1
|
White SH. Fifty Years of Biophysics at the Membrane Frontier. Annu Rev Biophys 2023; 52:21-67. [PMID: 36791747 DOI: 10.1146/annurev-biophys-051622-112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The author first describes his childhood in the South and the ways in which it fostered the values he has espoused throughout his life, his development of a keen fascination with science, and the influences that supported his progress toward higher education. His experiences in ROTC as a student, followed by two years in the US Army during the Vietnam War, honed his leadership skills. The bulk of the autobiography is a chronological journey through his scientific career, beginning with arrival at the University of California, Irvine in 1972, with an emphasis on the postdoctoral students and colleagues who have contributed substantially to each phase of his lab's progress. White's fundamental findings played a key role in the development of membrane biophysics, helping establish it as fertile ground for research. A story gradually unfolds that reveals the deeply collaborative and painstakingly executed work necessary for a successful career in science.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California, USA;
| |
Collapse
|
2
|
Sabapathy T, Deplazes E, Mancera RL. Revisiting the Interaction of Melittin with Phospholipid Bilayers: The Effects of Concentration and Ionic Strength. Int J Mol Sci 2020; 21:E746. [PMID: 31979376 PMCID: PMC7037773 DOI: 10.3390/ijms21030746] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Melittin is an anti-microbial peptide (AMP) and one of the most studied membrane-disrupting peptides. There is, however, a lack of accurate measurements of the concentration-dependent kinetics and affinity of binding of melittin to phospholipid membranes. In this study, we used surface plasmon resonance spectroscopy to determine the concentration-dependent effect on the binding of melittin to 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers in vesicles. Three concentration ranges were considered, and when combined, covered two orders of magnitudes (0.04 µM to 8 µM), corresponding to concentrations relevant to the membrane-disrupting and anti-microbial activities of melittin. Binding kinetics data were analysed using a 1:1 Langmuir-binding model and a two-state reaction model. Using in-depth quantitative analysis, we characterised the effect of peptide concentration, the addition of NaCl at physiological ionic strength and the choice of kinetic binding model on the reliability of the calculated kinetics and affinity of binding parameters. The apparent binding affinity of melittin for POPC bilayers was observed to decrease with increasing peptide/lipid (P/L) ratio, primarily due to the marked decrease in the association rate. At all concentration ranges, the two-state reaction model provided a better fit to the data and, thus, a more reliable estimate of binding affinity. Addition of NaCl significantly reduced the signal response during the association phase; however, no substantial effect on the binding affinity of melittin to the POPC bilayers was observed. These findings based on POPC bilayers could have important implications for our understanding of the mechanism of action of melittin on more complex model cell membranes of higher physiological relevance.
Collapse
Affiliation(s)
- Thiru Sabapathy
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| | - Evelyne Deplazes
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ricardo L. Mancera
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; (T.S.); (E.D.)
| |
Collapse
|
3
|
Andersson M, Ulmschneider JP, Ulmschneider MB, White SH. Conformational states of melittin at a bilayer interface. Biophys J 2013; 104:L12-4. [PMID: 23528098 DOI: 10.1016/j.bpj.2013.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 11/30/2022] Open
Abstract
The distribution of peptide conformations in the membrane interface is central to partitioning energetics. Molecular-dynamics simulations enable characterization of in-membrane structural dynamics. Here, we describe melittin partitioning into dioleoylphosphatidylcholine lipids using CHARMM and OPLS force fields. Although the OPLS simulation failed to reproduce experimental results, the CHARMM simulation reported was consistent with experiments. The CHARMM simulation showed melittin to be represented by a narrow distribution of folding states in the membrane interface.
Collapse
Affiliation(s)
- Magnus Andersson
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | | | | | | |
Collapse
|
4
|
Quantifying interactions of β-synuclein and γ-synuclein with model membranes. J Mol Biol 2012; 423:528-39. [PMID: 22922472 DOI: 10.1016/j.jmb.2012.08.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/21/2022]
Abstract
The synucleins are a family of proteins involved in numerous neurodegenerative pathologies [α-synuclein and β-synuclein (βS)], as well as in various types of cancers [γ-synuclein (γS)]. While the connection between α-synuclein and Parkinson's disease is well established, recent evidence links point mutants of βS to dementia with Lewy bodies. Overexpression of γS has been associated with enhanced metastasis and cancer drug resistance. Despite their prevalence in such a variety of diseases, the native functions of the synucleins remain unclear. They have a lipid-binding motif in their N-terminal region, which suggests interactions with biological membranes in vivo. In this study, we used fluorescence correlation spectroscopy to monitor the binding properties of βS and γS to model membranes and to determine the free energy of the interactions. Our results show that the interactions are most strongly affected by the presence of both anionic lipids and bilayer curvature, while membrane fluidity plays a very minor role. Quantifying the lipid-binding properties of βS and γS provides additional insights into the underlying factors governing the protein-membrane interactions. Such insights not only are relevant to the native functions of these proteins but also highlight their contributions to pathological conditions that are either mediated or characterized by perturbations of these interactions.
