1
|
Ferreira G, Santander A, Chavarría L, Cardozo R, Savio F, Sobrevia L, Nicolson GL. Functional consequences of lead and mercury exposomes in the heart. Mol Aspects Med 2021; 87:101048. [PMID: 34785060 DOI: 10.1016/j.mam.2021.101048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022]
Abstract
Lead and mercury are heavy metals that are highly toxic to life forms. There are no known physiological processes that require them, and they do not have a particular threshold concentration to produce biologic damage. They are non-biodegradable, and they slowly accumulate in the environment in a dynamic equilibrium between air, water, soil, food, and living organisms. Their accumulation in the environment has been increasing over time, because they were not banned from use in anthropogenic industrial production. In their +2 cationic state they are powerful oxidizing agents with the ability to interfere significantly with processes that require specific divalent cations. Acute or chronic exposure to lead and mercury can produce multisystemic damage, especially in the developing nervous systems of children and fetuses, resulting in variety of neurological consequences. They can also affect the cardiovascular system and especially the heart, either directly through their action on cardiomyocytes or indirectly through their effects on innervation, humoral responses or blood vessel alterations. For example, heart function modified by these heavy metals are heart rate, contraction, excitability, and rhythm. Some cardiac molecular targets have been identified and characterized. The direct mechanisms of damage of these heavy metals on heart function are discussed. We conclude that exposome to these heavy metals, should be considered as a major relevant risk factor for cardiac diseases.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay.
| | - Axel Santander
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Luisina Chavarría
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Romina Cardozo
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Florencia Savio
- Laboratory of Ion Channels, Biological Membranes and Cell Signaling. Department of Biophysics, Faculty of Medicine, Universidad de la República, Gral. Flores, 2125, CP 11800, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, Universidad Católica de Chile, Santiago, 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, E-41012, Spain; Medical School (Faculty of Medicine), São Paulo State University (UNESP), Brazil; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029, Queensland, Australia; Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713GZ, Groningen, the Netherlands
| | - Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, 16731 Gothard St. Huntington Beach, California, 92647, USA
| |
Collapse
|
2
|
Drummond‐Main CD, Rho JM. Electrophysiological characterization of a mitochondrial inner membrane chloride channel in rat brain. FEBS Lett 2018; 592:1545-1553. [DOI: 10.1002/1873-3468.13042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Christopher D. Drummond‐Main
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
| | - Jong M. Rho
- Developmental Neurosciences Research Program University of Calgary Alberta Canada
- Alberta Children's Hospital Research Institute University of Calgary Alberta Canada
- Departments of Pediatrics Clinical Neurosciences, and Physiology & Pharmacology University of Calgary Alberta Canada
- Hotchkiss Brain Institute Cumming School of Medicine University of Calgary Alberta Canada
| |
Collapse
|
3
|
O-Uchi J, Ryu SY, Jhun BS, Hurst S, Sheu SS. Mitochondrial ion channels/transporters as sensors and regulators of cellular redox signaling. Antioxid Redox Signal 2014; 21:987-1006. [PMID: 24180309 PMCID: PMC4116125 DOI: 10.1089/ars.2013.5681] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Mitochondrial ion channels/transporters and the electron transport chain (ETC) serve as key sensors and regulators for cellular redox signaling, the production of reactive oxygen species (ROS) and nitrogen species (RNS) in mitochondria, and balancing cell survival and death. Although the functional and pharmacological characteristics of mitochondrial ion transport mechanisms have been extensively studied for several decades, the majority of the molecular identities that are responsible for these channels/transporters have remained a mystery until very recently. RECENT ADVANCES Recent breakthrough studies uncovered the molecular identities of the diverse array of major mitochondrial ion channels/transporters, including the mitochondrial Ca2+ uniporter pore, mitochondrial permeability transition pore, and mitochondrial ATP-sensitive K+ channel. This new information enables us to form detailed molecular and functional characterizations of mitochondrial ion channels/transporters and their roles in mitochondrial redox signaling. CRITICAL ISSUES Redox-mediated post-translational modifications of mitochondrial ion channels/transporters and ETC serve as key mechanisms for the spatiotemporal control of mitochondrial ROS/RNS generation. FUTURE DIRECTIONS Identification of detailed molecular mechanisms for redox-mediated regulation of mitochondrial ion channels will enable us to find novel therapeutic targets for many diseases that are associated with cellular redox signaling and mitochondrial ion channels/transporters.
Collapse
Affiliation(s)
- Jin O-Uchi
- 1 Department of Medicine, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
4
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
5
|
Pavlov PF, Glaser E. Inhibition of protein import into mitochondria by amphiphilic cations: potential targets and mechanism of action. Biochem Biophys Res Commun 1998; 252:84-91. [PMID: 9813150 DOI: 10.1006/bbrc.1998.9590] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper we describe for the first time the inhibitory effect of three amphiphilic cations, trifluoperazine, propranolol and dibucaine on mitochondrial protein import. The amphiphilic cations did not affect binding of mitochondrial precursor proteins to mitochondria. Import into mitoplasts was affected in a similar manner to intact mitochondria, indicating that the protein import machinery of the inner membrane of mitochondria was responsible for the observed effect. At concentrations which completely inhibited protein import, the amphiphilic cations did not affect the membrane potential (DeltaPsi) across the inner membrane. The inhibitory potency of amphiphilic cations reflects their lipid/water partition coefficient and relatively high concentrations of the drugs were required for complete inhibition, hence we propose that the mechanism of protein import inhibition by amphiphilic cations is due to membrane perturbing effects. We discuss the implications of our findings in view of the possible connection between various inner mitochondrial membrane channels and the protein import pore.
