1
|
Butrin A, Butrin A, Wawrzak Z, Moran GR, Liu D. Determination of the pH dependence, substrate specificity, and turnovers of alternative substrates for human ornithine aminotransferase. J Biol Chem 2022; 298:101969. [PMID: 35460691 PMCID: PMC9136103 DOI: 10.1016/j.jbc.2022.101969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver and occurs predominantly in patients with underlying chronic liver diseases. Over the past decade, human ornithine aminotransferase (hOAT), which is an enzyme that catalyzes the metabolic conversion of ornithine into an intermediate for proline or glutamate synthesis, has been found to be overexpressed in HCC cells. hOAT has since emerged as a promising target for novel anticancer therapies, especially for the ongoing rational design effort to discover mechanism-based inactivators (MBIs). Despite the significance of hOAT in human metabolism and its clinical potential as a drug target against HCC, there are significant knowledge deficits with regard to its catalytic mechanism and structural characteristics. Ongoing MBI design efforts require in-depth knowledge of the enzyme active site, in particular, pKa values of potential nucleophiles and residues necessary for the molecular recognition of ligands. Here, we conducted a study detailing the fundamental active-site properties of hOAT using stopped-flow spectrophotometry and X-ray crystallography. Our results quantitatively revealed the pH dependence of the multistep reaction mechanism and illuminated the roles of ornithine α-amino and δ-amino groups in substrate recognition and in facilitating catalytic turnover. These findings provided insights of the catalytic mechanism that could benefit the rational design of MBIs against hOAT. In addition, substrate recognition and turnover of several fragment-sized alternative substrates of hOATs, which could serve as structural templates for MBI design, were also elucidated.
Collapse
Affiliation(s)
- Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Anastassiya Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA
| | - Zdzislaw Wawrzak
- Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, Illinois, USA
| | - Graham R Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois, USA.
| |
Collapse
|
2
|
Ginguay A, Cynober L, Curis E, Nicolis I. Ornithine Aminotransferase, an Important Glutamate-Metabolizing Enzyme at the Crossroads of Multiple Metabolic Pathways. BIOLOGY 2017; 6:biology6010018. [PMID: 28272331 PMCID: PMC5372011 DOI: 10.3390/biology6010018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023]
Abstract
Ornithine δ-aminotransferase (OAT, E.C. 2.6.1.13) catalyzes the transfer of the δ-amino group from ornithine (Orn) to α-ketoglutarate (aKG), yielding glutamate-5-semialdehyde and glutamate (Glu), and vice versa. In mammals, OAT is a mitochondrial enzyme, mainly located in the liver, intestine, brain, and kidney. In general, OAT serves to form glutamate from ornithine, with the notable exception of the intestine, where citrulline (Cit) or arginine (Arg) are end products. Its main function is to control the production of signaling molecules and mediators, such as Glu itself, Cit, GABA, and aliphatic polyamines. It is also involved in proline (Pro) synthesis. Deficiency in OAT causes gyrate atrophy, a rare but serious inherited disease, a further measure of the importance of this enzyme.
Collapse
Affiliation(s)
- Antonin Ginguay
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Luc Cynober
- Clinical Chemistry, Cochin Hospital, GH HUPC, AP-HP, 75014 Paris, France.
- Laboratory of Biological Nutrition, EA 4466 PRETRAM, Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| | - Emmanuel Curis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, INSERM, Université Paris Descartes, 75006 Paris, France.
- UMR 1144, Université Paris Descartes, 75006 Paris, France.
- Service de biostatistiques et d'informatique médicales, hôpital Saint-Louis, Assistance publique-hôpitaux de Paris, 75010 Paris, France.
| | - Ioannis Nicolis
- Laboratoire de biomathématiques, plateau iB², Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
- EA 4064 "Épidémiologie environnementale: Impact sanitaire des pollutions", Faculté de Pharmacie, Université Paris Descartes, 75006 Paris, France.
| |
Collapse
|
3
|
Ravi Kumar H, Ananda S, Devaraju KS, Prakash BM, Sampath Kumar S, Suresh Babu SV, Ramachandraswamy N, Puttaraju HP. A sensitive assay for ornithine amino transferase in rat brain mitochondria by ninhydrin method. Indian J Clin Biochem 2009; 24:275-9. [PMID: 23105849 DOI: 10.1007/s12291-009-0052-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To establish/develop an assay method for measuring Ornithine Aminotransferase (EC.2.6.1.13) activity using rat brain mitochondria as a source of enzyme in presence and absence of Pyridoxal Phosphate (PLP). The modified method, with the improved sensitivity, is adopted for the assay of ornithine amino transferase activity in rat brain mitochondria. The enzyme activity was measured at 620 nm, the study showed that reaction was optimum at 37°C for 30 minutes. The assay is sensitive enough to detect activity at the order of nanomoles pyrroline-5-carboxylate/mg protein/minute and can be compared as an alternative to the radio isotopic method which is more cumbersome and aminobenzaldehyde method which is less sensitive. The K(m) & V(max) shows maximum activity in the presence of Pyridoxal Phosphate (Coenzyme) concentration at 0.05mM when compared with absence of Pyridoxal Phosphate as higher the concentration of Pyridoxal Phosphate affects the affinity of the enzyme to substrate. The OAT activity in different tissues of the rat was also studied and highest activity was found in liver and kidney.