Collapse
|
5
|
Membrane partitioning: "classical" and "nonclassical" hydrophobic effects. J Membr Biol 2010; 239:5-14. [PMID: 21140141 PMCID: PMC3030945 DOI: 10.1007/s00232-010-9321-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/05/2010] [Indexed: 11/09/2022]
Abstract
The free energy of transfer of nonpolar solutes from water to lipid bilayers is often dominated by a large negative enthalpy rather than the large positive entropy expected from the hydrophobic effect. This common observation has led to the idea that membrane partitioning is driven by the “nonclassical” hydrophobic effect. We examined this phenomenon by characterizing the partitioning of the well-studied peptide melittin using isothermal titration calorimetry (ITC) and circular dichroism (CD). We studied the temperature dependence of the entropic (−TΔS) and enthalpic (ΔH) components of free energy (ΔG) of partitioning of melittin into lipid membranes made of various mixtures of zwitterionic and anionic lipids. We found significant variations of the entropic and enthalpic components with temperature, lipid composition and vesicle size but only small changes in ΔG (entropy–enthalpy compensation). The heat capacity associated with partitioning had a large negative value of about −0.5 kcal mol−1 K−1. This hallmark of the hydrophobic effect was found to be independent of lipid composition. The measured heat capacity values were used to calculate the hydrophobic-effect free energy ΔGhΦ, which we found to dominate melittin partitioning regardless of lipid composition. In the case of anionic membranes, additional free energy comes from coulombic attraction, which is characterized by a small effective peptide charge due to the lack of additivity of hydrophobic and electrostatic interactions in membrane interfaces [Ladokhin and White J Mol Biol 309:543–552, 2001]. Our results suggest that there is no need for a special effect—the nonclassical hydrophobic effect—to describe partitioning into lipid bilayers.
Collapse
|
6
|
CD spectroscopy of peptides and proteins bound to large unilamellar vesicles. J Membr Biol 2010; 236:247-53. [PMID: 20706833 PMCID: PMC2938439 DOI: 10.1007/s00232-010-9291-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/19/2010] [Indexed: 10/27/2022]
Abstract
Circular dichroism (CD) spectroscopy is an essential tool for determining the conformation of proteins and peptides in membranes. It can be particularly useful for measuring the free energy of partitioning of peptides into lipid vesicles. The belief is broadly held that such CD measurements can only be made using sonicated small unilamellar vesicles (SUVs) because light scattering associated with extruded large unilamellar vesicles (LUVs) is unacceptably high. We have examined this issue using several experimental approaches in which a chiral object (i.e., peptide or protein) is placed both on the membrane and outside the membrane. We show that accurate CD spectra can be collected in the presence of LUVs. This is important because SUVs, unlike LUVs, are metastable and consequently unsuitable for equilibrium thermodynamic measurements. Our data reveal that undistorted CD spectra of peptides can be measured at wavelengths above 200 nm in the presence of up to 3 mM LUVs and above 215 nm in the presence of up to 7 mM LUVs. We introduce a simple way of characterizing the effect on CD spectra of light scattering and absorption arising from suspensions of vesicles of any diameter. Using melittin as an example, we show that CD spectroscopy can be used to determine the fractional helical content of peptides in LUVs and to measure their free energy of partitioning of into LUVs.
Collapse
|
7
|
van den Bogaart G, Guzmán JV, Mika JT, Poolman B. On the mechanism of pore formation by melittin. J Biol Chem 2008; 283:33854-7. [PMID: 18819911 DOI: 10.1074/jbc.m805171200] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of pore formation of lytic peptides, such as melittin from bee venom, is thought to involve binding to the membrane surface, followed by insertion at threshold levels of bound peptide. We show that in membranes composed of zwitterionic lipids, i.e. phosphatidylcholine, melittin not only forms pores but also inhibits pore formation. We propose that these two modes of action are the result of two competing reactions: direct insertion into the membrane and binding parallel to the membrane surface. The direct insertion of melittin leads to pore formation, whereas the parallel conformation is inactive and prevents other melittin molecules from inserting, hence preventing pore formation.
Collapse
Affiliation(s)
- Geert van den Bogaart
- Department of Biochemistry, the Groningen Biomolecular Sciences and Biotechnology Institute and the Zernike Institute for Advanced Materials, University of Groningen, 9747AG The Netherlands
| | | | | | | |
Collapse
|
8
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
9
|
Fernández-Vidal M, Jayasinghe S, Ladokhin AS, White SH. Folding amphipathic helices into membranes: amphiphilicity trumps hydrophobicity. J Mol Biol 2007; 370:459-70. [PMID: 17532340 PMCID: PMC2034331 DOI: 10.1016/j.jmb.2007.05.016] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/04/2007] [Accepted: 05/06/2007] [Indexed: 11/27/2022]
Abstract
High amphiphilicity is a hallmark of interfacial helices in membrane proteins and membrane-active peptides, such as toxins and antimicrobial peptides. Although there is general agreement that amphiphilicity is important for membrane-interface binding, an unanswered question is its importance relative to simple hydrophobicity-driven partitioning. We have examined this fundamental question using measurements of the interfacial partitioning of a family of 17-residue amidated-acetylated peptides into both neutral and anionic lipid vesicles. Composed only of Ala, Leu, and Gln residues, the amino acid sequences of the peptides were varied to change peptide amphiphilicity without changing total hydrophobicity. We found that peptide helicity in water and interface increased linearly with hydrophobic moment, as did the favorable peptide partitioning free energy. This observation provides simple tools for designing amphipathic helical peptides. Finally, our results show that helical amphiphilicity is far more important for interfacial binding than simple hydrophobicity.
