1
|
Lisiecka N, Parus A, Simpson M, Kloziński A, Zembrzuska J, Frankowski R, Zgoła-Grześkowiak A, Woźniak-Karczewska M, Siwińska-Ciesielczyk K, Niemczak M, Sandomierski M, Eberlein C, Heipieper HJ, Chrzanowski Ł. Unraveling the effects of acrylonitrile butadiene styrene (ABS) microplastic ageing on the sorption and toxicity of ionic liquids with 2,4-D and glyphosate herbicides. CHEMOSPHERE 2024; 364:143271. [PMID: 39241837 DOI: 10.1016/j.chemosphere.2024.143271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40 to 45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.
Collapse
Affiliation(s)
- Natalia Lisiecka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Anna Parus
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Maria Simpson
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Arkadiusz Kloziński
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Marta Woźniak-Karczewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | | | - Michał Niemczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Mariusz Sandomierski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Łukasz Chrzanowski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland; Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
2
|
Toral PG, Hervás G, Frutos P. INVITED REVIEW: Research on ruminal biohydrogenation: Achievements, gaps in knowledge, and future approaches from the perspective of dairy science. J Dairy Sci 2024:S0022-0302(24)01070-1. [PMID: 39154717 DOI: 10.3168/jds.2023-24591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Scientific knowledge about ruminal biohydrogenation (BH) has improved greatly since this metabolic process was empirically confirmed in 1951. For years, BH had mostly been perceived as a process to be avoided to increase the post-ruminal flow of UFA from the diet. Two milestones changed this perception and stimulated great interest in BH intermediates themselves: In 1987, the in vitro anticarcinogenic properties of CLA were described, and in 2000, the inhibition of milk fat synthesis by trans-10 cis-12 CLA was confirmed. Since then, numerous BH metabolites have been described in small and large ruminants, and the major deviation from the common BH pathway (i.e., the trans-10 shift) has been reasonably well established. However, there are some less well-characterized alterations, and the comprehensive description of new BH intermediates (e.g., using isotopic tracers) has not been coupled with research on their biological effects. In this regard, the low quality of some published fatty acid profiles may also be limiting the advance of knowledge in BH. Furthermore, although BH seems to no longer be considered a metabolic niche inhabited by a few bacterial species with a highly specific metabolic capability, researchers have failed to elucidate which specific microbial groups are involved in the process and the basis for alterations in BH pathways (i.e., changes in microbial populations or their activity). Unraveling both issues may be beneficial for the description of new microbial enzymes involved in ruminal lipid metabolism that have industrial interest. From the perspective of diary science, other knowledge gaps that require additional research in the coming years are evaluation of the relationship between BH and feed efficiency and enteric methane emissions, as well as improving our understanding of how alterations in BH are involved in milk fat depression. Addressing these issues will have relevant practical implications in dairy science.
Collapse
Affiliation(s)
- P G Toral
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain.
| | - G Hervás
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| | - P Frutos
- Instituto de Ganadería de Montaña (CSIC-University of León), Finca Marzanas s/n, 24346 Grulleros, León, Spain
| |
Collapse
|
3
|
Linney JA, Routledge SJ, Connell SD, Larson TR, Pitt AR, Jenkinson ER, Goddard AD. Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184217. [PMID: 37648011 DOI: 10.1016/j.bbamem.2023.184217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1-4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres.
Collapse
Affiliation(s)
- John A Linney
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Sarah J Routledge
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Simon D Connell
- School of Physics and Astronomy and The Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Tony R Larson
- Department of Biology, University of York, York YO10 5DD, UK
| | - Andrew R Pitt
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | | | - Alan D Goddard
- School of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
4
|
de Carvalho AF, de Araújo MJ, Vallecillo SJA, Neto JPC, de Souza AR, Edvan RL, Dias-Silva TP, Bezerra LR. Tissue composition and meat quality of lambs fed diets containing whole-plant sesame silage as a replacement for whole-plant corn silage. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Effects of Dietary Babassu Oil or Buriti Oil on Nutrient Intake and Total Tract Digestibility, and Abomasal Digesta Fatty Acid Profile of Lambs. Animals (Basel) 2022; 12:ani12091176. [PMID: 35565602 PMCID: PMC9103921 DOI: 10.3390/ani12091176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary This research tested the effects of adding babassu oil (450 g/kg C12:0 of total fatty acids—FA) or buriti oil (750 g/kg C18:f total FA) to the diet of lambs on intake, nutrient digestibility, FA profile of abomasal digesta content and biohydrogenation patterns in digestive content. Both are widely available in the Northeast of Brazil and Amazon region. Our results provide evidence that the babassu supplemented diet promotes greater stress to the ruminal bacteria (due to the high concentration of C12:0), changing the normal biohydrogenation of polyunsaturated FA (PUFA) in the rumen, and the FA concentration that flows to the abomasum, compared to the buriti oil supplemented diet, which provided similar results to the non-supplemented diet. Abstract Our current understanding of the effect of medium-chain FA (MCFA) rich vegetable oils on ruminant nutrition is limited. We assessed the effects of babassu or buriti oil addition to the diet of lambs on intake, nutrient digestibility, FA profile of abomasal digesta content and biohydrogenation (BH) patterns in digestion. The experimental diets were defined by the addition of babassu oil or buriti oil to the diet, as follows: (1) non-supplemented diet (CON); (2) 40 g/kg of babassu oil (BAO, rich in C12:0); and (3) 40 g/kg of buriti oil (BUO, rich in c9 18:1), on a dry matter (DM) basis. During the last five days of the feedlot, samples of orts and feces were individually collected to determine the nutrient and FA digestibility. At the end of the experiment, animals were slaughtered, and the abomasal digesta was collected, freeze-dried and used for FA determinations conducted by gas chromatography. The BAO diet decreased the DM (p = 0.014) and nutrient intake. The lambs fed BUO had the greatest FA intake, followed by the BAO and CON diets. However, BAO increased total FA digestibility, compared with CON, but did not differ from BUO. The BAO diet extensively changed the FA composition of abomasal digesta when compared with both the CON and BUO diets. The BAO diet also increased C12:0 and C14:0, the sum of PUFA and the BH intermediates FA, including the t-10-18:1 but decreased the C18:0 in abomasal digesta. The BUO addition had the greatest total-FA and C18:0 and the lowest biohydrogenation intermediate content in abomasal digesta. The BH was less complete with the BAO diet and a large increase in t10-18:1 and of t10-/t11-18:1 ratio was observed, which indicates the occurrence of t10 possibly shifted rumen BH pathways, probably as a response to bacterial membrane stress induced by the greater C12:0 concentration in the rumen.
