipid chains are found for phospholipids in the protein binding pockets. On average, the hydrocarbon chains of the protein-bound lipids are conformationally more disordered than in fluid bilayer membranes. However, much of this configurational disorder arises from energetically disallowed skew conformations. This suggests a configurational heterogeneity in the lipids at a single binding site: Eclipsed conformations occur also in some lipid headgroups and glycerol backbones. Stereochemical violations appear for some of the ester carboxyl groups of the protein-bound phospholipids in the PDB, and two glycerol backbones have the incorrect enantiomeric configuration.
Collapse
Affiliation(s)
- Derek Marsh
- Max-Planck-Institut für biophysikalische Chemie, 37070 Göttingen, Germany.
| |
Collapse
|
44
|
Richard JA, Kelly I, Marion D, Pézolet M, Auger M. Interaction between beta-Purothionin and dimyristoylphosphatidylglycerol: a (31)P-NMR and infrared spectroscopic study. Biophys J 2002; 83:2074-83. [PMID: 12324425 PMCID: PMC1302296 DOI: 10.1016/s0006-3495(02)73968-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The interaction of beta-purothionin, a small basic and antimicrobial protein from the endosperm of wheat seeds, with multilamellar vesicles of dimyristoylphosphatidylglycerol (DMPG) was investigated by (31)P solid-state NMR and infrared spectroscopy. NMR was used to study the organization and dynamics of DMPG in the absence and presence of beta-purothionin. The results indicate that beta-purothionin does not induce the formation of nonlamellar phases in DMPG. Two-dimensional exchange spectroscopy shows that beta-purothionin decreases the lateral diffusion of DMPG in the fluid phase. Infrared spectroscopy was used to investigate the perturbations, induced by beta-purothionin, of the polar and nonpolar regions of the phospholipid bilayers. At low concentration of beta-purothionin, the temperature of the gel-to-fluid phase transition of DMPG increases from 24 degrees C to ~33 degrees C, in agreement with the formation of electrostatic interactions between the cationic protein and the anionic phospholipid. At higher protein concentration, the lipid transition is slightly shifted toward lower temperature and a second transition is observed below 20 degrees C, suggesting an insertion of the protein in the hydrophobic core of the lipid bilayer. The results also suggest that the presence of beta-purothionin significantly modifies the lipid packing at the surface of the bilayer to increase the accessibility of water molecules in the interfacial region. Finally, orientation measurements indicate that the alpha-helices and the beta-sheet of beta-purothionin have tilt angles of ~60 degrees and 30 degrees, respectively, relative to the normal of the ATR crystal.
Collapse
Affiliation(s)
- Julie-Andrée Richard
- Département de Chimie, Centre de Recherche en Sciences et Ingénierie des Macromolécules, Université Laval, Québec G1K 7P4, Canada
| | | | | | | | | |
Collapse
|
45
|
Meyer HW, Richter W, Rettig W, Stumpf M. Bilayer fragments and bilayered micelles (bicelles) of dimyristoylphosphatidylglycerol (DMPG) are induced by storage in distilled water at 4°C. Colloids Surf A Physicochem Eng Asp 2001. [DOI: 10.1016/s0927-7757(01)00561-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Lohner K, Latal A, Degovics G, Garidel P. Packing characteristics of a model system mimicking cytoplasmic bacterial membranes. Chem Phys Lipids 2001; 111:177-92. [PMID: 11457444 DOI: 10.1016/s0009-3084(01)00157-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The phase diagram of fully hydrated mixtures of dipalmitoylphosphatidylethanolamine and -phosphatidylglycerol was constructed and the coexistence lines of the solidus and liquidus curve calculated based on regular solution theory using two nonideality parameters for each of the phase to account for nonideal and nonsymmetric mixing. Both lipids show nonideal miscibility in the liquid-crystalline phase, while a region of immiscibility exists in the lamellar-gel phase between the mole fraction x(DPPE)=0.05-0.4. Two lines of three-phase coexistence around 35 and 40 degrees C reflects the presence of lipid domains predominantly composed of phosphatidylglycerol as well as of the mixed lipid system. This is reflected in the positive nonideality parameters of the gel phase obtained from the simulation of the phase diagram. Moreover, segregation of pure phosphatidylethanolamine domains was detected in mixtures x(DPPE)>0.9, which formed multilamellar liposomes, while unilamellarity was observed for the mixed lipid systems owing to the presence of the negatively charged phosphatidylglycerol. The packing constraints of these phospholipids, major components of cytoplasmic bacterial membranes, may be of importance in the interaction with various solutes like antimicrobial peptides, and were explained based on the nature of the headgroups and the molecular geometry of the phospholipids.