Collapse
Affiliation(s)
- Mónica Fernández-Vidal
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
10
|
Torrens F, Castellano G, Campos A, Abad C. Negatively cooperative binding of melittin to neutral phospholipid vesicles. J Mol Struct 2007. [DOI: 10.1016/j.molstruc.2006.11.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Arseneault M, Lafleur M. Isothermal titration calorimetric study of calcium association to lipid bilayers: influence of the vesicle preparation and composition. Chem Phys Lipids 2006; 142:84-93. [PMID: 16620798 DOI: 10.1016/j.chemphyslip.2006.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Revised: 03/02/2006] [Accepted: 03/15/2006] [Indexed: 11/19/2022]
Abstract
The association of Ca2+ ions with phospholipid bilayers was investigated using isothermal titration calorimetry. The study reveals that the binding enthalpy of these cations to bilayers formed with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) depends strongly on the method of preparation of the unilamellar vesicles. Extruded vesicles lead to an exothermic association, whereas sonicated ones lead to an endothermic association. In the later case, the calorimetric signal is sensitive to the length of the sonication period. It is proposed that a reorganization of the lipid bilayers under stress, obtained with sonicated small unilamellar vesicles, contributes to the calorimetric signal upon the titration with Ca2+. The analysis of the titrations indicates that, as expected, the nature of the association of Ca2+ with negatively charged phospholipid bilayers is essentially of electrostatic nature. Using a Scatchard approach, it is found that bilayers become saturated in Ca2+ approximately when the electroneutrality of the bilayer interface is reached. Moreover, the affinity constant was reduced by the increase of the ionic strength of the aqueous buffer. It was found that the intrinsic binding constant of Ca2+ to membranes containing 30 and 50 mol% of POPG was about 11 mM-1, in a MES buffer containing 10 mM NaCl, at pH 5.6.
Collapse
Affiliation(s)
- Marjolaine Arseneault
- Department of Chemistry, Université de Montréal, C.P. 6128, Succ. Centre Ville, Montréal, Que., H3C3J7 Canada
| | | |
Collapse
|
12
|
Doltchinkova V, Georgieva K, Traytcheva N, Slavov C, Mishev K. Melittin-induced changes in thylakoid membranes: particle electrophoresis and light scattering study. Biophys Chem 2004; 109:387-97. [PMID: 15110936 DOI: 10.1016/j.bpc.2003.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 09/18/2003] [Accepted: 10/23/2003] [Indexed: 11/29/2022]
Abstract
Thylakoids were used as a model system to evaluate the effect of bee venom peptide melittin (Mt) on membrane surface charge. At neutral pH, thylakoid membrane surfaces carry excess negative electrical charge. Mt strongly altered the electrophoretic mobility (EPM) of 'low-salt' thylakoids and did not significantly change the EPM of 'high-salt' thylakoids. Mt increased the primary ionic-exchange processes across the 'low-salt' thylakoid membranes, while it did not affect those of 'high-salt' thylakoids. Mt decreased the proton gradient generation on the membranes at both ionic strengths, but it affected more strongly the 'high-salt' than that of 'low-salt' thylakoids. The primary photochemical activity of photosystem II, estimated by the ratio Fv/Fm, was not influenced by the low Mt concentrations. It decreased only when chloroplasts had been incubated with higher Mt concentrations and this effect was better expressed in 'low-salt' than in 'high-salt' thylakoid membranes.
Collapse
Affiliation(s)
- Virjinia Doltchinkova
- Faculty of Biology, Department of Biophysics and Radiobiology, Sofia University, 8 Dragan Tzankov Boulevard, 1164 Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
13
|
Rex S, Bian J, Silvius JR, Lafleur M. The presence of PEG-lipids in liposomes does not reduce melittin binding but decreases melittin-induced leakage. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1558:211-21. [PMID: 11779570 DOI: 10.1016/s0005-2736(01)00434-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Poly(ethyleneglycol) (PEG), anchored at the surface of liposomes via the conjugation to a lipid, is commonly used for increasing the liposome stability in the blood stream. In order to gain a better understanding of the protective properties of interfacial polymers, we have studied the binding of melittin to PEG-lipid-containing membranes as well as the melittin-induced efflux of a fluorescent marker from liposomes containing PEG-lipids. We examined the effect of the polymer size by using PEG with molecular weights of 2000 and 5000. In addition, we studied the role of the anchoring lipid by comparing PEG conjugated to phosphatidylethanolamine (PE) which results in a negatively charged PEG-PE, with PEG conjugated to ceramide (Cer) which provides the neutral PEG-Cer. Our results show that interfacial PEG does not prevent melittin adsorption onto the interface. In fact, PEG-PE promotes melittin binding, most likely because of attractive electrostatic interactions with the negative interfacial charge density of the PEG-PE-containing liposomes. However, PEG-lipids limit the lytic potential of melittin. The phenomenon is proposed to be associated with the change in the polymorphic tendencies of the liposome bilayers. The present findings reveal that the protective effect associated with interfacial hydrophilic polymers is not universal. Molecules like melittin can sense surface charges borne by PEG-lipids, and the influence of PEG-lipids on liposomal properties such as the polymorphic propensities may be involved in the so-called protective effect.