Collapse
|
6
|
Santos GDO, Parente H, Zanine A, Nascimento T, Lima ADOV, Bezerra L, Machado N, de Jesus D, dos Santos V, Costa H, Oliveira J, Parente M. Effects of dietary greasy babassu byproduct on nutrient utilization, meat quality, and fatty acid composition in abomasal digesta and meat from lambs. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Mauger M, Ferreri C, Chatgilialoglu C, Seemann M. The bacterial protective armor against stress: The cis-trans isomerase of unsaturated fatty acids, a cytochrome-c type enzyme. J Inorg Biochem 2021; 224:111564. [PMID: 34418715 DOI: 10.1016/j.jinorgbio.2021.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
Bacteria have evolved several outstanding strategies to resist to compounds or factors that compromise their survival. The first line of defense of the cell against environmental stresses is the membrane with fatty acids as fundamental building blocks of phospholipids. In this review, we focus on a periplasmic heme enzyme that catalyzes the cis-trans isomerization of unsaturated fatty acids to trigger a decrease in the fluidity of the membrane in order to rapidly counteract the danger. We particularly detailed the occurrence of such cis-trans isomerase in Nature, the different stresses that are at the origin of the double bond isomerization, the first steps in the elucidation of the mechanism of this peculiar metalloenzyme and some aspects of its regulation.
Collapse
Affiliation(s)
- Mickaël Mauger
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche - ISOF, Via Piero Gobetti 101, 40129 Bologna, Italy
| | | | - Myriam Seemann
- Equipe Chimie Biologique et Applications Thérapeutiques, Institut de Chimie UMR 7177, Université de Strasbourg/CNRS 4, rue Blaise Pascal, 67070 Strasbourg, France.
| |
Collapse
|
8
|
Burot C, Amiraux R, Bonin P, Guasco S, Babin M, Joux F, Marie D, Vilgrain L, Heipieper HJ, Rontani JF. Viability and stress state of bacteria associated with primary production or zooplankton-derived suspended particulate matter in summer along a transect in Baffin Bay (Arctic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145252. [PMID: 33736382 DOI: 10.1016/j.scitotenv.2021.145252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
In the framework of the GreenEdge Project (whose the general objective is to understand the dynamic of the phytoplankton spring bloom in Arctic Ocean), lipid composition and viability and stress state of bacteria were monitored in sea ice and suspended particulate matter (SPM) samples collected in 2016 along a transect from sea ice to open water in Baffin Bay (Arctic Ocean). Lipid analyses confirmed the dominance of diatoms in the bottommost layer of ice and suggested (i) the presence of a strong proportion of micro-zooplankton in SPM samples collected at the western ice covered St 403 and St 409 and (ii) a high proportion of macro-zooplankton (copepods) in SPM samples collected at the eastern ice covered St 413 and open water St 418. The use of the propidium monoazide (PMA) method allowed to show a high bacterial mortality in sea ice and in SPM material collected in shallower waters at St 409 and St 418. This mortality was attributed to the release of bactericidal free fatty acids by sympagic diatoms under the effect of light stress. A strong cis-trans isomerization of bacterial MUFAs was observed in the deeper SPM samples collected at the St 403 and St 409. It was attributed to the ingestion of bacteria stressed by salinity in brine channels of ice by sympagic bacterivorous microzooplankton (ciliates) incorporating trans fatty acids of their preys before to be released in the water column during melting. The high trans/cis ratios also observed in SPM samples collected in the shallower waters at St 413 and St 418 suggest the presence of positively or neutrally buoyant extracellular polymeric substances (EPS)-rich particles retained in sea ice and discharged (with bacteria stressed by salinity) in seawater after the initial release of algal biomass. Such EPS particles, which are generally considered as ideal vectors for bacterial horizontal distribution in the Arctic, appeared to contain a high proportion of dead and non-growing bacteria.
Collapse
Affiliation(s)
- Christopher Burot
- Aix-Marseille University, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France
| | - Rémi Amiraux
- Aix-Marseille University, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France; UMR 6539 Laboratoire des Sciences de l'Environnement Marin (CNRS, UBO, IRD, Ifremer) Institut Universitaire Européen de la Mer (IUEM) Plouzané, France; Takuvik Joint International Laboratory, Laval University (Canada) - CNRS, Département de biologie, Université Laval, Québec G1V 0A6, Québec, Canada
| | - Patricia Bonin
- Aix-Marseille University, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France
| | - Sophie Guasco
- Aix-Marseille University, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France
| | - Marcel Babin
- Takuvik Joint International Laboratory, Laval University (Canada) - CNRS, Département de biologie, Université Laval, Québec G1V 0A6, Québec, Canada
| | - Fabien Joux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls sur mer, France
| | - Dominique Marie
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Laure Vilgrain
- Sorbonne Université, CNRS UMR 7093, LOV, Observatoire océanologique, Villefranche-sur-Mer, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jean-François Rontani
- Aix-Marseille University, Université de Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France.
| |
Collapse
|
9
|
Mozaheb N, Mingeot-Leclercq MP. Membrane Vesicle Production as a Bacterial Defense Against Stress. Front Microbiol 2020; 11:600221. [PMID: 33362747 PMCID: PMC7755613 DOI: 10.3389/fmicb.2020.600221] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Membrane vesicles are the nano-sized vesicles originating from membranes. The production of membrane vesicles is a common feature among bacteria. Depending on the bacterial growth phase and environmental conditions, membrane vesicles show diverse characteristics. Various physiological and ecological roles have been attributed to membrane vesicles under both homeostatic and stressful conditions. Pathogens encounter several stressors during colonization in the hostile environment of host tissues. Nutrient deficiency, the presence of antibiotics as well as elements of the host’s immune system are examples of stressors threatening pathogens inside their host. To combat stressors and survive, pathogens have established various defensive mechanisms, one of them is production of membrane vesicles. Pathogens produce membrane vesicles to alleviate the destructive effects of antibiotics or other types of antibacterial treatments. Additionally, membrane vesicles can also provide benefits for the wider bacterial community during infections, through the transfer of resistance or virulence factors. Hence, given that membrane vesicle production may affect the activities of antibacterial agents, their production should be considered when administering antibacterial treatments. Besides, regarding that membrane vesicles play vital roles in bacteria, disrupting their production may suggest an alternative strategy for battling against pathogens. Here, we aim to review the stressors encountered by pathogens and shed light on the roles of membrane vesicles in increasing pathogen adaptabilities in the presence of stress-inducing factors.
Collapse
Affiliation(s)
- Negar Mozaheb
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain (UCL), Louvain Drug Research Institute (LDRI), Cellular & Molecular Pharmacology Unit (FACM), Brussels, Belgium
| |
Collapse
|
10
|
Boyer GM, Schubotz F, Summons RE, Woods J, Shock EL. Carbon Oxidation State in Microbial Polar Lipids Suggests Adaptation to Hot Spring Temperature and Redox Gradients. Front Microbiol 2020; 11:229. [PMID: 32153529 PMCID: PMC7044123 DOI: 10.3389/fmicb.2020.00229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/31/2020] [Indexed: 12/18/2022] Open
Abstract
The influence of oxidation-reduction (redox) potential on the expression of biomolecules is a topic of ongoing exploration in geobiology. In this study, we investigate the novel possibility that structures and compositions of lipids produced by microbial communities are sensitive to environmental redox conditions. We extracted lipids from microbial biomass collected along the thermal and redox gradients of four alkaline hot springs in Yellowstone National Park (YNP) and investigated patterns in the average oxidation state of carbon (ZC), a metric calculated from the chemical formulae of lipid structures. Carbon in intact polar lipids (IPLs) and their alkyl chains becomes more oxidized (higher ZC) with increasing distance from each of the four hot spring sources. This coincides with decreased water temperature and increased concentrations of oxidized inorganic solutes, such as dissolved oxygen, sulfate, and nitrate. Carbon in IPLs is most reduced (lowest ZC) in the hot, reduced conditions upstream, with abundance-weighted ZC values between −1.68 and −1.56. These values increase gradually downstream to around −1.36 to −1.33 in microbial communities living between 29.0 and 38.1°C. This near-linear increase in ZC can be attributed to a shift from ether-linked to ester-linked alkyl chains, a decrease in average aliphatic carbons per chain (nC), an increase in average degree of unsaturation per chain (nUnsat), and increased cyclization in tetraether lipids. The ZC of lipid headgroups and backbones did not change significantly downstream. Expression of lipids with relatively reduced carbon under reduced conditions and oxidized lipids under oxidized conditions may indicate microbial adaptation across environmental gradients in temperature and electron donor/acceptor supply.
