LeSage GD, Robertson WE, Baumgart MA. Bile acid-dependent vesicular transport of lysosomal enzymes into bile in the rat.
Gastroenterology 1993;
105:889-900. [PMID:
8359656 DOI:
10.1016/0016-5085(93)90909-v]
[Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND
Bile acids may stimulate the movement of hepatocyte vesicles and enhance their fusion with the biliary canaliculus. The present study examined the effects of various bile acids on the exocytosis of the contents of hepatocyte lysosomes into the biliary canaliculus.
METHODS
The effects of various bile acids on hepatocyte lysosome movement and on exocytosis of the contents of hepatocyte lysosomes into the biliary canaliculus were determined from the distribution of fluorescein isothiocyanate-dextran--labeled lysosomes in hepatocyte couplets and by quantitating biliary lysosomal enzyme output in rats.
RESULTS
Hydrophobic as well as hydrophilic and nonmicellar bile acids were found to stimulate to a similar degree the output of lysosomal enzymes into bile, indicating that bile acid-induced change of canalicular or lysosomal membrane fluidity is not responsible for enhanced exocytosis. The taurocholate-dependent increase in lysosomal enzyme excretion was completely blocked by either microtubule or microfilament inhibition, suggesting that these subcellular structures are involved in bile acid-dependent vesicular transport. Fluorescent microscopy studies showed that taurocholate causes a microtubule-dependent translocation of lysosomes towards the canaliculus in hepatocyte couplets, which occurred at the same time as increased output of lysosomal enzymes into bile.
CONCLUSIONS
The results suggest that bile acids modulate vesicle traffic towards the canaliculus by a mechanism unrelated to bile acid interaction with the vesicle membrane.
Collapse