Collapse
Affiliation(s)
- Sybille Rex
- Department of Chemistry and Groupe de Recherche en Transport Membranaire, Université de Montréal, QC, Canada
| | | | | | | |
Collapse
|
14
|
Ladokhin AS, White SH. Protein chemistry at membrane interfaces: non-additivity of electrostatic and hydrophobic interactions. J Mol Biol 2001; 309:543-52. [PMID: 11397078 DOI: 10.1006/jmbi.2001.4684] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Non-specific binding of proteins and peptides to charged membrane interfaces depends upon the combined contributions of hydrophobic (DeltaG(HPhi)) and electrostatic (DeltaG(ES)) free energies. If these are simply additive, then the observed free energy of binding (DeltaG(obs)) will be given by DeltaG(obs)=DeltaG(HPhi)+DeltaG(ES), where DeltaG(HPhi)=-sigma(NP)A(NP) and DeltaG(ES)=zFphi. In these expressions, A(NP) is the non-polar accessible area, sigma(NP) the non-polar solvation parameter, z the formal peptide valence, F the Faraday constant, and phi the membrane surface potential. But several lines of evidence suggest that hydrophobic and electrostatic binding free energies of proteins at membrane interfaces, such as those associated with cell signaling, are not simply additive. In order to explore this issue systematically, we have determined the interfacial partitioning free energies of variants of indolicidin, a cationic proline-rich antimicrobial peptide. The synthesized variants of the 13 residue peptide covered a wide range of hydrophobic free energies, which allowed us to examine the effect of hydrophobicity on electrostatic binding to membranes formed from mixtures of neutral and anionic lipids. Although DeltaG(obs) was always a linear function of DeltaG(HPhi), the slope depended upon anionic lipid content: the slope was 1.0 for pure, zwitterionic phosphocholine bilayers and 0.3 for pure phosphoglycerol membranes. DeltaG(obs) also varied linearly with surface potential, but the slope was smaller than the expected value, zF. As observed by others, this suggests an effective peptide valence z(eff) that is smaller than the formal valence z. Because of our systematic approach, we were able to establish a useful rule-of-thumb: z(eff) is reduced relative to z by about 20 % for each 3 kcal mol(-1) (1 kcal=4.184 kJ) favorable increase in DeltaG(HPhi). For neutral phosphocholine interfaces, we found that DeltaG(obs) could be predicted with remarkable accuracy using the Wimley-White experiment-based interfacial hydrophobicity scale.
Collapse
Affiliation(s)
- A S Ladokhin
- Department of Physiology and Biophysics and the Program in Macromolecular Structure, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | |
Collapse
|
15
|
Ladokhin AS, Jayasinghe S, White SH. How to measure and analyze tryptophan fluorescence in membranes properly, and why bother? Anal Biochem 2000; 285:235-45. [PMID: 11017708 DOI: 10.1006/abio.2000.4773] [Citation(s) in RCA: 362] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tryptophan fluorescence is a powerful tool for studying protein structure and function, especially membrane-active proteins and peptides. It is arguably the most frequently used tool for examining the interactions of proteins and peptides with vesicular unilamellar model membranes. However, high light scattering associated with vesicular membrane systems presents special challenges. Because of their reduced light scattering compared to large unilamellar vesicles (LUV), small unilamellar vesicles (SUV) produced by sonication are widely used membrane models. Unfortunately, SUV, unlike LUV, are metastable and consequently unsuitable for equilibrium thermodynamic measurements. We present simple and easily implemented experimental procedures for the accurate determination of tryptophan (Trp) fluorescence in either LUV or SUV. Specifically, we show that Trp spectra can be obtained in the presence of up to 6 mM LUV that are virtually identical to spectra obtained in buffer alone, which obviates the use of SUV. We show how the widths and peak positions of such spectra can be used to evaluate the heterogeneity of the membrane conformation and penetration of peptides. Finally, we show how to use a reference fluorophore for the correction of intensity measurements so that the energetics of peptide partitioning into membranes can be accurately determined.
Collapse
Affiliation(s)
- A S Ladokhin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, USA
| | | | | |
Collapse
|
16
|
Bong DT, Janshoff A, Steinem C, Ghadiri MR. Membrane partitioning of the cleavage peptide in flock house virus. Biophys J 2000; 78:839-45. [PMID: 10653796 PMCID: PMC1300686 DOI: 10.1016/s0006-3495(00)76641-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Membrane translocation of the ssRNA genome of nodaviruses has been proposed to be mediated by direct lipid-protein interactions between a postassembly autocatalytic cleavage product from the capsomere and the target membrane. We have recently shown that the 21-residue Met-->Nle variant of the N-terminal helical domain (denoted gamma(1)) of the cleavage peptide in flock house nodavirus increases membrane permeability to hydrophilic solutes and can alter both membrane structure and function, suggesting the possibility of peptide-triggered disruption of the endosomal membrane as a prelude to viral uncoating in the host cytoplasm. Elucidation of partitioning energetics would allow an assessment of the likelihood of this mechanism. We report herein complete thermodynamic characterization of the partitioning of gamma(1) to phospholipids by lipid-peptide titrations following changes in ellipticity, fluorescence signature, or calorimetric response. These experiments revealed a partitioning energy comparable to natural membrane-active peptide toxins, suggesting that the proposed mechanism may be possible. Additionally, a novel switch in the balance of partitioning forces was found: when the lipid headgroup was changed from zwitterionic to negatively charged, membrane association of the peptide became completely entropy-driven.
Collapse
Affiliation(s)
- D T Bong
- Departments of Chemistry and Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
17
|
|
18
|
Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:157-83. [PMID: 10590307 DOI: 10.1016/s0005-2736(99)00205-9] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Linear peptide antibiotics have been isolated from amphibians, insects and humans and used as templates to design cheaper and more potent analogues for medical applications. Peptides such as cecropins or magainins are < or = 40 amino acids in length. Many of them have been prepared by solid-phase peptide synthesis with isotopic labels incorporated at selected sites. Structural analysis by solid-state NMR spectroscopy and other biophysical techniques indicates that these peptide antibiotics strongly interact with lipid membranes. In bilayer environments they exhibit amphipathic alpha-helical conformations and alignments of the helix axis parallel to the membrane surface. This contrasts the transmembrane orientations observed for alamethicin or gramicidin A. Models that have been proposed to explain the antibiotic and pore-forming activities of membrane-associated peptides, as well as other experimental results, include transmembrane helical bundles, wormholes, carpets, detergent-like effects or the in-plane diffusion of peptide-induced bilayer instabilities.