Collapse
Affiliation(s)
- Grayson M Boyer
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| | - Florence Schubotz
- MARUM and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Roger E Summons
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Everett L Shock
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States.,School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Cheng X, Jiang X, Tam KY, Li G, Zheng J, Zhang H. Sphingolipidomic Analysis of C. elegans reveals Development- and Environment-dependent Metabolic Features. Int J Biol Sci 2019; 15:2897-2910. [PMID: 31853226 PMCID: PMC6909964 DOI: 10.7150/ijbs.30499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/02/2019] [Indexed: 01/12/2023] Open
Abstract
Sphingolipids (SLs) serve as structural and signaling molecules in regulating various cellular events and growth. Given that SLs contain various bioactive species possessing distinct roles, quantitative analysis of sphingolipidome is essential for elucidating their differential requirement during development. Herein we developed a comprehensive sphingolipidomic profiling approach using liquid chromatography-mass spectrometry coupled with multiple reaction monitoring mode (LC-MS-MRM). SL profiling of C. elegans revealed organism-specific, development-dependent and environment-driven metabolic features. We showed for the first time the presence of a series of sphingoid bases in C. elegans sphingolipid profiles, although only C17-sphingoid base is used for generating complex SLs. Moreover, we successfully resolved growth-, temperature- and nutrition-dependent SL profiles at both individual metabolite-level and network-level. Sphingolipidomic analysis uncovered significant SL composition changes throughout development, with SMs/GluCers ratios dramatically increasing from larva to adult stage whereas total sphingolipid levels exhibiting opposing trends. We also identified a temperature-dependent alteration in SMs/GluCers ratios, suggesting an organism-specific strategy for environmental adaptation. Finally, we found serine-biased GluCer increases between serine- versus alanine-supplemented worms. Our study builds a “reference” resource for future SL analysis in the worm, provides insights into natural variability and plasticity of eukaryotic multicellular sphingolipid composition and is highly valuable for investigating their functional significance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Xue Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR 999078, China.,Centre of Reproduction, Development and Ageing, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
12
|
Parente MDOM, Rocha KS, Bessa RJB, Parente HN, Zanine ADM, Machado NAF, Lourenço Júnior JDB, Bezerra LR, Landim AV, Alves SP. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci 2019; 160:107971. [PMID: 31669864 DOI: 10.1016/j.meatsci.2019.107971] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022]
Abstract
The effects of adding babassu oil (BAO) or buriti oil (BUO) to lamb diets, on performance, carcass characteristics, meat quality and fatty acid (FA) composition were evaluated. Feeding BAO reduced (P = .02) dry matter intake, kidney fat and dressing percentage, but did not change energy intake and performance. Meat pH, color, protein content and sensorial evaluation were not affected by diet. However, BUO increased (P = .02) intramuscular and subcutaneous fat contents, but decreased shear force. BAO increased (P < .05) trans-monounsaturated FA, total biohydrogenation intermediates (BHI) and the t10:t11 ratio, in meat and subcutaneous fat, but decreased total FA and cis-monounsaturated FA, did not change SFA, and increased (P = .04) PUFA in meat. BUO supplementation promoted the highest (P < .05) SFA and total FA content in subcutaneous fat but did not change PUFA. BAO can be used as an alternative energy source for growing lambs, but does not improve the meat FA composition.
Collapse
Affiliation(s)
| | - Karlyene Sousa Rocha
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil; Federal University of Pará, Brazilian Agricultural Research Corporation, Rural Federal University of Amazonia, Postgraduate Program in Agricultural Science, Belém, Pará, Brazil
| | | | - Henrique Nunes Parente
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil
| | - Anderson de Moura Zanine
- Federal University of Maranhão, Center of Environment and Agriculture Science, Chapadinha, Maranhão, Brazil
| | | | - José de Brito Lourenço Júnior
- Federal University of Pará, Brazilian Agricultural Research Corporation, Rural Federal University of Amazonia, Postgraduate Program in Agricultural Science, Belém, Pará, Brazil
| | | | - Aline Vieira Landim
- State University of Vale do Acaraú, Animal Science Departament, Sobral, Brazil
| | - Susana Paula Alves
- CIISA, Faculty of Veterinary Medicine, University of Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Kondakova T, Kumar S, Cronan JE. A novel synthesis of trans-unsaturated fatty acids by the Gram-positive commensal bacterium Enterococcus faecalis FA2-2. Chem Phys Lipids 2019; 222:23-35. [PMID: 31054954 PMCID: PMC7392533 DOI: 10.1016/j.chemphyslip.2019.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
A key mechanism of Pseudomonas spp. adaptation to environmental stressors is their ability to convert the cis-unsaturated fatty acids of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Although this Cti-catalyzed enzymatic isomerization has been well investigated in the P. putida paradigm, several bacterial species have been found to produce trans-unsaturated fatty acids. Although cti orthologs have only been reported in Gram-negative bacteria, we report that E. faecalis FA2-2 cultures synthesize trans-unsaturated fatty acids during growth by a mechanism similar of P. putida. Although the role of trans-unsaturated fatty acids (trans-UFAs) in E. faecalis remains obscure, our results indicate that organic solvents, as well as the membrane altering antibiotic, daptomycin, had no effect on trans-UFA formation in E. faecalis FA2-2. Moreover trans-UFA production in E. faecalis FA2-2 membranes was constant in oxidative stress conditions or when metal chelator EDTA was added, raising the question about the role of heme domain in cis-trans isomerization in E. faecalis FA2-2. Although growth temperature and growth phase had significant effects on cis-trans isomerization, the bulk physical properties of the membranes seems unlikely to be altered by the low levels of trans-UFA. Hence, any effects seems likely to be on membrane proteins and membrane enzyme activities. We also report investigations of cti gene distribution in bacteria was and suggest the distribution to be triggered by habitat population associations. Three major Cti clusters were defined, corresponding to Pseudomonas, Pseudoalteromonas and Vibrio Cti proteins.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - Sneha Kumar
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL, 61801, USA; Department of Biochemistry, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
Kondakova T, Cronan JE. Transcriptional regulation of fatty acid cis-trans isomerization in the solvent-tolerant soil bacterium, Pseudomonas putida F1. Environ Microbiol 2019; 21:1659-1676. [PMID: 30702193 PMCID: PMC7357427 DOI: 10.1111/1462-2920.14546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
One key to the success of Pseudomonas spp. is their ability to reside in hostile environments. Pseudomonas spp. possess a cis-trans isomerase (Cti) an enzyme that converts the cis-unsaturated fatty acids (FAs) of the membrane lipids to their trans-isomers to rigidify the membrane and thereby resist stresses. Whereas the posttranslational Cti regulation has been previously reported, transcriptional cti regulation remains to be studied in more details. Here, we have studied cti transcriptional regulation in the solvent-tolerant strain Pseudomonas putida F1. Two cti transcriptional start sites (cti-279 and cti-77) were identified with cti-279 transcript being dominant. Expression of cti was found to increase with temperature increase, addition of the organic solvent, octanol and in the stationary growth phase. We found that cti expression was repressed by the cyclic-AMP receptor protein (Crp) and repression required the cyclic-AMP ligand of Crp. Production of trans-unsaturated FAs was found to decrease after 24 h of growth. Although this decrease was accompanied by an increase in cyclopropane FA content, this was not at the expense of trans-unsaturated FAs demonstrating the absence of competition between Cti and Cfa in FA modification.
