1
|
Li C, Zhou Y, Niu Y, He W, Wang X, Zhang X, Wu Y, Zhang W, Zhao L, Zheng H, Song W, Gao H. Deficiency of Pdk1 drives heart failure by impairing taurine homeostasis through Slc6a6. FASEB J 2023; 37:e23134. [PMID: 37561545 DOI: 10.1096/fj.202300272r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
3-Phosphoinositide-dependent protein kinase-1 (Pdk1) as a serine/threonine protein kinase plays a critical role in multiple signaling pathways. Analysis of the gene expression omnibus database showed that Pdk1 was significantly downregulated in patients with heart diseases. Gene set enrichment analysis of the proteomics dataset identified apoptotic- and metabolism-related signaling pathways directly targeted by Pdk1. Previously, our research indicated that Pdk1 deletion-induced metabolic changes might be involved in the pathogenesis of heart failure; however, the underlying mechanism remains elusive. Here, we demonstrated that deficiency of Pdk1 resulted in apoptosis, oxidative damage, and disturbed metabolism, both in vivo and in vitro. Furthermore, profiling of metabonomics by 1 H-NMR demonstrated that taurine was the major differential metabolite in the heart of Pdk1-knockout mice. Taurine treatment significantly reduced the reactive oxygen species production and apoptosis, improved cardiac function, and prolonged the survival time in Pdk1 deficient mice. Proteomic screening identified solute carrier family 6 member 6 (Slc6a6) as the downstream that altered taurine levels in Pdk1-expression cells. Consistently, cellular apoptosis and oxidative damage were rescued by Slc6a6 in abnormal Pdk1 expression cells. These findings collectively suggest that Pdk1 deficiency induces heart failure via disturbances in taurine homeostasis, triggered by Slc6a6.
Collapse
Affiliation(s)
- Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| | - Yi Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenli Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
2
|
Sub-chronic taurine administration induces behavioral sensitization but does not influence ethanol-induced dopamine release in the nucleus accumbens. Pharmacol Biochem Behav 2019; 188:172831. [PMID: 31770542 DOI: 10.1016/j.pbb.2019.172831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Preclinical studies have shown that the amino acid taurine is of importance for the dopamine elevating properties of ethanol. Taurine intake has escalated over the last decade due to increased consumption of taurine-containing energy drinks and dietary supplements. Whether long-term intake of large amounts of taurine induces adaptations affecting ethanol-induced dopamine elevation is not clear. Thus the aim of the present studies was to explore the impact of repeated administration of large amounts of taurine on ethanol-induced behavior and dopamine neurotransmission. Repeated daily systemic administration of taurine increased taurine-induced locomotor activity and rearing. Acute administration of taurine and ethanol in naïve animals produced an additive effect on extracellular taurine but no alteration of the ethanol-induced dopamine elevation, as measured by in vivo microdialysis. Sub-chronic administration of taurine did not modify the taurine- or dopamine-elevating properties of ethanol. Daily taurine treatment also failed to change the mRNA expression of the taurine transporter and GABAA- and glycine-receptor subunits, as measured by qPCR in nucleus accumbens tissue. We conclude that systemic administration of taurine may have long lasting central effects, here displayed as behavioral sensitization. However, repeated daily exposure to taurine does not appear to influence the dopamine elevating properties of ethanol.
Collapse
|
3
|
Brozoski TJ, Caspary DM, Bauer CA, Richardson BD. The effect of supplemental dietary taurine on tinnitus and auditory discrimination in an animal model. Hear Res 2010; 270:71-80. [PMID: 20868734 DOI: 10.1016/j.heares.2010.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/08/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Loss of central inhibition has been hypothesized to underpin tinnitus and impact auditory acuity. Taurine, a partial agonist at inhibitory glycine and γ-amino butyric acid receptors, was added to the daily diet of rats to examine its effects on chronic tinnitus and normal auditory discrimination. Eight rats were unilaterally exposed once to a loud sound to induce tinnitus. The rats were trained and tested in an operant task shown to be sensitive to tinnitus. An equivalent unexposed control group was run in parallel. Months after exposure, 6 of the exposed rats showed significant evidence of chronic tinnitus. Two concentrations of taurine in drinking water were given over several weeks (attaining average daily doses of 67 mg/kg and 294 mg/kg). Water consumption was unaffected. Three main effects were obtained: (1) The high taurine dose significantly attenuated tinnitus, which returned to near pre-treatment levels following washout. (2) Auditory discrimination was significantly improved in unexposed control rats at both doses. (3) As indicated by lever pressing, taurine at both doses had a significant group-equivalent stimulant effect. These results are consistent with the hypothesis that taurine attenuates tinnitus and improves auditory discrimination by increasing inhibitory tone and decreasing noise in the auditory pathway.