Collapse
Affiliation(s)
- B Bechinger
- Max Planck Institute for Biochemistry, Am Klopferspitz 18A, 82152, Martinsried, Germany.
| |
Collapse
|
19
|
Ladokhin AS, White SH. Folding of amphipathic alpha-helices on membranes: energetics of helix formation by melittin. J Mol Biol 1999; 285:1363-9. [PMID: 9917380 DOI: 10.1006/jmbi.1998.2346] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Membranes have a potent ability to promote secondary structure formation in a wide range of membrane-active peptides, believed to be due to a reduction through hydrogen bonding of the energetic cost of partitioning peptide bonds. This process is of fundamental importance for understanding the mechanism of action of toxins and antimicrobial peptides and the stability of membrane proteins. A classic example of membrane-induced folding is the bee-venom peptide melittin that is largely unstructured when free in solution, but strongly adopts an amphipathic alpha-helical conformation when partitioned into membranes. We have determined the energetics of melittin helix formation through measurements of the partitioning free energies and the helicities of native melittin and of a diastereomeric analog with four d-amino acids (d4,l-melittin). Because D4,l-melittin has little secondary structure in either the free or bound forms, it serves as a model for the experimentally inaccessible unfolded bound form of native melittin. The partitioning of native melittin into large unilamellar phosphocholine vesicles is 5.0(+/-0.7) kcal mol-1 more favorable than the partitioning of d4,l-melittin (1 cal=4.186 J). Differences in the circular dichroism spectra of the two forms of melittin indicate that bound native melittin is more helical than bound d4, l-melittin by about 12 residues. These findings disclose that the free energy reduction per residue accompanying the folding of melittin in membrane interfaces is about 0.4 kcal mol-1, consistent with the hypothesis that hydrogen bonding reduces the high cost of partitioning peptide bonds. A value of 0.6 kcal mol-1 per residue has been observed for beta-sheet formation by a hexapeptide model system. These two values provide a useful rule of thumb for estimating the energetic consequences of membrane-induced secondary structure formation.
Collapse
Affiliation(s)
- A S Ladokhin
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, CA, 92697-4560, USA
| | | |
Collapse
|
20
|
Pedrós J, Gómez CM, Campos A, Abad C. A fluorescence spectroscopy study of the interaction of monocationic quinine with phospholipid vesicles. Effect of the ionic strength and lipid composition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 1997; 53A:2219-2228. [PMID: 9437875 DOI: 10.1016/s1386-1425(97)00125-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The interaction of monocationic quinine with zwitterionic dimyristoyl phosphatidylcholine (DMPC) and mixed negatively-charged dimyristoylphosphatidyl glycerol (DMPG)/DMPC small unilamellar vesicles in the liquid-crystalline phase was investigated by steady-state fluorescence spectroscopy at pH 7 and 37 degrees C. The maximum fluorescence emission peak at 383 nm, upon excitation at 335 nm, shifts to lower wavelength and decreases its intensity as the ratio between the total lipid and quinine concentrations increases. This indicates that in the membrane-bound state quinine is in an environment of low polarity, more deeply buried when anionic DMPG is present in the vesicle. For monoprotonated quinine/DMPC system the corresponding association isotherms show that the extension of binding is slightly enhanced as the ionic strength decreases, whereas for mixed DMPG/DMPC vesicles at low ionic strength, the association of the drug is favoured as the percentage of anionic DMPG increases. The binding curves have been quantitatively analyzed by the binding and the partition models including in this latter an activity coefficient, gamma, to account for non ideal quinine interactions. It is demonstrated for both neutral and anionic membranes that the activity coefficient approaches the unity and that the deviation from ideality is mainly due to electrostatic forces.
Collapse
Affiliation(s)
- J Pedrós
- Departament de Bioquímica i Biología Molecular, Universitat de València, Spain
| | | | | | | |
Collapse
|
21
|
Rochel N, Cowan JA. Dependence of the lytic activity of the N-terminal domain of human perforin on membrane lipid composition--implications for T-cell self-preservation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:223-31. [PMID: 9363773 DOI: 10.1111/j.1432-1033.1997.00223.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The kinetics and thermodynamics of pore formation by the 22-residue N-terminal domain of human perforin-(1-22)-peptide have been studied for a variety of model phospholipid membranes. Peptide binding and aggregation, and cell lysis were monitored through the change in the fluorescence of Trp, or vesicle-encapsulated carboxyfluorescein, respectively. Peptide binding was analyzed in terms of a model that incorporates non-ideal interactions and aggregation in a membrane bilayer. The minimum number of peptide monomers required to form an active pore averaged from four to six, according to the lipid composition of the vesicle. This combined kinetic and thermodynamic approach has provided quantitative information that allows a direct comparison of the binding behavior of the perforin-(1-22)-peptide in different lipid vesicles and affords molecular insight on the factors controlling pore formation. Pore formation is most favorable in thinner membranes with low melting temperatures. No significant difference in activity is observed for different zwitterionic headgroups. Rather, the gel state of the lipid chain, which diminishes the incorporation and aggregation of the perforin-(1-22)-peptide shows the strongest influence. This effect is observed in both the thermodynamic (incorporation isotherm) and kinetic (carboxyfluorescein release) studies. Insertion and aggregation are more facile in membranes with less densely packed lipids. The dependence of pore-forming activity on lipid composition provides important clues to understanding the self-protection mechanism employed by cytotoxic T lymphocytes (CTL) against perforin-mediated lysis.