Collapse
Affiliation(s)
- Tatiana Kondakova
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Eberlein C, Starke S, Doncel ÁE, Scarabotti F, Heipieper HJ. Quantification of outer membrane vesicles: a potential tool to compare response in Pseudomonas putida KT2440 to stress caused by alkanols. Appl Microbiol Biotechnol 2019; 103:4193-4201. [PMID: 30972462 DOI: 10.1007/s00253-019-09812-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 11/29/2022]
Abstract
The bacterial release of outer membrane vesicles (OMVs) is an important physiological mechanism of Gram-negative bacteria playing numerous key roles. One function of the release of OMVs is related to an increase in surface hydrophobicity. This phenomenon initiates biofilm formation, making bacteria more tolerant to environmental stressors. Recently, it was qualitatively shown for Pseudomonas putida that vesicle formation plays a crucial role in multiple stress responses. Yet, no quantification of OMVs for certain stress scenarios has been conducted. In this study, it is shown that the quantification of OMVs can serve as a simple and feasible tool, which allows a comparison of vesicle yields for different experimental setups, cell densities, and environmental stressors. Moreover, the obtained results provide insight to the underlying mechanism of vesicle formation as it was observed that n-alkanols, with a chain length of C7 and longer, caused a distinct and steep increase in vesiculation (12-19-fold), compared to shorter chain n-alkanols (2-4-fold increase).
Collapse
Affiliation(s)
- Christian Eberlein
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Stephan Starke
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Álvaro Escobar Doncel
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Francesco Scarabotti
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany.
| |
Collapse
|
16
|
de Carvalho CCCR, Caramujo MJ. The Various Roles of Fatty Acids. Molecules 2018; 23:molecules23102583. [PMID: 30304860 PMCID: PMC6222795 DOI: 10.3390/molecules23102583] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids comprise a large group of chemically heterogeneous compounds. The majority have fatty acids (FA) as part of their structure, making these compounds suitable tools to examine processes raging from cellular to macroscopic levels of organization. Among the multiple roles of FA, they have structural functions as constituents of phospholipids which are the "building blocks" of cell membranes; as part of neutral lipids FA serve as storage materials in cells; and FA derivatives are involved in cell signalling. Studies on FA and their metabolism are important in numerous research fields, including biology, bacteriology, ecology, human nutrition and health. Specific FA and their ratios in cellular membranes may be used as biomarkers to enable the identification of organisms, to study adaptation of bacterial cells to toxic compounds and environmental conditions and to disclose food web connections. In this review, we discuss the various roles of FA in prokaryotes and eukaryotes and highlight the application of FA analysis to elucidate ecological mechanisms. We briefly describe FA synthesis; analyse the role of FA as modulators of cell membrane properties and FA ability to store and supply energy to cells; and inspect the role of polyunsaturated FA (PUFA) and the suitability of using FA as biomarkers of organisms.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Maria José Caramujo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2-5º Piso, 1749-016 Lisboa, Portugal.
| |
Collapse
|
17
|
Wilhelm MB, Davila AF, Parenteau MN, Jahnke LL, Abate M, Cooper G, Kelly ET, Parro García V, Villadangos MG, Blanco Y, Glass B, Wray JJ, Eigenbrode JL, Summons RE, Warren-Rhodes K. Constraints on the Metabolic Activity of Microorganisms in Atacama Surface Soils Inferred from Refractory Biomarkers: Implications for Martian Habitability and Biomarker Detection. ASTROBIOLOGY 2018; 18:955-966. [PMID: 30035640 DOI: 10.1089/ast.2017.1705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dryness is one of the main environmental challenges to microbial survival. Understanding the threshold of microbial tolerance to extreme dryness is relevant to better constrain the environmental limits of life on Earth and critically evaluate long-term habitability models of Mars. Biomolecular proxies for microbial adaptation and growth were measured in Mars-like hyperarid surface soils in the Atacama Desert that experience only a few millimeters of precipitation per decade, and in biologically active soils a few hundred kilometers away that experience two- to fivefold more precipitation. Diversity and abundance of lipids and other biomolecules decreased with increasing dryness. Cyclopropane fatty acids (CFAs), which are indicative of adaptive response to environmental stress and growth in bacteria, were only detected in the wetter surface soils. The ratio of trans to cis isomers of an unsaturated fatty acid, another bacterial stress indicator, decreased with increasingly dry conditions. Aspartic acid racemization ratios increased from 0.01 in the wetter soils to 0.1 in the driest soils, which is indicative of racemization rates comparable to de novo biosynthesis over long timescales (∼10,000 years). The content and integrity of stress proteins profiled by immunoassays were additional indicators that biomass in the driest soils is not recycled at significant levels. Together, our results point to minimal or no in situ microbial growth in the driest surface soils of the Atacama, and any metabolic activity is likely to be basal for cellular repair and maintenance only. Our data add to a growing body of evidence that the driest Atacama surface soils represent a threshold for long-term habitability (i.e., growth and reproduction). These results place constraints on the potential for extant life on the surface of Mars, which is 100-1000 times drier than the driest regions in the Atacama. Key Words: Atacama Desert-Dryness-Growth-Habitability-Biomarker-Mars. Astrobiology 18, 955-966.