Collapse
Affiliation(s)
- Thomas J Brozoski
- Division of Otolaryngology, Head and Neck Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | |
Collapse
|
4
|
Wang GH, Jiang ZL, Fan XJ, Zhang L, Li X, Ke KF. Neuroprotective effect of taurine against focal cerebral ischemia in rats possibly mediated by activation of both GABAA and glycine receptors. Neuropharmacology 2007; 52:1199-209. [PMID: 17386936 DOI: 10.1016/j.neuropharm.2006.10.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 10/16/2006] [Accepted: 10/26/2006] [Indexed: 11/25/2022]
Abstract
To investigate the neuroprotective effect of taurine and the involved mechanisms, middle cerebral artery occlusion (MCAO) was induced with suture for 2h in rat, and the brain tissue was then reperfused. The infarct volume and cerebral damage area were measured, respectively, with 2,3,5-triphenyltetrazolium chloride (TTC) staining and MRI. Nissl staining was used for histological observation, and immunohistochemistry and Western-blot analysis for detecting the activated caspase-3 expression. Both pre- (200mgkg(-1)) and post-treatment of taurine decreased the neurology deficit score, infarct volume and brain water content. Taurine post-treatment (67, 200 and 600mgkg(-1)) showed a dose-dependent neuroprotective effect. Taurine (200mgkg(-1)) significantly decreased neuronal loss in the cerebral cortex and hippocampus, and reduced the expression of caspase-3 as well. The neuroprotective effect of taurine was partly blunted by strychnine or bicuculline alone, and almost completely blocked by coapplication of both antagonists of glycine and GABA(A) receptors. It is suggested that taurine exerts a neuroprotective role on the brain when administered before or after MCAO. Such effect is possibly mediated by the activation of both GABA(A) receptors and strychnine-sensitive glycine receptors. Moreover, inhibition of caspase-3 expression is involved in this neuroprotective effect. These results imply a potential therapeutic use of taurine for stroke.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Body Water/metabolism
- Brain Chemistry/drug effects
- Caspase 3/biosynthesis
- Dose-Response Relationship, Drug
- GABA Antagonists/pharmacology
- Immunohistochemistry
- Infarction, Middle Cerebral Artery/pathology
- Infarction, Middle Cerebral Artery/prevention & control
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/pathology
- Magnetic Resonance Imaging
- Male
- Neuroprotective Agents
- Rats
- Rats, Sprague-Dawley
- Receptors, GABA-A/drug effects
- Receptors, Glycine/antagonists & inhibitors
- Receptors, Glycine/drug effects
- Taurine/pharmacology
- Tetrazolium Salts
- Thermogravimetry
Collapse
Affiliation(s)
- Guo-Hua Wang
- Institute of Nautical Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | | | | | | | | | | |
Collapse
|
5
|
Sved DW, Godsey JL, Ledyard SL, Mahoney AP, Stetson PL, Ho S, Myers NR, Resnis P, Renwick AG. Absorption, tissue distribution, metabolism and elimination of taurine given orally to rats. Amino Acids 2007; 32:459-66. [PMID: 17514497 DOI: 10.1007/s00726-007-0494-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
Three biodisposition studies with taurine were performed in male and female adult rats at dosages of 30 and 300 mg/kg. A single oral dose of (14)C-taurine was rapidly absorbed, distributed to tissues and excreted unchanged in urine. Elimination of radioactivity from intracellular pools was slow. Pre-treatment of animals for 14 days with unlabelled taurine did not significantly affect the fate of (14)C-taurine. At the higher dose there was more extensive excretion combined with a lower percentage of the dose in the carcass, indicating the possibility of saturation of the tubular reabsorption mechanism for taurine. Daily administration of unlabelled taurine for 14 days did not result in an increase in total taurine in the brain. The data indicate that exogenous taurine rapidly equilibrates with endogenous body pools and that any excess is rapidly eliminated by the kidneys.