Collapse
Affiliation(s)
- P F Pavlov
- Arrhenius Laboratory for Natural Sciences, Stockholm University, Stockholm, 10691, Sweden
| | | |
Collapse
|
6
|
Liu G, Hinch B, Davatol-Hag H, Lu Y, Powers M, Beavis AD. Temperature dependence of the mitochondrial inner membrane anion channel. The relationship between temperature and inhibition by protons. J Biol Chem 1996; 271:19717-23. [PMID: 8702676 DOI: 10.1074/jbc.271.33.19717] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this paper, we investigate the temperature and pH dependence of the mitochondrial inner membrane anion channel (IMAC) that is believed to be involved in mitochondrial volume homeostasis. At pH 7. 4, the flux of malonate is highly temperature-dependent with rates increasing from 1 nmol/min mg at 5 degrees C to 1900 nmol/min mg at 45 degrees C. The Arrhenius plot is nonlinear with the activation energy increasing from 21 kJ/mol (Q10 = 1.3) to 193 kJ/mol (Q10 = 13) as the temperature is decreased. This temperature dependence is unusual and not seen with solutes that are transported through the bilayer such as NH4OAc, malonamide, and KSCN (plus valinomycin) or even for cytochrome c oxidase-dependent uptake of potassium (plus valinomycin). The temperature dependence of IMAC is closely related to the inhibition of IMAC by protons. Thus, we find that the pIC50 for protons decreases from 9.3 (Hill coefficient = 1.0) at 5 degrees C to 7.1 (Hill coefficient = 2.5) at 45 degrees C. This behavior is explained on the basis of a new kinetic model for IMAC in which the net open probability is not only modulated by the binding of three protons but also by temperature via effects on the open probability of the unprotonated channel and the pK of one of the inhibitory protonation sites.
Collapse
Affiliation(s)
- G Liu
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43699-0008, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ng LT, Selwyn MJ, Choo HL. Inorganic phosphate is the major component of the thermostable cytoplasmic fraction which stimulates mitochondrial anion uniport. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1183:180-4. [PMID: 7691183 DOI: 10.1016/0005-2728(93)90016-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A low molecular weight thermostable cytoplasmic fraction isolated from rat liver homogenate when pre-incubated with mitochondria increases the rate at which anions enter mitochondria via the pH-dependent anion-conducting channel in the inner membrane. The crude fraction obtained by centrifuging and heating the liver homogenate was purified by gel filtration and chromatography on DEAE-cellulose. The resulting factor is stable to heating at 100 degrees C, freeze-drying and extremes of pH. Inorganic phosphate co-purified with activity and activity was lost when the phosphate was removed by barium salt precipitation. A pure sample of KH2PO4 produced stimulation of anion conductivity. These results show that the major portion of the activity which stimulates anion uniport can be accounted for by the presence of phosphate in the crude and purified fractions. Mersalyl blocks stimulation when added before, but not when added after, incubation with phosphate which shows that the stimulation is produced by phosphate in the mitochondrial matrix. The proposed role of this factor in thyroid hormone action is discussed in the light of its identification as inorganic phosphate.
Collapse
Affiliation(s)
- L T Ng
- Department of Biochemistry, National University of Singapore
| | | | | |
Collapse
|
10
|
Abstract
The mitochondrial inner membrane possesses an anion channel (IMAC) which mediates the electrophoretic transport of a wide variety of anions and is believed to be an important component of the volume homeostatic mechanism. IMAC is regulated by matrix Mg2+ (IC50 = 38 microM at pH 7.4) and by matrix H+ (pIC50 = 7.7). Moreover, inhibition by Mg2+ is pH-dependent. IMAC is also reversibly inhibited by many cationic amphiphilic drugs, including propranolol, and irreversibly inhibited by N,N'-dicyclohexylcarbodiimide. Mercurials have two effects on its activity: (1) they increase the IC50 values for Mg2+, H+, and propranolol, and (2) they inhibit transport. The most potent inhibitor of IMAC is tributyltin, which blocks anion uniport in liver mitochondria at about 1 nmol/mg. The inhibitory dose is increased by mercurials; however, this effect appears to be unrelated to the other mercurial effects. IMAC also appears to be present in plant mitochondria; however, it is insensitive to inhibition by Mg2+, mercurials, and N,N'-dicyclohexylcarbodiimide. Some inhibitors of the adenine nucleotide translocase also inhibit IMAC, including Cibacron Blue, agaric acid, and palmitoyl CoA; however, atractyloside has no effect.
Collapse
Affiliation(s)
- A D Beavis
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008
| |
Collapse
|