Collapse
Affiliation(s)
- Mary Beth Wilhelm
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Alfonso F Davila
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mary N Parenteau
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Linda L Jahnke
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - Mastewal Abate
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | - George Cooper
- 2 Space Science and Astrobiology Division, NASA Ames Research Center , Moffett Field, California
| | | | - Victor Parro García
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Miriam G Villadangos
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Yolanda Blanco
- 4 Departamento Evolución Molecular, Centro de Astrobiologia (INTA-CSIC) , Madrid, Spain
| | - Brian Glass
- 5 Intelligent Systems Division, NASA Ames Research Center , Moffett Field, California
| | - James J Wray
- 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia
| | - Jennifer L Eigenbrode
- 6 Planetary Environments Laboratory, NASA Goddard Space Flight Center , Greenbelt, Maryland
| | - Roger E Summons
- 7 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | |
Collapse
|
18
|
Immediate response mechanisms of Gram-negative solvent-tolerant bacteria to cope with environmental stress: cis-trans isomerization of unsaturated fatty acids and outer membrane vesicle secretion. Appl Microbiol Biotechnol 2018; 102:2583-2593. [PMID: 29450619 PMCID: PMC5847196 DOI: 10.1007/s00253-018-8832-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 11/03/2022]
Abstract
Bacteria have evolved an array of adaptive mechanisms enabling them to survive and grow in the presence of different environmental stresses. These mechanisms include either modifications of the membrane or changes in the overall energy status, cell morphology, and cell surface properties. Long-term adaptations are dependent on transcriptional regulation, the induction of anabolic pathways, and cell growth. However, to survive sudden environmental changes, bacterial short-term responses are essential to keep the cells alive after the occurrence of an environmental stress factor such as heat shock or the presence of toxic organic solvents. Thus far, two main short-term responses are known. On the one hand, a fast isomerization of cis into trans unsaturated fatty leads to a quick rigidification of the cell membrane, a mechanism known in some genera of Gram-negative bacteria. On the other hand, a fast, effective, and ubiquitously present countermeasure is the release of outer membrane vesicles (OMVs) from the cell surface leading to a rapid increase in cell surface hydrophobicity and finally to the formation of cell aggregates and biofilms. These immediate response mechanisms just allow the bacteria to stay physiologically active and to employ long-term responses to assure viability upon changing environmental conditions. Here, we provide insight into the two aforementioned rapid adaptive mechanisms affecting ultimately the cell envelope of Gram-negative bacteria.
Collapse
|
19
|
Giacometti G, Marini M, Papadopoulos K, Ferreri C, Chatgilialoglu C. trans-Double Bond-Containing Liposomes as Potential Carriers for Drug Delivery. Molecules 2017; 22:E2082. [PMID: 29182583 PMCID: PMC6149667 DOI: 10.3390/molecules22122082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/25/2017] [Indexed: 12/20/2022] Open
Abstract
The use of liposomes has been crucial for investigations in biomimetic chemical biology as a membrane model and in medicinal chemistry for drug delivery. Liposomes are made of phospholipids whose biophysical characteristics strongly depend on the type of fatty acid moiety, where natural unsaturated lipids always have the double bond geometry in the cis configuration. The influence of lipid double bond configuration had not been considered so far with respect to the competence of liposomes in delivery. We were interested in evaluating possible changes in the molecular properties induced by the conversion of the double bond from cis to trans geometry. Here we report on the effects of the addition of trans-phospholipids supplied in different amounts to other liposome constituents (cholesterol, neutral phospholipids and cationic surfactants), on the size, ζ-potential and stability of liposomal formulations and on their ability to encapsulate two dyes such as rhodamine B and fluorescein. From a biotechnological point of view, trans-containing liposomes proved to have different characteristics from those containing the cis analogues, and to influence the incorporation and release of the dyes. These results open new perspectives in the use of the unnatural lipid geometry, for the purpose of changing liposome behavior and/or of obtaining molecular interferences, also in view of synergic effects of cell toxicity, especially in antitumoral strategies.
Collapse
Affiliation(s)
- Giorgia Giacometti
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.
| | - Marina Marini
- Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.
| | - Kyriakos Papadopoulos
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
| | - Carla Ferreri
- ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
| | - Chryssostomos Chatgilialoglu
- Institute of Nanoscience and Nanotechnology, N.C.S.R. "Demokritos", 15310 Agia Paraskevi, Athens, Greece.
- ISOF, Consiglio Nazionale Delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
20
|
Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species. Appl Environ Microbiol 2017; 83:AEM.01415-17. [PMID: 28864654 DOI: 10.1128/aem.01415-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 01/24/2023] Open
Abstract
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
Collapse
|
21
|
Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study. Chem Phys Lipids 2015; 195:12-20. [PMID: 26187855 DOI: 10.1016/j.chemphyslip.2015.07.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022]
Abstract
Trans unsaturated lipids are uncommon in nature. In the human diet, they occur as natural products of ruminal bacteria or from industrial food processing like hydrogenation of vegetable oils. Consumption of trans unsaturated lipids has been shown to have a negative influence on human health; in particular, the risk of cardiovascular disease is higher when the amount of trans unsaturated lipids in the diet is elevated. In this study, we first performed quantum mechanical calculations to specifically and accurately parameterize cis and trans mono-unsaturated lipids and subsequently validated the newly derived parameter set. Then, we carried out molecular dynamics (MD) simulations of lipid bilayers composed of cis or trans unsaturated lipids with and without cholesterol. Our results show that trans mono-unsaturated chains are more flexible than cis mono-unsaturated chains due to lower barriers for rotation around the single bonds next to the trans double bond than those next to the cis double bond. In effect, interactions between cholesterol and trans unsaturated chains are stronger than cis unsaturated chains, which results in a higher ordering effect of cholesterol in trans unsaturated bilayers.
Collapse
|
22
|
Membrane fluidity-related adaptive response mechanisms of foodborne bacterial pathogens under environmental stresses. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Tsai HHG, Lee JB, Li HS, Hou TY, Chu WY, Shen PC, Chen YY, Tan CJ, Hu JC, Chiu CC. Geometrical effects of phospholipid olefinic bonds on the structure and dynamics of membranes: A molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1234-47. [DOI: 10.1016/j.bbamem.2015.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/03/2015] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
|
24
|
Hashimoto M, Orikasa Y, Hayashi H, Watanabe K, Yoshida K, Okuyama H. Occurrence of trans monounsaturated and polyunsaturated fatty acids in Colwellia psychrerythraea strain 34H. J Basic Microbiol 2015; 55:838-45. [PMID: 25707451 DOI: 10.1002/jobm.201400815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022]
Abstract
Colwellia psychrerythraea strain 34H is an obligately psychrophilic bacterium that has been used as a model cold-adapted microorganism because of its psychrophilic growth profile, significant production of cold-active enzymes, and cryoprotectant extracellular polysaccharide substances. However, its fatty acid components, particularly trans unsaturated fatty acids and long-chain polyunsaturated fatty acids (LC-PUFAs), have not been fully investigated. In this study, we biochemically identified Δ9-trans hexadecenoic acid [16:1(9t)] and LC-PUFAs such as docosahexaenoic acid. These results are comparable with the fact that the strain 34H genome sequence includes pfa and cti genes that are responsible for the biosynthesis of LC-PUFAs and trans unsaturated fatty acids, respectively. Strain 34H cells grown under static conditions at 5 °C had higher levels of 16:1(9t) than those grown under shaken conditions, and this change was accompanied by an antiparallel decrease in the levels of Δ9-cis hexadecenoic acid [16:1(9c)], suggesting that the cis-to-trans isomerization reaction of 16:1(9c) is activated under static (microanaerobic) culture conditions, that is, the enzyme could be activated by the decreased dissolved oxygen concentration of cultures. On the other hand, the levels of LC-PUFAs were too low (less than 3% of the total), even for cells grown at 5 °C, to evaluate their cold-adaptive function in this bacterium.