Collapse
Affiliation(s)
- K Lohner
- Institut für Biophysik und Röntgenstrukturforschung, Osterreichische Akademie der Wissenschaften, Schmiedlstrasse 6, A-8042, Graz, Austria.
| | | | | | | |
Collapse
|
47
|
Förster G, Meister A, Blume A. Chain packing modes in crystalline surfactant and lipid bilayers. Curr Opin Colloid Interface Sci 2001. [DOI: 10.1016/s1359-0294(01)00091-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Pollastri MP, Porter NA, McIntosh TJ, Simon SA. Synthesis, structure, and thermal properties of 1,2-dipalmitoylgalloylglycerol (DPGG), a novel self-adhering lipid. Chem Phys Lipids 2000; 104:67-74. [PMID: 10660213 DOI: 10.1016/s0009-3084(99)00110-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A novel diacyl glycerol-based lipid with a polyphenolic head group has been synthesized and characterized. X-ray diffraction experiments show that this lipid, 1,2-dipalmitoylgalloylglycerol (DPGG), hydrates to form gel phase bilayers at 20 degrees C with extremely narrow interbilayer fluid separations, indicating that apposing DPGG bilayers strongly adhere to each other. Differential scanning calorimetry shows that fully hydrated DPGG exhibits a pretransition exotherm (3.7 kcal/mol) at 52 degrees C and a high enthalpy (11.3 kcal/mol) main endothermic transition at 69 degrees C. These thermal properties are similar to those of galactosylceramides with similar hydrocarbon chain compositions. The adhesive and thermal properties of DPGG are likely due to both intermolecular hydrogen-bonding and hydrophobic interactions between the aromatic rings on the gallic acids.
Collapse
Affiliation(s)
- M P Pollastri
- Department of Chemistry, Duke University, Durham, NC 27706, USA
| | | | | | | |
Collapse
|
49
|
Huang C, Li S. Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1422:273-307. [PMID: 10548720 DOI: 10.1016/s0005-2736(99)00099-1] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In this review, we summarize the results of recent studies on the main phase transition behavior of phospholipid bilayers using the combined approaches of molecular mechanics simulations and high-resolution differential scanning calorimetry. Following a brief overview of the phase transition phenomenon exhibited by the lipid bilayer, we begin with the review by showing how several structural parameters underlying various phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol are defined and determined. Specifically, these structural parameters are obtained with saturated lipids packed in the gel-state bilayer using computer-based molecular mechanics calculations. Then we proceed to present the calorimetric data obtained with the lipid bilayer composed of saturated phospholipids as it undergoes the gel-to-liquid-crystalline phase transition in excess water. The general equations that can correlate the gel-to-liquid-crystalline phase transition temperature (T(m)) of the lipid bilayer with the structural parameters of the lipid molecule constituting the lipid bilayer are subsequently presented. From these equations, two tables of predicated T(m) values for well over 400 molecular species of saturated phosphatidylcholine and saturated phosphatidylethanolamine are generated. We further review the structure and chain-melting behavior of a large number of sn-1 saturated/sn-2 unsaturated phospholipids. Two T(m)-diagrams are shown, from which the effects of the number and the position of one to five cis carbon-carbon double bonds on T(m) can be viewed simultaneously. Finally, in the last part of this review, simple molecular models that have been invoked to interpret the characteristic T(m) trends exhibited by lipid bilayers composed of unsaturated lipids with different numbers and positions of cis carbon-carbon double bonds as seen in the T(m)-diagram are presented.
Collapse
Affiliation(s)
- C Huang
- Department of Biochemistry, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | | |
Collapse
|
50
|
Del Mar Martínez-Senac M, Villalaín J, Gómez-Fernández JC. Structure of the Alzheimer beta-amyloid peptide (25-35) and its interaction with negatively charged phospholipid vesicles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 265:744-53. [PMID: 10504406 DOI: 10.1046/j.1432-1327.1999.00775.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The secondary structure of amyloid betaAP(25-35) peptide was studied in pure form and in the presence of different phospholipid vesicles, by using Fourier transform infrared spectroscopy (FT-IR). Pure peptide aggregated with time, forming fibrils with beta-structure. Phospholipid vesicles formed by negatively charged phospholipids such as 1,2-dimyristoyl-sn-glycerol-3-phospho-L-serine (Myr2PtdSer), 1,2-dimyristoyl-sn-glycerol-3-phospho-rac-1-glycerol (Myr2PtdGro) and 1,2-dimyristoyl-sn-glycerol 3-phosphate (Myr2PtdH), greatly accelerated the aggregation of the peptide. However, the presence of vesicles formed by the zwitterionic phospholipid, 1, 2-dimyristoyl-sn-glycerol-3-phosphocholine (Myr2PtdCho), slowed down the aggregation process. Differential scanning calorimetry (DSC) measurements showed that the effect of betaAP(25-35) on the gel to crystal liquid phase transition was small at neutral pH for negatively charged phospholipids and practically nil for Myr2PtdCho. In the case of Myr2PtdSer the effect was also zero at pH 9 but the effect was large at pH 3. The effect on Myr2PtdH was not, however, very dependent on pH. These results were fully confirmed by the observation through FT-IR of the change with temperature of the CH2 antisymmetric stretching vibration. The case of Myr2PtdGro was special as this phospholipid presents polymorphism giving solid quasicrystalline phases when it is not sufficiently hydrated, and it is remarkable that betaAP(25-35) was able to induce the formation of crystalline phases in samples prepared through a method which ensure a good hydration of phospholipid. These results show that the interaction of amyloid betaAP(25-35) peptide with phospholipids is based on electrostatic interactions, that these interactions favour the aggregation of the peptides, and that the presence of the aggregates may disturb the lipid-water interphase of the membrane.
Collapse
Affiliation(s)
- M Del Mar Martínez-Senac
- Departamento de Bioquímica y Biología Molecular 'A', Facultad de Veterinaria, Universidad de Murcia, Spain
| | | | | |
Collapse
|