1
|
Suleiman E, Mayer J, Lehner E, Kohlhauser B, Katholnig A, Batzoni M, Damm D, Temchura V, Wagner A, Überla K, Vorauer-Uhl K. Conjugation of Native-Like HIV-1 Envelope Trimers onto Liposomes Using EDC/Sulfo-NHS Chemistry: Requirements and Limitations. Pharmaceutics 2020; 12:E979. [PMID: 33081278 PMCID: PMC7589475 DOI: 10.3390/pharmaceutics12100979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/29/2022] Open
Abstract
The display of native-like human immunodeficiency virus type 1 envelope (HIV-1 Env) trimers on liposomes has gained wide attention over the last few years. Currently, available methods have enabled the preparation of Env-liposome conjugates of unprecedented quality. However, these protocols require the Env trimer to be tagged and/or to carry a specific functional group. For this reason, we have investigated N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide/N-Hydroxysulfosuccinimide (EDC/Sulfo-NHS) chemistry for its potential to covalently conjugate tag-free, non-functionalized native-like Env trimers onto the surface of carboxyl-functionalized liposomes. The preservation of the liposome's physical integrity and the immunogen's conformation required a fine-tuned two-step approach based on the controlled use of β-mercaptoethanol. The display of Env trimers was strictly limited to activated liposomes of positive charge, i.e., liposomes with a positive zeta potential that carry amine-reactive Sulfo-NHS esters on their surface. In agreement with that, conjugation was found to be highly ionic strength- and pH-dependent. Overall, we have identified electrostatic pre-concentration (i.e., close proximity between negatively charged Env trimers and positively charged liposomes established through electrostatic attraction) to be crucial for conjugation reactions to proceed. The present study highlights the requirements and limitations of potentially scalable EDC/Sulfo-NHS-based approaches and represents a solid basis for further research into the controlled conjugation of tag-free, non-functionalized native-like Env trimers on the surface of liposomes, and other nanoparticles.
Collapse
Affiliation(s)
- Ehsan Suleiman
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Julia Mayer
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Elisabeth Lehner
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Bianca Kohlhauser
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- University of Vienna, 1010 Vienna, Austria
| | - Alexandra Katholnig
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| | - Mirjam Batzoni
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
- FH Campus Wien, University of Applied Sciences, 1100 Vienna, Austria
| | - Dominik Damm
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Vladimir Temchura
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Andreas Wagner
- Polymun Scientific Immunbiologische Forschung GmbH, 3400 Klosterneuburg, Austria;
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (D.D.); (V.T.); (K.Ü.)
| | - Karola Vorauer-Uhl
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (J.M.); (E.L.); (B.K.); (A.K.); (M.B.); (K.V.-U.)
| |
Collapse
|
2
|
Sakurai T, Hashikura N, Minami J, Yamada A, Odamaki T, Xiao JZ. Tolerance mechanisms of human-residential bifidobacteria against lysozyme. Anaerobe 2017; 47:104-110. [PMID: 28478277 DOI: 10.1016/j.anaerobe.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/24/2017] [Accepted: 05/01/2017] [Indexed: 12/31/2022]
Abstract
We previously reported that lysozyme present in breast milk is a selection factor for bifidobacterial colonization in infant human intestines. This study is aimed at examining their underlying mechanisms. Human-residential bifidobacteria (HRB) generally exhibited higher tolerance than non-HRB to lysozymes, except B. bifidum subspecies. To assess the involvement of enzymatic activity of lysozyme, peptidoglycan (PG) was isolated and the degree of O-acetylation (O-Ac) in 19 strains, including both HRB and non-HRB, was determined. Variety in the degree of O-Ac was observed among each of the Bifidobacterium species; however, all purified PGs were found to be tolerant to lysozyme, independent of their O-Ac degree. In addition, De-O-Ac of PGs affected the sensitivity to lysozyme of only B. longum-derived PG. To examine the non-enzymatic antibacterial activity of lysozyme on bifidobacteria, lysozyme was heat-denatured. The HRB and non-HRB strains exhibited similar patterns of susceptibility to intact lysozyme as they did to heat-denatured lysozyme. In addition, strains of B. bifidum (30 strains), which showed various tolerance of lysozyme, also exhibited similar patterns of susceptibility to intact lysozyme as they did to heat-denatured lysozyme. These results suggest that bifidobacteria are resistant to the peptidoglycan-degrading property of lysozyme, and the tolerance to lysozyme among some HRB strains is due to resistance to the non-enzymatic antibacterial activity of lysozyme.