Collapse
Affiliation(s)
- D W Sved
- WIL Research Laboratories, LLC, Ashland, OH 44805, U.S.A.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Han H, Kim SG, Lee MG, Shim CK, Chung SJ. Mechanism of the reduced elimination clearance of benzylpenicillin from cerebrospinal fluid in rats with intracisternal administration of lipopolysaccharide. Drug Metab Dispos 2002; 30:1214-20. [PMID: 12386127 DOI: 10.1124/dmd.30.11.1214] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism responsible for the reduced clearance of benzylpenicillin (BPC) from the cerebrospinal fluid (CSF) was investigated in rats that received an intracisternal administration of lipopolysaccharide (LPS). BPC was intraventricularly injected and its elimination from the CSF studied. During the inflammation created by the LPS administration to the cisterna magna, the clearance of BPC and taurine from the CSF was significantly reduced but reverted to the control level when N-nitro-L-arginine, a nitric oxide (NO) synthase inhibitor, was intracisternally administered. The in vitro uptake of BPC and taurine was significantly reduced in the choroid plexus (CP, the blood-CSF barrier) of rats with experimental inflammation and in control CP that had been pretreated with sodium nitroprusside (SNP, an NO donor). Interestingly, the clearance and CP uptake of formycin B, a substrate for a nucleoside transporter, were not affected by the experimental inflammation or by pretreatement with SNP. These observations suggest that the BPC transporter, and probably other transport systems as well, is functionally sensitive to NO in the blood-CSF barrier. Therefore, functional impairment of BPC transport in the CP by NO may be partly responsible for the increase in BPC concentration in the CSF during inflammation such as that caused by meningitis.
Collapse
Affiliation(s)
- Hee Han
- Department of Pharmaceutics, College of Pharmacy, Seoul National University, Kwanak-gu, Korea
| | | | | | | | | |
Collapse
|
7
|
Foos TM, Wu JY. The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem Res 2002; 27:21-6. [PMID: 11926272 DOI: 10.1023/a:1014890219513] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of taurine in the mammalian nervous system are numerous and varied. There has been great difficulty in determining the specific targets of taurine action. The authors present a review of accepted taurine action and highlight recent discoveries regarding taurine and calcium homeostasis in neurons. In general there is a consensus that taurine is a powerful agent in regulating and reducing the intracellular calcium levels in neurons. After prolonged L-glutamate stimulation, neurons lose the ability to effectively regulate intracellular calcium. This condition can lead to acute swelling and lysis of the cell, or culminate in apoptosis. Under these conditions, significant amounts of taurine (mM range) are released from the excited neuron. This extracellular taurine acts to slow the influx of calcium into the cytosol through both transmembrane ion transporters and intracellular storage pools. Two specific targets of taurine action are discussed: Na(+)-Ca2+ exchangers, and metabotropic receptors mediating phospholipase-C.
Collapse
Affiliation(s)
- Todd M Foos
- Department of Molecular Biosciences, University of Kansas, Lawrence 66045, USA
| | | |
Collapse
|
8
|
Chodobski A, Szmydynger-Chodobska J, McKinley MJ. Cerebrospinal fluid formation and absorption in dehydrated sheep. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:F235-8. [PMID: 9691013 DOI: 10.1152/ajprenal.1998.275.2.f235] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cerebrospinal fluid (CSF) plays an important role in the brain's adaptive response to acute osmotic disturbances. In the present experiments, the effect of 48-h dehydration on CSF formation and absorption rates was studied in conscious adult sheep. Animals had cannulas chronically implanted into the lateral cerebral ventricles and cisterna magna to enable the ventriculocisternal perfusion. A 48-h water deprivation altered neither CSF production nor resistance to CSF absorption. However, in the water-depleted sheep, intraventricular pressure tended to be lower than that found under control conditions. This likely resulted from decreased extracellular fluid volume and a subsequent drop in central venous pressure occurring in dehydrated animals. In conclusion, our findings provide evidence for the maintenance of CSF production during mild dehydration, which may play a role in the regulation of fluid balance in the brain during chronic hyperosmotic stress.