Collapse
Affiliation(s)
- H Ravi Kumar
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029 India ; Department of Biochemistry, Central College Campus, Bangalore University, Bangalore, 560001 India ; School of Natural Sciences, Biological Sciences, Jnanabharathi Campus, Bangalore University, Bangalore, 560056 India ; School of Natural Sciences, Biological Sciences, Jnanabharathi Campus, Bangalore University, Bangalore, 560056 Karnataka India
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ramesh V, McClatchey AI, Ramesh N, Benoit LA, Berson EL, Shih VE, Gusella JF. Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy. Proc Natl Acad Sci U S A 1988; 85:3777-80. [PMID: 3375240 PMCID: PMC280301 DOI: 10.1073/pnas.85.11.3777] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gyrate atrophy (GA), a recessive eye disease involving progressive loss of vision due to chorioretinal degeneration, is associated with a deficiency of the mitochondrial enzyme ornithine aminotransferase (OATase; ornithine-oxo-acid aminotransferase; L-ornithine:2-oxo-acid aminotransferase, EC 2.6.1.13) with consequent hyperornithinemia. Genetic heterogeneity of GA has been suggested by the demonstration that administration of pyridoxine to increase the level of pyridoxal phosphate, a cofactor of OATase, reduces hyperornithinemia in a subset of patients. We have cloned and sequenced cDNAs for OATase from two GA patients, one responsive and one nonresponsive to pyridoxine treatment. The respective cDNAs contained different single missense mutations, which were sufficient to eliminate OATase activity when each cDNA was tested in a eukaryotic expression system. However, like the enzyme in fibroblasts from the pyridoxine-responsive patient, OATase encoded by the corresponding cDNA from this individual showed a significant increase in activity when assayed in the presence of an increased pyridoxal phosphate concentration. These data firmly establish that both pyridoxine responsive and nonresponsive forms of GA result from mutations in the OATase structural gene. Moreover, they provide a molecular characterization of the primary lesion in a pyridoxine-responsive genetic disorder.
Collapse
Affiliation(s)
- V Ramesh
- Neurogenetics Laboratory, Massachusetts General Hospital, Boston 02115
| | | | | | | | | | | | | |
Collapse
|
5
|
Ratzlaff K, Baich A. Comparison of ornithine aminotransferase activities in the pigment epithelium and retina of vertebrates. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1987; 88:35-7. [PMID: 3677612 DOI: 10.1016/0305-0491(87)90075-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. The specific activities of ornithine aminotransferase (OAT) in the pigment epithelia, retinas, and livers from several classes of vertebrates were assayed. 2. The specific activities of OAT were much higher in the pigment epithelia from mammals and birds than in their respective retinas or livers. 3. Pigment epithelium from porcine eyes had the highest specific activity measured. The specific activity of OAT in the pigment epithelium from the pig was five times higher than the OAT activity in its retina and 13 times higher than the OAT activity in its liver.
Collapse
Affiliation(s)
- K Ratzlaff
- Department of Biological Sciences, Southern Illinois University at Edwardsville 62026
| | | |
Collapse
|
6
|
Boernke WE, Stevens FJ, Edwards JJ, Peraino C. Differential changes in ornithine aminotransferase self-affinity produced by exposure to basic amino acids and the increases in the intrinsic electronegativity of the enzyme monomer. Arch Biochem Biophys 1982; 216:152-7. [PMID: 6808922 DOI: 10.1016/0003-9861(82)90199-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Bulfield G, Hall JM. Ornithine aminotranferase levels in rats and mice differ in their response to oestrogen and testosterone. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0305-0491(81)90245-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Goldberg M, Flescher E, Gold D, Lengy J. Ornithine-δ-transaminase from the liver fluke Fasciola hepatica and the blood fluke Schistosoma mansoni: A comparative study. ACTA ACUST UNITED AC 1980. [DOI: 10.1016/0305-0491(80)90168-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Goldberg M, Flescher E, Lengy J. Schistosoma mansoni: partial purification and properties of ornithine-delta-transaminase. Exp Parasitol 1979; 47:333-41. [PMID: 36285 DOI: 10.1016/0014-4894(79)90086-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Bulfield G, Nahum A. Effect of the mouse mutants testicular feminization and sex reversal on hormone-mediated induction and repression of enzymes. Biochem Genet 1978; 16:743-50. [PMID: 31863 DOI: 10.1007/bf00484731] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mouse mutants testicular feminization and sex reversal have been used to investigate hormone-mediated induction and repression of enzymes. Tfm/Y animals were already known to be androgen insensitive, rendering the androgen-inducible enzymes ADH and beta-glucuronidase noninducible because of an inherited deficiency of a cytosol androgen-receptor complex. The animals display female secondary sexual characteristics. Sxr/+,XX animals display male primary and secondary sexual characteristics with small testes. We demonstrate (1) that the Tfm mutation is pleiotropic, preventing repression of an androgen-repressible enzyme (ornithine aminotransferase) as well as induction of androgen-inducible enzymes, (2) that an estrogen-inducible enzyme (histidine decarboxylase) is not affected by the Tfm mutation, and (3) that Sxr/+,XX animals produce enough androgen for malelike activities of androgen-sensitive enzymes. It was also discovered that histidine decarboxylase repressed by androgen in normal animals, rather than being unaffected by it in Tfm/Y animals, is in fact induced. This unexpected phenomenon is discussed and an explanation is suggested for it.