Collapse
Affiliation(s)
- Takuma Sakurai
- Morinaga Milk Industry Co., LTD, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Nanami Hashikura
- Morinaga Milk Industry Co., LTD, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Junichi Minami
- Morinaga Milk Industry Co., LTD, Food Ingredients & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Akio Yamada
- Morinaga Milk Industry Co., LTD, Food Ingredients & Technology Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Toshitaka Odamaki
- Morinaga Milk Industry Co., LTD, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan
| | - Jin-Zhong Xiao
- Morinaga Milk Industry Co., LTD, Next Generation Science Institute, 1-83, 5-Chome, Higashihara, Zama-City, Kanagawa-Pref. 252-8583, Japan.
| |
Collapse
|
3
|
Ohno M, Toyota T, Nomoto T, Fujinami M. Interfacial tension in adsorption of lysozyme onto a lipid monolayer formed at a water/chloroform interface. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Xue M, Findenegg GH. Lysozyme as a pH-responsive valve for the controlled release of guest molecules from mesoporous silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17578-84. [PMID: 23173551 DOI: 10.1021/la304152j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Mesoporous silica nanoparticles show promise as a drug-carrier vehicle for biomedical applications, but the development of simple, biocompatible capping systems has remained a challenge. We have found that lysozyme molecules can act as a pH-responsive nanovalve to block and unlock the pore entrances of MCM-41 nanoparticles for guest molecules. Our experiments indicate that pore blocking is due to a pH-induced conformational change by which the effective size of the protein is changed in a reversible manner. This effect may form the basis of a controlled-release system without the need to functionalize the pore mouth and caps.
Collapse
Affiliation(s)
- Mengjun Xue
- Institut für Chemie, Stranski-Laboratorium, TC 7, Technische Universität Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | | |
Collapse
|
5
|
Affiliation(s)
- Bhuvnesh Bharti
- Stranski Laboratorium, Institut für Chemie, Technische Universität Berlin
| | | |
Collapse
|
6
|
Bharti B, Meissner J, Findenegg GH. Aggregation of silica nanoparticles directed by adsorption of lysozyme. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:9823-33. [PMID: 21728288 DOI: 10.1021/la201898v] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The interaction of the globular protein lysozyme with silica nanoparticles of diameter 20 nm was studied in a pH range between the isoelectric points (IEPs) of silica and the protein (pH 3-11). The adsorption affinity and capacity of lysozyme on the silica particles is increasing progressively with pH, and the adsorbed protein induces bridging aggregation of the silica particles. Structural properties of the aggregates were studied as a function of pH at a fixed protein-to-silica concentration ratio which corresponds to a surface concentration of protein well below a complete monolayer in the complete-binding regime at pH > 6. Sedimentation studies indicate the presence of compact aggregates at pH 4-6 and a loose flocculated network at pH 7-9, followed by a sharp decrease of aggregate size near the IEP of lysozyme. The structure of the bridged silica aggregates was studied by cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering. The structure factor S(q) derived from the scattering profiles displays characteristic features of particles interacting by a short-range attractive potential and can be represented by the square-well Percus-Yevick potential model, with a potential depth not exceeding 3k(B)T.
Collapse
Affiliation(s)
- Bhuvnesh Bharti
- Institut für Chemie, Stranski Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, D-10623 Berlin, Germany
| | | | | |
Collapse
|
7
|
Comparative analysis of the electrostatics of the binding of cationic proteins to vesicles: Asymmetric location of anionic phospholipids. Anal Chim Acta 2009; 654:2-10. [DOI: 10.1016/j.aca.2009.08.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/24/2009] [Accepted: 08/14/2009] [Indexed: 11/23/2022]
|
8
|
Torrens F, Castellano G, Campos A, Abad C. Binding of water-soluble, globular proteins to anionic model membranes. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.12.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Chaudhary N, Nagaraj R. Hen lysozyme amyloid fibrils induce aggregation of erythrocytes and lipid vesicles. Mol Cell Biochem 2009; 328:209-15. [DOI: 10.1007/s11010-009-0091-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 03/11/2009] [Indexed: 11/30/2022]
|
10
|
Abstract
We have analysed by means of turbidimetric, dynamic light scattering (DLS), and fluorimetric techniques the effect of lysozyme on negatively charged oleic acid/oleate vesicles. The addition of lysozyme brings about a decrease in optical density of the vesicle population, which finally results in a size distribution of oleate vesicles shifted toward smaller mean diameters. On the contrary, (a) when phosphatidylserine vesicles were used, lysozyme induces an increase of turbidity and a shift toward larger vesicle sizes; and (b) the addition of histone H1 or poly-L-lysine produces an aggregative behavior both in oleate and in phosphatidylserine vesicles. Experiments carried out with calcein-containing vesicles indicate that the observed changes in the lysozyme/oleate system occur with partial leakage of the vesicle content. All this is taken to suggest that the interaction between lysozyme and oleate vesicles is of quite specific nature, and certainly not just due to electrostatic interactions.