Collapse
Affiliation(s)
- N Rochel
- Evans Laboratory of Chemistry, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
22
|
Ebeling SC, Kelly SM, O'Kennedy BT, Price NC, Sheehan D. Surface activity properties of cysteine-substituted C-terminal melittin analogues. Biochimie 1997; 79:503-8. [PMID: 9451451 DOI: 10.1016/s0300-9084(97)82742-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to extend our knowledge of factors important in the surface activity of melittin, cysteine was substituted for lysine-21 and lysine-21/glutamine-25 in a pair of synthetic peptide analogues. The first of these changes resulted in only modest effects on secondary structure (determined in 50% trifluoroethanol), emulsification and surface tension properties. Introduction of a second cysteine greatly reduced both the rate of surface tension decay and the equilibrium surface tension attained, although secondary structure (determined in 50% trifluoroethanol) was only slightly affected by this modification. This latter peptide completely lacked emulsification and haemolytic properties and was found to oligomerise readily due to the formation of intermolecular, disulphide bridges. These results indicate that oligomerisation abolishes surface activity in melittin.
Collapse
Affiliation(s)
- S C Ebeling
- Department of Biochemistry, University College Cork, Mardyke, Ireland
| | | | | | | | | |
Collapse
|
23
|
Pérez-Payá E, Porcar I, Gómez CM, Pedrós J, Campos A, Abad C. Binding of basic amphipathic peptides to neutral phospholipid membranes: a thermodynamic study applied to dansyl-labeled melittin and substance P analogues. Biopolymers 1997; 42:169-81. [PMID: 9234996 DOI: 10.1002/(sici)1097-0282(199708)42:2<169::aid-bip6>3.0.co;2-l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A thermodynamic approach is proposed to quantitatively analyze the binding isotherms of peptides to model membranes as a function of one adjustable parameter, the actual peptide charge in solution z(p)+. The main features of this approach are a theoretical expression for the partition coefficient calculated from the molar free energies of the peptide in the aqueous and lipid phases, an equation proposed by S. Stankowski [(1991) Biophysical Journal, Vol. 60, p. 341] to evaluate the activity coefficient of the peptide in the lipid phase, and the Debye-Hückel equation that quantifies the activity coefficient of the peptide in the aqueous phase. To assess the validity of this approach we have studied, by means of steady-state fluorescence spectroscopy, the interaction of basic amphipathic peptides such as melittin and its dansylcadaverine analogue (DNC-melittin), as well as a new fluorescent analogue of substance P, SP (DNC-SP) with neutral phospholipid membranes. A consistent quantitative analysis of each binding curve was achieved. The z(p)+ values obtained were always found to be lower than the physical charge of the peptide. These z(p)+ values can be rationalized by considering that the peptide charged groups are strongly associated with counterions in buffer solution at a given ionic strength. The partition coefficients theoretically derived using the z(p)+ values were in agreement with those deduced from the Gouy-Chapman formalism. Ultimately, from the z(p)+ values the molar free energies for the free and lipid-bound states of the peptides have been calculated.
Collapse
Affiliation(s)
- E Pérez-Payá
- Departament de Bioquímica i Biologia Molecular, Universitat de Valencia, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Rudenko SV, Nipot EE. Protection by chlorpromazine, albumin and bivalent cations against haemolysis induced by melittin, [Ala-14]melittin and whole bee venom. Biochem J 1996; 317 ( Pt 3):747-54. [PMID: 8760358 PMCID: PMC1217548 DOI: 10.1042/bj3170747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of the peptides melittin, [Ala-14]melittin (P14A) and whole bee venom to lyse red blood cells (RBC) and to cause shape transformation, binding, partitioning and changes in volume of the cells during haemolysis, as well as the action of the bivalent cations Zn2+ and Ca2+, chlorpromazine, albumin and plasma on the peptide-induced haemolysis of RBC in high ionic-strength solution, have been investigated. The protective effect of all inhibitors depends on whether they have been added to the media before or after the cells. When added before the cells they reduced significantly the rate of peptide-induced haemolysis and shape transformation. The effect was maximal when agents acted simultaneously after introduction of the cells into the media containing both inhibitors and peptides. Incubation of the cells in isotonic solution before the addition of peptides enhanced 2-3-fold the RBC susceptibility (i.e. rate of haemolysis) to lytic action of the same amount of peptides, and increased the order of the haemolytic reaction, although the power law coefficient did not exceed a value of 2 for all peptides, suggesting that haemolysis is attributable to the monomeric or dimeric forms of the peptides. Partition coefficients were of the order of approximately 10(6) M-1, and P14A possessed a value 3-fold larger compared with melittin and bee venom, which correlated with its enhanced haemolytic activity. The protective action of inhibitors against peptide-induced haemolysis has been explained on the basis of their ability to compete with peptide binding at an early stage of peptide-membrane interaction, and not as a result of inhibition of a pre-existing peptide-induced pore. Whereas melittin increased the volume of RBC during haemolysis, P14A, melittin in the presence of phospholipase A2 or bee venom, reduced the volume in a concentration-dependent manner. The present data reveal the significant role of the initial stage of peptide-membrane interaction and peptide structure in the mechanism of haemolysis. These data are not consistent with a lipid-based mechanism of peptide-induced haemolysis, indicating that the mode of peptide-protein interaction is an important and decisive step in the haemolytic mechanism. It should be noted that data (in the form of three additional Tables) on the ability of inhibitors to protect cells from haemolysis when inhibitor and peptide act simultaneously are available. They are reported in Supplementary Publication SUP 50178, which has been deposited at the British Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1996) 313, 9.