Collapse
Affiliation(s)
- Mikako Hashimoto
- Course in Molecular Biology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yoshitake Orikasa
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Japan
| | - Hidenori Hayashi
- Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Japan.,Department of Chemistry, Faculty of Science, Ehime University, Bunkyo-cho, Matsuyama, Japan
| | - Kentaro Watanabe
- Bioscience Group, National Institute of Polar Research, Midori-cho, Tachikawa, Tokyo, Japan
| | - Kiyohito Yoshida
- Course in Ecological Genetics, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan.,Laboratory of Ecological Genetics, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hidetoshi Okuyama
- Course in Molecular Biology, Division of Biosphere Science, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo, Japan.,Laboratory of Environmental Molecular Biology, Section of Environmental Biology, Faculty of Environmental Earth Science, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
25
|
Heredia RM, Boeris PS, Biasutti MA, López GA, Paulucci NS, Lucchesi GI. Coordinated response of phospholipids and acyl components of membrane lipids in Pseudomonas putida A (ATCC 12633) under stress caused by cationic surfactants. MICROBIOLOGY-SGM 2014; 160:2618-2626. [PMID: 25280753 DOI: 10.1099/mic.0.081943-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study assessed the role of membrane components of Pseudomonas putida A (ATCC 12633) under chemical stress conditions originated by treatment with tetradecyltrimethylammonium bromide (TTAB), a cationic surfactant. We examined changes in fatty acid composition and in the fluidity of the membranes of cells exposed to TTAB at a specific point of growth as well as of cells growing with TTAB. The addition of 10-50 mg TTAB l(-1) promoted an increase in the saturated/unsaturated fatty acid ratio. By using fluorescence polarization techniques, we found that TTAB exerted a fluidizing effect on P. putida A (ATCC 12633) membranes. However, a complete reversal of induced membrane fluidification was detected after 15 min of incubation with TTAB. Consistently, the proportion of unsaturated fatty acids was lower in TTAB-treated cells as compared with non-treated cells. In the presence of TTAB, the content of phosphatidylglycerol increased (120 %), whilst that of cardiolipin decreased (60 %). Analysis of the fatty acid composition of P. putida A (ATCC 12633) showed that phosphatidylglycerol carried the major proportion of saturated fatty acids (89 %), whilst cardiolipin carried an elevated proportion of unsaturated fatty acids (18 %). The increase in phosphatidylglycerol and consequently in saturated fatty acids, together with a decrease in cardiolipin content, enabled greater membrane resistance, reversing the fluidizing effect of TTAB. Therefore, results obtained in the present study point to changes in the fatty acid profile as an adaptive response of P. putida A (ATCC 12633) cells to stress caused by a cationic surfactant.
Collapse
Affiliation(s)
- Romina Marisa Heredia
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Paola Sabrina Boeris
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - María Alicia Biasutti
- Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Gastón Alberto López
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Natalia Soledad Paulucci
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| | - Gloria Inés Lucchesi
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CPX5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|
26
|
Abe F. Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys Chem 2013; 183:3-8. [DOI: 10.1016/j.bpc.2013.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/10/2013] [Accepted: 05/14/2013] [Indexed: 02/03/2023]
|
27
|
Los DA, Mironov KS, Allakhverdiev SI. Regulatory role of membrane fluidity in gene expression and physiological functions. PHOTOSYNTHESIS RESEARCH 2013; 116:489-509. [PMID: 23605242 DOI: 10.1007/s11120-013-9823-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 04/05/2013] [Indexed: 05/18/2023]
Abstract
Plants, algae, and photosynthetic bacteria experience frequent changes in environment. The ability to survive depends on their capacity to acclimate to such changes. In particular, fluctuations in temperature affect the fluidity of cytoplasmic and thylakoid membranes. The molecular mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the understanding of the functions of the individual genes for fatty acid desaturases in cyanobacteria and plants led to the directed mutagenesis of such genes that altered the membrane fluidity of cytoplasmic and thylakoid membranes. Characterization of the photosynthetic properties of the transformed cyanobacteria and higher plants revealed that lipid unsaturation is essential for protection of the photosynthetic machinery against environmental stresses, such as strong light, salt stress, and high and low temperatures. The unsaturation of fatty acids enhances the repair of the damaged photosystem II complex under stress conditions. In this review, we summarize the knowledge on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, on genes that are involved in acclimation to new sets of environmental conditions, and on the influence of membrane properties on photosynthetic functions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia,
| | | | | |
Collapse
|
28
|
Chatgilialoglu C, Ferreri C, Melchiorre M, Sansone A, Torreggiani A. Lipid geometrical isomerism: from chemistry to biology and diagnostics. Chem Rev 2013; 114:255-84. [PMID: 24050531 DOI: 10.1021/cr4002287] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
Subramanian P, Joe MM, Yim WJ, Hong BH, Tipayno SC, Saravanan VS, Yoo JH, Chung JB, Sultana T, Sa TM. Psychrotolerance Mechanisms in Cold-Adapted Bacteria and their Perspectives as Plant Growth-Promoting Bacteria in Temperate Agriculture. ACTA ACUST UNITED AC 2011. [DOI: 10.7745/kjssf.2011.44.4.625] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Löffler C, Eberlein C, Mäusezahl I, Kappelmeyer U, Heipieper HJ. Physiological evidence for the presence of a cis-trans isomerase of unsaturated fatty acids in Methylococcus capsulatus Bath to adapt to the presence of toxic organic compounds. FEMS Microbiol Lett 2010; 308:68-75. [PMID: 20487020 DOI: 10.1111/j.1574-6968.2010.01993.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The physiology of the response in the methanotrophic bacterium Methylococcus capsulatus Bath towards thermal and solvent stress was studied. A systematic investigation of the toxic effects of organic compounds (chlorinated phenols and alkanols) on the growth of this bacterium was carried out. The sensitivity to the tested alkanols correlated with their chain length and hydrophobicity; methanol was shown to be an exception to which the cells showed a very high tolerance. This can be explained by the adaptation of these bacteria to growth on C1 compounds. On the other hand, M. capsulatus Bath was very sensitive towards the tested chlorinated phenols. The high toxic effect of phenolic compounds on methanotrophic bacteria might be explained by the occurrence of toxic reactive oxygen species. In addition, a physiological proof of the presence of cis-trans isomerization as a membrane-adaptive response mechanism in M. capsulatus was provided. This is the first report on physiological evidence for the presence of the unique postsynthetic membrane-adaptive response mechanism of the cis-trans isomerization of unsaturated fatty acids in a bacterium that does not belong to the genera Pseudomonas and Vibrio where this mechanism was already reported and described extensively.