Collapse
|
11
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049109071495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Gorbenko GP, Ioffe VM, Molotkovsky JG, Kinnunen PK. Resonance energy transfer study of lysozyme–lipid interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1213-21. [DOI: 10.1016/j.bbamem.2007.09.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Revised: 09/06/2007] [Accepted: 09/17/2007] [Indexed: 11/24/2022]
|
13
|
Gorbenko GP, Ioffe VM, Kinnunen PKJ. Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association. Biophys J 2007; 93:140-53. [PMID: 17434939 PMCID: PMC1914450 DOI: 10.1529/biophysj.106.102749] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biological functions of lysozyme, including its antimicrobial, antitumor, and immune-modulatory activities have been suggested to be largely determined by the lipid binding properties of this protein. To gain further insight into these interactions on a molecular level the association of lysozyme to liposomes composed of either 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or its mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-glycerol, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-rac-phosphatidylserine, or bovine heart cardiolipin was studied by a combination of fluorescence techniques. The characteristics of the adsorption of lysozyme to lipid bilayers were investigated using fluorescein 5'-isothiocyanate labeled protein, responding to membrane association by a decrease in fluorescence. Upon increasing the content of anionic phospholipids in lipid vesicles, the binding isotherms changed from Langmuir-like to sigmoidal. Using adsorption models based on scaled particle and double-layer theories, this finding was rationalized in terms of self-association of the membrane-bound protein. The extent of quenching of lysozyme tryptophan fluorescence by acrylamide decreased upon membrane binding, revealing a conformational transition for the protein upon its surface association, resulting in a diminished access of the fluorophore to the aqueous phase. Steady-state fluorescence anisotropy of bilayer-incorporated probe 1,6-diphenyl-1,3,5-hexatriene was measured at varying lipid-to-protein molar ratios. Lysozyme was found to increase acyl-chain order for liposomes with the content of acidic phospholipid exceeding 10 mol %. Both electrostatic and hydrophobic protein-lipid interactions can be concluded to modulate the aggregation behavior of lysozyme when bound to lipid bilayers. Modulation of lysozyme aggregation propensity by membrane binding may have important implications for protein fibrillogenesis in vivo. Disruption of membrane integrity by the aggregated protein species is likely to be the mechanism responsible for the cytotoxicity of lysozyme.