Collapse
|
11
|
McGivan JD, Bradford NM, Beavis AD. Factors influencing the activity of ornithine aminotransferase in isolated rat liver mitochondria. Biochem J 1977; 162:147-56. [PMID: 849273 PMCID: PMC1164578 DOI: 10.1042/bj1620147] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. The characteristics of ornithine catabolism by the aminotransferase pathway in isolated mitochondria were determined. 2. Ornithine synthesis from glutamate and glutamate gamma-semialdehyde produced by the oxidation of proline was studied. No ornithine was formed in the absence of rotenone. 3. The mechanism of ornithine transport was reinvestigated, and the existence of an ornithine+/H+ exchange system postulated. 4. The kinetics of ornithine transport, ornithine catabolism in intact mitochondria and ornithine aminotransferase activity in solubilized mitochondria were compared. It is concluded that ornithine aminotransferase activity in liver mitochondria is rate-limited by the transport of ornithine across the mitochondrial membrane, and that this enzyme is involved primarily in ornithine degradation rather than ornithine synthesis.
Collapse
|
12
|
SANADA Y, SHIOTANI T, OKUNO E, KATUNUMA N. Coenzyme-Dependent Conformational Properties of Rat Liver Ornithine Aminotransferase. ACTA ACUST UNITED AC 1976. [DOI: 10.1111/j.1432-1033.1976.tb10935.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Kalita CC, Kerman JD, Strecker HJ. Preparation and properties of ornithine-oxo-acid aminotransferase of rat kidney. Comparison with the liver enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 429:780-97. [PMID: 1268231 DOI: 10.1016/0005-2744(76)90325-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ornithine-oxo-acid aminotransferase (EC 2.6.1.13) from rat kidney was prepared as a single homogeneous protein as judged by polyacrylamide gel electrophoresis, ultracentrifuge analysis and double diffusion precipitin test. Content of pyridoxal phosphate, light absorption spectra, circular dicroism spectra, Km values, inhibitors, and electrophoretic mobilities of the proteins after reactions with group modifying reagents were similar for the ornithine-oxo-acid aminotransferases of rat kidney and liver. Rates of reaction with group modifying reagents, stabilities to storage at -15 degrees C, and stabilities to temperatures above 55 degrees C differed significantly for the two enzymes. The liver enzyme contained two more cysteine residues than the kidney enzyme as determined by three different methods. Heating the liver enzyme at 66-67 degrees C at pH 5.9 for 1 h decreased the thiol groups titratable by 5,5'-dithio-bis(2-nitrobenzoic acid) (Nbs2). Uncer the same conditions titratable thiol groups of the kidney enzyme were not decreased. Amino acid analysis revealed probably significant differences in tyrosine and isoleucine content in addition to cysteine. It was concluded that the primary structures of ornithine-oxo-acid aminotransferases of rat liver and kidney are not fully identical.
Collapse
|
14
|
Morris JE, Peraino C. Immunochemical studies of serine dehydratase and ornithine aminotransferase regulation in rat liver in vivo. J Biol Chem 1976. [DOI: 10.1016/s0021-9258(17)33525-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Yanagl S, Campbell HA, Potter VR. Diurnal variations in activity of four pyridoxal enzymes in rat liver during metabolic transition from high carbohydrate to high protein diet. Life Sci 1975; 17:1411-21. [PMID: 1619 DOI: 10.1016/0024-3205(75)90161-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Benuck M, Lajtha A. Aminotransferase activity in brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1975; 17:85-129. [PMID: 237848 DOI: 10.1016/s0074-7742(08)60208-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|