Collapse
Affiliation(s)
- Claudia Löffler
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | | | | | | |
Collapse
|
31
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
32
|
Sharma S, Sharma SK, Surolia N, Surolia A. β-Ketoacyl-ACP synthase I/II fromPlasmodium falciparum(PfFabB/F)-Is it B or F? IUBMB Life 2009; 61:658-62. [DOI: 10.1002/iub.205] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|
34
|
Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. BOARD-INVITED REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1. J Anim Sci 2008; 86:397-412. [DOI: 10.2527/jas.2007-0588] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Mykytczuk NCS, Trevors JT, Leduc LG, Ferroni GD. Fluorescence polarization in studies of bacterial cytoplasmic membrane fluidity under environmental stress. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 95:60-82. [PMID: 17628643 DOI: 10.1016/j.pbiomolbio.2007.05.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integrity of the bacterial cytoplasmic membrane is critical in maintaining the viability of cells and their metabolic functions, particularly under stress. Bacteria actively adjust membrane fluidity through changes in lipid composition in response to variations in temperature, pressure, ion concentrations, pH, nutrient availability, and xenobiotics. Fluorescence polarization methods are valuable for measuring bacterial cytoplasmic membrane fluidity. In this review we discuss the mechanisms of bacterial membrane adaptations and present data from research using 1,6-diphenyl-1,3,5-hexatirene (DPH) as a measure of membrane fluidity and phase transitions. We illustrate the range of fluidity in viable cells, extracted membranes, and liposomes under optimal and stressed physiological conditions.
Collapse
Affiliation(s)
- N C S Mykytczuk
- Department of Biology, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.
| | | | | | | |
Collapse
|
36
|
Loffhagen N, Härtig C, Geyer W, Voyevoda M, Harms H. Competition betweencis, trans and Cyclopropane Fatty Acid Formation and its Impact on Membrane Fluidity. Eng Life Sci 2007. [DOI: 10.1002/elsc.200620168] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Unell M, Kabelitz N, Jansson JK, Heipieper HJ. Adaptation of the psychrotrophArthrobacter chlorophenolicusA6 to growth temperature and the presence of phenols by changes in the anteiso/iso ratio of branched fatty acids. FEMS Microbiol Lett 2007; 266:138-43. [PMID: 17233723 DOI: 10.1111/j.1574-6968.2006.00502.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arthrobacter chlorophenolicus is a previously described Gram-positive bacterium capable of degrading high concentrations of several phenolic compounds under optimal mesophilic (28 degrees C) as well as psychrophilic (5 degrees C) conditions. However, the exact mechanisms by which this organism is able to tolerate such extremes in temperature and high levels of toxic compounds are currently not known. In this study, we monitored changes in the fatty acid composition of the cell membrane under different extreme growth conditions. Arthrobacter chlorophenolicus adapts to differences in temperature and phenol concentrations by altering the anteiso/iso ratio of fatty acids in the cell membrane to different extents. According to the different physico-chemical properties of those two species of branched fatty acids, the bacteria showed an increased amount of anteiso fatty acids when grown under psychrophilic conditions to decrease the viscosity of their membranes. On the other hand, at higher growth temperatures as well as in the presence of toxic concentrations of phenol, 4-chlorophenol and 4-nitrophenol, the cells adapted their membrane by a dose-dependent decrease in the anteiso/iso ratio, leading to a more rigid membrane and counteracting the fluidity increase caused by the higher temperature and the organic solvents.
Collapse
Affiliation(s)
- Maria Unell
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
38
|
Loffhagen N, Härtig C, Harms H. Impact of membrane fatty acid composition on the uncoupling sensitivity of the energy conservation of Comamonas testosteroni ATCC 17454. Appl Microbiol Biotechnol 2005; 70:618-24. [PMID: 16133339 DOI: 10.1007/s00253-005-0104-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 07/14/2005] [Accepted: 07/17/2005] [Indexed: 11/26/2022]
Abstract
The fatty acid composition of pyruvate-grown Comamonas testosteroni ATCC 17454 was analyzed after growth at 30 and 20 degrees C and after half-maximum growth inhibition caused by different membrane-active chemicals at 30 degrees C. Palmitic acid (16:0), palmitoleic acid (16:1 omega7c) and vaccenic acid (18:1 omega7c) were the dominant fatty acids. At 20 degrees C, the proportion of palmitic acid decreased and those of palmitoleic and vaccenic acid increased. Saturation degree was also lowered when half-maximum growth inhibition was caused by 4-chlorosalicylic acid, 2,4-dichlorophenoxyacetic acid and 2,4-dinitrophenol and, to a lesser extent, in the presence of 2,4-dichlorophenol, phenol and ethanol. It appeared that the dissociated forms of the former group of chemicals were preferentially incorporated near the head group region of the lipid bilayer, thereby somewhat extending the outer region of the membranes, and that the increased amount of bent, unsaturated fatty acids helped to maintain membrane integrity. Irrespective of how the decrease of the saturation degree was triggered, it caused electron transport phosphorylation (adenosine triphosphate synthesis driven by n-hexanol oxidation) to become more sensitive to uncoupling. Apparently, the viscosity and phase stability of the cytoplasmic membrane of C. testosteroni were maintained at the price of a reduced protection against energy toxicity.
Collapse
Affiliation(s)
- Norbert Loffhagen
- Department of Environmental Microbiology, Centre for Environmental Research (UFZ), Leipzig-Halle, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
39
|
Härtig C, Loffhagen N, Harms H. Formation of trans fatty acids is not involved in growth-linked membrane adaptation of Pseudomonas putida. Appl Environ Microbiol 2005; 71:1915-22. [PMID: 15812020 PMCID: PMC1082513 DOI: 10.1128/aem.71.4.1915-1922.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 10/22/2004] [Indexed: 11/20/2022] Open
Abstract
Fatty acid compositions in growing and resting cells of several strains of Pseudomonas putida (P8, NCTC 10936, and KT 2440) were studied, with a focus on alterations of the saturation degree, cis-trans isomerization, and cyclopropane formation. The fatty acid compositions of the strains were very similar under comparable growth conditions, but surprisingly, and contrary to earlier reports, trans fatty acids were not found in either exponentially growing cells or stationary-phase cells. During the transition from growth to the starvation state, cyclopropane fatty acids were preferentially formed, an increase in the saturation degree of fatty acids was observed, and larger amounts of hydroxy fatty acids were detected. A lowered saturation degree and concomitant higher membrane fluidity seemed to be optimal for substrate uptake and growth. The incubation of cells under nongrowth conditions rapidly led to the formation of trans fatty acids. We show that harvesting and sample preparation for analysis could provoke the enzyme-catalyzed formation of trans fatty acids. Freeze-thawing of resting cells and increased temperatures accelerated the formation of trans fatty acids. We demonstrate that cis-trans isomerization only occurred in cells that were subjected to an abrupt disturbance without having the possibility of adapting to the changed conditions by the de novo synthesis of fatty acids. The cis-trans isomerization reaction was in competition with the cis-to-cyclopropane fatty acid conversion. The potential for the formation of trans fatty acids depended on the cyclopropane content that was already present.