Collapse
Affiliation(s)
- Galyna P Gorbenko
- Department of Biological and Medical Physics, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | | | | |
Collapse
|
14
|
Zschörnig O, Paasche G, Thieme C, Korb N, Arnold K. Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf B Biointerfaces 2005; 42:69-78. [PMID: 15784328 DOI: 10.1016/j.colsurfb.2005.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2005] [Indexed: 11/23/2022]
Abstract
Lysozyme is a globular protein which is known to bind to negatively charged phospholipid vesicles. In order to study the relationship between charge state of the protein and its interaction with negatively charged phospholipid membranes chemical modifications of the proteins were carried out. Succinylation and carbodiimide modification was used to shift the isoelectric point of lysozyme to lower and higher pH values, respectively. The binding of the modified lysozyme to phospholipid vesicles prepared from phosphatidic acid (PA) was determined using microelectrophoresis and ultracentrifugation. At acidic pH of the solution all lysozyme species reduced the surface charges of PA vesicles. Succinylated lysozyme (succ lysozyme) reduced the electrophoretic mobility (EPM) to nearly zero, whereas native lysozyme and carboxylated lysozyme (carbo lysozyme) changed the surface charge to positive values. At neutral pH, the reduction of surface charges was less for carbo lysozyme and unmodified lysozyme. Succ lysozyme did not change the EPM. Unmodified and carbo lysozyme decreased the magnitude of EPM, but the whole complex was still negatively charged. The bound fraction of all modified lysozyme to PA vesicles at high lysozyme/PA ratios was nearly constant at acidic pH. At low lysozyme/PA ratios the extent of bound lysozyme is changed in the order carbo>unmodified>succ lysozyme. Increasing the pH, the extent of bound lysozyme to PA large unilamellar vesicles (LUV) is reduced, at pH 9.0 only 35% of carbo lysozyme, 23% of unmodified lysozyme is bound, whereas succ lysozyme does not bind at pH 7.4 and 9.0. At low pH, addition of all lysozyme species resulted in a massive aggregation of PA liposomes, at neutral pH aggregation occurs at much higher lysozyme/PA ratios. Lysozyme binding to PA vesicles is accompanied by the penetration of lysozyme into the phospholipid membrane as measured by monolayer techniques. The penetration of lysozyme into the monolayer was modulated by pH and ionic strengths. The interaction of lysozyme with negatively charged vesicles leads to a decrease of the phospholipid vesicle surface hydration as measured by the shift of the maximum of the fluorescence signal of a headgroup labeled phospholipid. The binding of bis-ANS as an additional indicator for the change of surface hydrophobicity is increased at low pH after addition of lysozyme to the vesicles. More hydrophobic patches of the lysozyme-PA complex are exposed at low pH. At low pH the binding process of lysozyme to PA vesicles is followed by an extensive intermixing of phospholipids between the aggregated vesicles, accompanied by a massive leakage of the vesicle aqueous content. The extent of lysozyme interaction with PA LUV at neutral and acidic pH is in the order carbo lysozyme>lysozyme>succ lysozyme.
Collapse
Affiliation(s)
- Olaf Zschörnig
- University of Leipzig, Institute for Medical Physics and Biophysics, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
15
|
Zschörnig O, Opitz F, Pittler J. Interaction of proteins with liposomes as detected by microelectrophoresis and fluorescence. Methods Enzymol 2003; 372:48-64. [PMID: 14610806 DOI: 10.1016/s0076-6879(03)72003-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Olaf Zschörnig
- University of Leipzig, Institute for Medical Physics and Biophysics, Liebigstrasse 27, Leipzig D-04103, Germany
| | | | | |
Collapse
|
16
|
Vechetti GF, de Arcuri BF, Posse E, Arrondo JL, Morero RD. Aggregation, fusion and aqueous content release from liposomes induced by lysozyme derivatives: effect on the lytic activity. Mol Membr Biol 1997; 14:137-42. [PMID: 9394294 DOI: 10.3109/09687689709048174] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chemically modified lysozymes, namely: N-succinyl lysozyme, glycine methyl ester of N-succinyl lysozyme and oxoindole lysozyme have been prepared. Aggregation, fusion and leakage of phospholipid vesicles induced by these derivatives have been studied in comparison with the effect of the unmodified protein. The experiments were carried out with negatively charges 9PC/PA, 9:1) and uncharged (PC and PC/DOPE/Chol (10:5:5)) lipid vesicles of different packing. Fusion and aggregation of negatively charged phospholipid vesicles in induced by proteins positively charged at pH 7.0 involving electrostatic interactions, a similar pattern on fusion and aggregation of the least stably packed lipid vesicles points also to hydrophobic forces playing a role in the lipid-protein interaction. A conformational change of the protein involved increasing beta-turns, loops and unordered structure at the expenses of beta-sheet without affecting alpha helix content. The conformational effect is necessary to provoke the effects studied, since one of the derivatives (N-succinyl lysozyme) neither changes conformation nor causes aggregation and fusion of vesicles. However, there is no relationship between lysozyme activity and fusion or aggregation of lipid vesicles that catalytic and fusogenci sites of, indicating lysozyme are topographically different.