Collapse
Affiliation(s)
- S V Rudenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of the Ukraine, Kharkov, Ukraine
| | | |
Collapse
|
25
|
Abstract
We investigated the interaction of the peptide melittin with differently sized vesicles consisting of various lipid compositions. This system was characterized by dynamic light scattering to estimate the size of vesicles. For SUV we obtained a radius of 12 nm, for LUV 53 nm. The pore forming process of melittin in vesicles was investigated by efflux of encapsulated fluorescent dyes at a self-quenching concentration. The influence of the following parameters on efflux and pore formation was estimated: lipid composition (POPC and DOPC), vesicle size (SUV and LUV) and size of the encapsulated dye (carboxyfluorescein and FITC-dextran). We found that under similar conditions vesicles of DOPC give always less leakage than vesicles of POPC independent of the fluorescent dye. For SUV and LUV we have obtained a different leakage behaviour at identical surface concentrations of melittin (if the same partition coefficient is assumed). From efflux measurements with different dyes we concluded that 6-20 molecules of melittin are necessary to form a pore. The possibility that not pore formation but fusion is the mechanism of melittin induced efflux was disproved by fusion experiments using a resonance energy transfer assay.
Collapse
Affiliation(s)
- S Rex
- Department of Biophysical Chemistry, Biocenter of the University of Basle, Switzerland.
| |
Collapse
|
26
|
Benachir T, Lafleur M. Study of vesicle leakage induced by melittin. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1235:452-60. [PMID: 7756355 DOI: 10.1016/0005-2736(95)80035-e] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The leakage induced by melittin, a membrane-perturbing amphipathic peptide, from large unilamellar 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) vesicles was studied using calcein as fluorescent marker. The extent of leakage has been found to be regulated by the melittin/lipid molar ratio. Melittin leads to the complete release of trapped calcein from some vesicles. This all-or-none mechanism leads to the co-existence of two different vesicle populations: the 'empty' and the intact one. Intervesicular migration of melittin was not observed. The results reveal a specific targeting of the lysed vesicles by melittin. The presence of negatively charged lipids (unprotonated palmitic acid or 1-palmitoyl-2-oleoylphosphatidylglycerol) in the neutral POPC matrix inhibits the lytic power of melittin; this inhibition increases with increasing surface charge density. It is proposed that the anchorage of the peptide on the charged surface prevents the formation of defects allowing leakage. A statistical model based on a random distribution of the peptide molecules on the vesicles is proposed to describe the release induced by melittin. It is proposed that about 250 melittin molecules per vesicle are required to affect the bilayer permeability and to empty a vesicle of its content. This large number suggests that leakage is more likely due to collective membrane perturbation by the peptide rather than to the formation of a well-defined pore.
Collapse
Affiliation(s)
- T Benachir
- Département de Chimie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
27
|
Abstract
Phosphorus NMR spectroscopy was used to characterize the importance of electrostatic interactions in the lytic activity of melittin, a cationic peptide. The micellization induced by melittin has been characterized for several lipid mixtures composed of saturated phosphatidylcholine (PC) and a limited amount of charged lipid. For these systems, the thermal polymorphism is similar to the one observed for pure PC: small comicelles are stable in the gel phase and extended bilayers are formed in the liquid crystalline phase. Vesicle surface charge density influences strongly the micellization. Our results show that the presence of negatively charged lipids (phospholipid or unprotonated fatty acid) reduces the proportion of lysed vesicles. Conversely, the presence of positively charged lipids leads to a promotion of the lytic activity of the peptide. The modulation of the lytic effect is proposed to originate from the electrostatic interactions between the peptide and the bilayer surface. Attractive interactions anchor the peptide at the surface and, as a consequence, inhibit its lytic activity. Conversely, repulsive interactions favor the redistribution of melittin into the bilayer, causing enhanced lysis. A quantitative analysis of the interaction between melittin and negatively charged bilayers suggests that electroneutrality is reached at the surface, before micellization. The surface charge density of the lipid layer appears to be a determining factor for the lipid/peptide stoichiometry of the comicelles; a decrease in the lipid/peptide stoichiometry in the presence of negatively charged lipids appears to be a general consequence of the higher affinity of melittin for these membranes.