Collapse
Affiliation(s)
- A Chodobski
- Howard Florey Institute of Experimental Physiology and Medicine, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
9
|
Maes M, Verkerk R, Vandoolaeghe E, Lin A, Scharpé S. Serum levels of excitatory amino acids, serine, glycine, histidine, threonine, taurine, alanine and arginine in treatment-resistant depression: modulation by treatment with antidepressants and prediction of clinical responsivity. Acta Psychiatr Scand 1998; 97:302-8. [PMID: 9570492 DOI: 10.1111/j.1600-0447.1998.tb10004.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Previous research has revealed that major depression is accompanied by disorders in excitatory amino acids, e.g. glutamate and aspartate, and alterations in serum levels of other amino acids, e.g. serine, glycine and taurine. The aim of the present study was to examine serum levels of aspartate, asparagine, glutamate, glutamine, serine, glycine, threonine, histidine, alanine, taurine and arginine in major depression patients with treatment-resistant depression (TRD). No significant differences in the serum concentrations of any of the above amino acids could be found between patients with and without TRD and normal controls. Non-responders to treatment with antidepressants during a period of 5 weeks were characterized by significantly lower serum levels of aspartate, asparagine, serine, threonine and taurine. A 5-week period of treatment with antidepressants significantly reduced the serum levels of aspartate, glutamate and taurine, and significantly increased the serum concentrations of glutamine. The results suggest that alterations in serum levels of aspartate, asparagine, serine, threonine and taurine may predict the subsequent response to treatment with antidepressants, and that the latter may modulate serum levels of excitatory amino acids and taurine.
Collapse
Affiliation(s)
- M Maes
- University Department of Psychiatry, AZ Stuivenberg, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
10
|
Ramanathan VK, Brett CM, Giacomini KM. Na+-dependent gamma-aminobutyric acid (GABA) transport in the choroid plexus of rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1330:94-102. [PMID: 9375816 DOI: 10.1016/s0005-2736(97)00146-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The goal of this study was to examine the mechanisms of transport of gamma-aminobutyric acid (GABA) in the choroid plexus. Choroid plexus slices from the rabbit were depleted of ATP with 2,4-dinitrophenol. GABA accumulated in the choroid plexus slices in a concentrative manner in the presence of an inwardly-directed Na+ gradient. Uptake occurred in the presence of Cl-; replacement of Cl- with gluconate abolished uptake. SCN-, NO3- or Br- were able to support uptake in the absence of Cl- to a significant extent (80, 68 and 61% of control, respectively). GABA uptake was saturable (Km of 37 +/- 8.5 microM, Vmax of 409 +/- 43 nmol/g/min). Na+-driven GABA uptake was inhibited by beta-alanine (IC50 = 22.9 microM) and hypotaurine (IC50 = 21.9 microM) but less potently by nipecotic acid (IC50 = 244 microM) and hydroxy-nipecotic acid (IC50 = 284 microM). Betaine, L-(2,4)-diaminobutyric acid, guvacine and 4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridin-3-ol were weak inhibitors (IC50 > 500 microM). GABA inhibited Na+-driven uptake of taurine (IC50 = 230 microM); taurine, however, did not inhibit GABA uptake (IC50 > 1 mM). RT-PCR, using degenerate primers for cloned GABA transporters, did not result in the amplification of a band from rat choroid plexus RNA. The location of the choroid plexus in the ventricles of the brain, and its role in the secretion of the cerebrospinal fluid, suggest a role for the choroid plexus Na+-GABA transporter in the disposition of GABA in the brain.
Collapse
Affiliation(s)
- V K Ramanathan
- Graduate Program in Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
11
|
Abstract
PURPOSE Taurine, a beta-amino acid, is a neuromodulator which interacts functionally with the glycinergic, GABAergic, cholinergic and adrenergic systems. Although a continuous cell culture model is not available for the choroid plexus epithelia, we recently described a primary cell culture of rabbit choroid plexus epithelia. The goal of the current study was to determine the suitability of this primary cell culture for the study of the Na(+)-taurine transporter in the rabbit choroid plexus. METHODS A primary cell culture of rabbit choroid plexus epithelial cells was grown on semi-permeable filters and kinetics of 3H-taurine uptake were ascertained. RESULTS Taurine transport in the cultured choroid plexus cell was Na(+)-dependent and saturable (Km = 156 microM). The beta-amino acids, beta-alanine and taurine, significantly inhibited Na(+)-driven taurine transport whereas L-alanine partially inhibited taurine transport in the cultured cells. In addition, we observed that the activity of the Na(+)-taurine transporter is affected by exposure to taurine in the media. CONCLUSIONS These results-demonstrate that a Na(+)-taurine transporter with characteristics similar to those in the intact tissue is expressed in cultured choroid plexus epithelial cells. The transporter may undergo adaptive regulation and play a role in taurine homeostasis in the central nervous system.