Collapse
Affiliation(s)
- G F Vechetti
- Departamento Bioquímica de la Nutrición, Instituto de Química Biológica Dr. B. Bloj, Facultad de Bioquímica, Química y Farmacia, (CONICET-UNT) 4000 San Miguel de Tucamán, Argentina
| | | | | | | | | |
Collapse
|
17
|
Posse E, De Arcuri BF, Morero RD. Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1193:101-6. [PMID: 8038179 DOI: 10.1016/0005-2736(94)90338-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously demonstrated that lysozyme induced fusion of negatively charged phospholipid vesicles and have stressed the importance of electrostatic interactions (Posse, E. et al. (1990) Biochim. Biophys. Acta 1024, 390-394). Using centrifugation and fluorescence polarization techniques, we show, in the present paper that lysozyme interacts with negatively charged liposomes (PC/PA, 9:1), but also with neutral liposomes (pure PC). Moreover, the ionic strength and pH of the media did not modify the protein-liposomes interactions. Such interactions induce the spontaneous release of encapsulated Tb-DPA complex in liposomes. Release and fusion of PC/PA liposomes were observed. As indicated by kinetic studies and substrate curves, fusion and release are two uncoupled processes. Taking these and previous results into account we suggest a hypothetical mechanism where a relationship between aggregation, leakage and fusion of liposomes induced by lysozyme interaction is established.
Collapse
Affiliation(s)
- E Posse
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
18
|
|
19
|
Cserháti T, Szögyi M. Interaction of phospholipids with proteins and peptides. New advances 1990. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1992; 24:525-37. [PMID: 1516725 DOI: 10.1016/0020-711x(92)90323-s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. The review deals with the recent achievements in the study of the various interactions of phospholipids with proteins and peptides. 2. The interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. 3. The effect of the interaction on the structure and biological activity of the interacting molecules is also discussed.
Collapse
Affiliation(s)
- T Cserháti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
20
|
Arnold K, Hoekstra D, Ohki S. Association of lysozyme to phospholipid surfaces and vesicle fusion. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1124:88-94. [PMID: 1543731 DOI: 10.1016/0005-2760(92)90130-n] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lysozyme-induced fusion of phosphatidylserine (PS) vesicles was studied as a function of pH. Fusion, monitored by lipid-mixing, was measured by following the dilution of pyrene-labelled phosphatidylcholine, incorporated in PS vesicles, into unlabelled bilayers. It is demonstrated that lysozyme-induced fusion is pH-dependent and significant fusion is triggered at pH 5 or below. The interaction of lysozyme with the vesicle bilayer was characterized by measuring resonance energy transfer from tryptophane, present in the protein, to pyrene. It is shown that concomitant with fusion, a strong resonance energy transfer signal appears at pH 5 or below. Furthermore, in monolayer experiments it was found that addition of lysozyme to the subphase caused an increase in surface pressure, when the pH was kept below 5.5. Very low concentrations of lysozyme sufficed to bring about the observed effects. The results are taken to indicate that lysozyme-induced fusion results from penetration of protein into the hydrophobic core of the bilayer, occurring at acidic pH.
Collapse
Affiliation(s)
- K Arnold
- Department of Biophysical Sciences, State University of New York, Buffalo
| | | | | |
Collapse
|
21
|
Shelley SA, Paciga JE, Balis JU. Lysozyme is an ozone-sensitive component of alveolar type II cell lamellar bodies. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1096:338-44. [PMID: 2065105 DOI: 10.1016/0925-4439(91)90070-p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exposure of rats to 3 ppm ozone for up to 8 h results in significant changes in lamellar bodies, the surfactant storing organelles of type II cells. We have previously shown that a 14 kDa lamellar body protein is decreased as early as 4 h after the onset of ozone exposure. We have isolated this ozone-sensitive protein from rat lung lamellar bodies and identified it as lysozyme by immunochemical methods, as well as by its amino acid composition, N-terminal amino acid sequence and bacteriolytic activity. Reduced lysozyme activity in isolated lamellar bodies is detected as early as 4 h after the start of ozone exposure. Following an 8 h ozone exposure, the activity does not return to control levels for at least 48 h. Lamellar body lysozyme is expected to be secreted with surfactant phospholipids, thereby contributing to the antimicrobial defense of the alveolar lining layer. The acute lysozyme deficiency seen in ozone-induced oxidant injury may reduce the resistance of the lung to infection.
Collapse
Affiliation(s)
- S A Shelley
- Department of Pathology, University of South Florida College of Medicine, Tampa
| | | | | |
Collapse
|