Collapse
Affiliation(s)
- M Monette
- Département de Chimie, Université de Montréal, Québec, Canada
| | | |
Collapse
|
28
|
Pawlak M, Meseth U, Dhanapal B, Mutter M, Vogel H. Template-assembled melittin: structural and functional characterization of a designed, synthetic channel-forming protein. Protein Sci 1994; 3:1788-805. [PMID: 7531528 PMCID: PMC2142622 DOI: 10.1002/pro.5560031019] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Template-assembled proteins (TASPs) comprising 4 peptide blocks, each of either the natural melittin sequence (melittin-TASP) or of a truncated melittin sequence (amino acids 6-26, melittin6-26-TASP), C-terminally linked to a (linear or cyclic) 10-amino acid template were synthesized and characterized, structurally by CD, by fluorescence spectroscopy, and by monolayer experiments, and functionally, by electrical conductance measurements on planar bilayers and release experiments on dye-loaded vesicles. Melittin-TASP and the truncated analogue preferentially adopt alpha-helical structures in methanol (56% and 52%, respectively) as in lipid membranes. Unlike in methanol, the melittin-TASP self-aggregates in water. On an air-water interface, the differently sized molecules can be self-assembled and compressed to a compact structure with a molecular area of around 600 A2, compatible with a 4-helix bundle preferentially oriented perpendicular to the interface. The proteins reveal a strong affinity for lipid membranes. A partition coefficient of 1.5 x 10(9) M-1 was evaluated from changes of the Trp fluorescence spectra of the TASP in water and in the lipid bilayer. In planar lipid bilayers, TASP molecules are able to form defined ion channels, exhibiting a small single-channel conductance of 7 pS (in 1 M NaCl). With increasing protein concentration in the lipid bilayer, additional, larger conductance states of up to 1 nS were observed. These states are likely to be formed by aggregated TASP structures as inferred from a strongly voltage-dependent channel activity on membranes of large area. In this respect, melittin-TASP reveals channel features of the native peptide, but with a considerably lower variation in the size of the channel states. Compared to the free peptide, template-assembled melittin has a much higher membrane activity: it is about 100 times more effective in channel formation and 20 times more effective in releasing dye molecules from lipid vesicles. This demonstrates that the lytic properties are not solely related to channel formation.
Collapse
Affiliation(s)
- M Pawlak
- Institute of Physical Chemistry IV, Swiss Federal Institute of Technology Lausanne, Lausanne
| | | | | | | | | |
Collapse
|
29
|
Porcar I, Gómez CM, Pérez-Payá E, Soria V, Campos A. Macromolecules in ordered media: 1. Interfacial interactions between a cationic polymer and oppositely charged liposomes. POLYMER 1994. [DOI: 10.1016/0032-3861(94)90814-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Schwarz G, Blochmann U. Association of the wasp venom peptide mastoparan with electrically neutral lipid vesicles. Salt effects on partitioning and conformational state. FEBS Lett 1993; 318:172-6. [PMID: 8440373 DOI: 10.1016/0014-5793(93)80015-m] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have measured circular dichroism signals of aqueous mastoparan and mastoparan-X when titrated with electrically neutral phospholipid unilamellar vesicles. The data could be converted into association isotherms (binding curves) under various conditions of salt content. In spite of the absence of a net charge in the lipid moiety, substantial salt effects have been observed regarding the partition coefficient of the peptide and its conformation in the associated state. These results are discussed on the basis of a general thermodynamic approach for peptide association with lipid bilayers.
Collapse
Affiliation(s)
- G Schwarz
- Department of Biophysical Chemistry, Biocenter of the University, Basel, Switzerland
| | | |
Collapse
|
31
|
Cserhåti T, Szögyi M. Interaction of phospholipids with proteins and peptides. New advances III. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:123-46. [PMID: 8444311 DOI: 10.1016/0020-711x(93)90001-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. The review deals with the recent achievements in the study of the various interactions of phospholipids with proteins and peptides. 2. The interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. 3. The effect of the interaction on the structure and biological activity of the interacting molecules is also discussed.
Collapse
Affiliation(s)
- T Cserhåti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|
32
|
Schwarz G, Zong RT, Popescu T. Kinetics of melittin induced pore formation in the membrane of lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1110:97-104. [PMID: 1390840 DOI: 10.1016/0005-2736(92)90299-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have investigated the permeabilization of POPC unilamellar vesicle bilayers upon the addition of melittin. This process was measured in an early time range of a few minutes by means of monitoring the release of an entrapped marker, the self-quenching fluorescent dye carboxyfluorescein. Pore formation is indicated by an apparent 'all-or-none' efflux out of individual vesicles and a higher than linear dependence on melittin concentration. Applying a recently developed evaluation procedure, the data are readily converted into the gross number of pores per vesicle formed within the elapsed measuring time t. The results can be generally described in terms of a fast initial rate of pore formation that slows down to a much lower value after a period of about 1 to 2 minutes, following a single exponential time course. The three rate parameters involved are shown to be power functions of the concentration of melittin that is actually associated with the vesicle membrane. These findings are in excellent quantitative agreement with a proposed scheme of reaction steps where the formation of lipid associated peptide dimers becomes rate determining once an initial fast deposit is exhausted.
Collapse
Affiliation(s)
- G Schwarz
- Department of Biophysical Chemistry, University of Basel, Switzerland
| | | | | |
Collapse
|
33
|
Mosior M, McLaughlin S. Electrostatics and reduction of dimensionality produce apparent cooperativity when basic peptides bind to acidic lipids in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:185-7. [PMID: 1567895 DOI: 10.1016/0005-2736(92)90178-o] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The binding of pentalysine to phospholipid vesicles depends in a sigmoidal manner on the mole fraction of acidic lipid in the vesicles. A simple analysis demonstrates that this apparent cooperativity is probably due to both the reduction of dimensionality that occurs when the first basic residue binds to an acidic lipid in the membrane and the Boltzmann accumulation of the peptide in the electrostatic diffuse double layer produced by the charged lipids.
Collapse
Affiliation(s)
- M Mosior
- Department of Physiology and Biophysics, SUNY, Stony Brook 11794-8661
| | | |
Collapse
|