Collapse
Affiliation(s)
- V K Ramanathan
- Graduate Program in Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
12
|
Abstract
The putative osmoregulatory agent, taurine, is lost from the brain during hypo-osmotic stress or ischemia, but the regulatory mechanisms involved in this loss have not been fully elucidated. In this study, we have examined taurine transport by the isolated rat choroid plexus, one element of the brain-blood interface, and examined how it may be regulated as part of brain volume regulation. Choroid plexus taurine uptake was Na- and Cl-dependent with a Vmax and Km of 6.5 +/- 0.3 pmol/mg/min and 232 +/- 33 microM. The latter is substantially greater than the normal CSF taurine concentration and this may be important in removing taurine released into the CSF during parenchymal cell swelling. Taurine uptake also appears calmodulin dependent as it was reduced by 84 and 91% in the presence of 25 microM trifluoperazine and 100 microM W-7, two calmodulin inhibitors. Taurine efflux from choroid plexus was stimulated by trifluoperazine, taurine, and hypo-osmotic stress. The latter two effects were reduced by niflumic acid, suggesting that taurine and hypo-osmotic stress act on the same pathway. The stimulation of efflux by hypo-osmotic stress decreased with time, whereas the effect of external taurine was sustained. If this efflux pathway is involved in the movement of taurine from choroid plexus to blood, these results suggest that changes in extracellular taurine may be more important than the direct effect of hypo-osmolality in the long-term loss of taurine from the brain.
Collapse
Affiliation(s)
- R F Keep
- Department of Surgery (Neurosurgery), University of Michigan, Ann Arbor 48109-0532, USA
| | | |
Collapse
|
13
|
Washington CB, Giacomini KM, Brett CM. Methods of study drug transport in isolated choroid plexus tissue and cultured cells. PHARMACEUTICAL BIOTECHNOLOGY 1996; 8:259-83. [PMID: 8791814 DOI: 10.1007/978-1-4899-1863-5_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C B Washington
- Department of Pharmacy, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
14
|
Washington CB, Giacomini KM. Mechanisms of nucleobase transport in rabbit choroid plexus. Evidence for a Na(+)-dependent nucleobase transporter with broad substrate selectivity. J Biol Chem 1995; 270:22816-9. [PMID: 7559412 DOI: 10.1074/jbc.270.39.22816] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The overall goal of this study was to determine the mechanisms by which nucleobases are transported in the choroid plexus. Choroid plexus tissue slices were obtained from the lateral ventricles of rabbit brains and depleted of ATP with 2,4-dinitrophenol. In the presence of an initial inwardly directed Na+ gradient, hypoxanthine accumulated in the tissue slices against a concentration gradient. Na(+)-stimulated hypoxanthine uptake was saturable with a Km of 31.1 +/- 9.71 microM and a Vmax of 2.69 +/- 0.941 nmol/g/s (mean +/- S.E.). Na(+)-stimulated hypoxanthine uptake was inhibited by (100) microM naturally occurring purine and pyrimidine nucleobases (adenine, cytosine, guanine, hypoxanthine, thymine, uracil, and xanthine) as well as by the nucleoside analog, dideoxyadenosine. The stoichiometric coupling ratio between Na+ and hypoxanthine was 1.7:1. The data demonstrate the presence of a novel Na(+)-dependent nucleobase transporter in the choroid plexus, which is distinct from the previously described Na(+)-nucleoside transporter in choroid plexus and from Na(+)-dependent nucleobase transporters in other tissues in terms of its kinetics, substrate selectivity, and Na(+)-nucleobase stoichiometry. This transporter may play a role in the targeting of both salvageable nucleobases and therapeutic nucleoside analogs to the central nervous system.
Collapse
Affiliation(s)
- C B Washington
- School of Pharmacy, University of California, San Francisco 94143, USA
| | | |
Collapse
|