Collapse
Affiliation(s)
- Claus Härtig
- Department of Environmental Microbiology, UFZ Centre for Environmental Research Leipzig-Halle, P.O. Box 500136, 04301 Leipzig, Germany.
| | | | | |
Collapse
|
40
|
Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S. Cis-trans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 2005; 9:117-25. [PMID: 15747056 DOI: 10.1007/s00792-005-0435-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 10/08/2004] [Indexed: 11/25/2022]
Abstract
In a recent study, we established that psychrophilic Pseudomonas syringae (Lz4W) requires trans-monounsaturated fatty acid for growth at higher temperatures (Kiran et al. in Extremophiles, 2004). It was also demonstrated that the cti gene was highly conserved and exhibited high sequence identity with cti of other Pseudomonas spp. (Kiran et al. in Extremophiles, 2004). Therefore it would be interesting to understand the expression of the cti gene so as to unravel the molecular basis of adaptation of microorganisms to high temperature. In the present study, the expression of cti was monitored by RT-PCR analysis during different growth stages and under conditions of high temperature and solvent stress in P. syringae. Results indicated that the cti gene is constitutively expressed during different stages of growth and the transcript level is unaltered even under conditions of temperature and solvent stress implying that the observed increase in trans-monounsaturated fatty acids (Kiran et al. in Extremophiles, 2004) is not under transcriptional control. A putative promoter present in the intergenic region of the metH and cti gene has also been characterized. The translation start site ATG, the Shine-Dalgarno sequence AGGA and the transcription start site "C" were also identified. These results provide evidence for the first time that the cti gene is constitutively expressed under normal conditions of growth and under conditions of temperature and solvent stress thus implying that the Cti enzyme is post-transcriptionally regulated.
Collapse
Affiliation(s)
- Madanahally D Kiran
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | | | | | | | |
Collapse
|
41
|
Los DA, Murata N. Membrane fluidity and its roles in the perception of environmental signals. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2004; 1666:142-57. [PMID: 15519313 DOI: 10.1016/j.bbamem.2004.08.002] [Citation(s) in RCA: 527] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Poikilothermic organisms are exposed to frequent changes in environmental conditions and their survival depends on their ability to acclimate to such changes. Changes in ambient temperature and osmolarity cause fluctuations in the fluidity of cell membranes. Such fluctuations are considered to be critical to the initiation of the regulatory reactions that ultimately lead to acclimation. The mechanisms responsible for the perception of changes in membrane fluidity have not been fully characterized. However, the analysis of genome-wide gene expression using DNA microarrays has provided a powerful new approach to studies of the contribution of membrane fluidity to gene expression and to the identification of environmental sensors. In this review, we focus on the mechanisms that regulate membrane fluidity, on putative sensors that perceive changes in membrane fluidity, and on the subsequent expression of genes that ensures acclimation to a new set of environmental conditions.
Collapse
Affiliation(s)
- Dmitry A Los
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | | |
Collapse
|
42
|
Kiran MD, Prakash JSS, Annapoorni S, Dube S, Kusano T, Okuyama H, Murata N, Shivaji S. Psychrophilic Pseudomonas syringae requires trans-monounsaturated fatty acid for growth at higher temperature. Extremophiles 2004; 8:401-10. [PMID: 15241658 DOI: 10.1007/s00792-004-0401-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 05/18/2004] [Indexed: 10/26/2022]
Abstract
A psychrophilic bacterium, Pseudomonas syringae (Lz4W) from Antarctica, was used as a model system to establish a correlation, if any, between thermal adaptation, trans-fatty acid content and membrane fluidity. In addition, attempts were made to clone and sequence the cti gene of P. syringae (Lz4W) so as to establish its characteristics with respect to the cti of other Pseudomonas spp. and also to in vitro mutagenize the cti gene so as to generate a cti null mutant. The bacterium showed increased proportion of saturated and trans-monounsaturated fatty acids when grown at 28 degrees C compared to cells grown at 5 degrees C, and the membrane fluidity decreased with growth temperature. In the mutant, the trans-fatty acid was not synthesized, and the membrane fluidity also decreased with growth temperature, but the decrease was not to the extent that was observed in the wild-type cells. Thus, it would appear that synthesis of trans-fatty acid and modulation of membrane fluidity to levels comparable to the wild-type cells is essential for growth at higher temperatures since the mutant exhibits growth arrest at 28 degrees C. In fact, the cti null mutant-complemented strain of P. syringae (Lz4W-C30b) that was capable of synthesizing the trans-fatty acid was indeed capable of growth at 28 degrees C, thus confirming the above contention. The cti gene of P. syringae (Lz4W) that was cloned and sequenced exhibited high sequence identity with the cti of other Pseudomonas spp. and exhibited all the conserved features.
Collapse
Affiliation(s)
- M D Kiran
- Centre for Cellular and Molecular Biology, Uppal Road, 500 007, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Heipieper HJ, Meinhardt F, Segura A. Thecisâtransisomerase of unsaturated fatty acids inPseudomonasandVibrio: biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol Lett 2003; 229:1-7. [PMID: 14659535 DOI: 10.1016/s0378-1097(03)00792-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Isomerization of cis to trans unsaturated fatty acids is a mechanism enabling Gram-negative bacteria belonging to the genera Pseudomonas and Vibrio to adapt to several forms of environmental stress. The extent of the isomerization apparently correlates with the fluidity effects caused, i.e. by an increase in temperature or the accumulation of membrane-toxic organic compounds. Trans fatty acids are generated by direct isomerization of the respective cis configuration of the double bond without a shift of its position. The conversion of cis unsaturated fatty acids to trans is apparently instrumental in the adaptation of membrane fluidity to changing chemical or physical parameters of the cellular environment. Such an adaptive mechanism appears to be an alternative way to regulate membrane fluidity when growth is inhibited, e.g. by high concentrations of toxic substances. The cis-trans isomerase (Cti) activity is constitutively present and is located in the periplasma, it requires neither ATP nor any other cofactor such as NAD(P)H or glutathione, and it operates in the absence of de novo synthesis of lipids. Its independence from ATP is in agreement with the negative free energy of the reaction. cti encodes a polypeptide with an N-terminal hydrophobic signal sequence, which is cleaved off during or shortly after the enzyme is transported across the cytoplasmic membrane to the periplasmic space. A functional heme-binding site of the cytochrome c-type was identified in the predicted Cti polypeptide and very recently, direct evidence was obtained that isomerization does not include a transient saturation of the double bond.
Collapse
Affiliation(s)
- Hermann J Heipieper
- Department of Bioremediation, Centre for Environmental Research (UFZ) Leipzig-Halle, Permoserstr 15, 04318 Leipzig, Germany.
| | | | | |
Collapse
|
44
|
Róg T, Murzyn K, Gurbiel R, Takaoka Y, Kusumi A, Pasenkiewicz-Gierula M. Effects of phospholipid unsaturation on the bilayer nonpolar region: a molecular simulation study. J Lipid Res 2003; 45:326-36. [PMID: 14594994 DOI: 10.1194/jlr.m300187-jlr200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Molecular dynamics simulations of two monounsaturated phosphatidylcholine (PC) bilayers made of 1-palmitoyl-2-oleoyl-PC (POPC; cis-unsaturated) and 1-palmitoyl-2-elaidoyl-PC (PEPC; trans-unsaturated) were carried out to investigate the effect of a double bond in the PC beta-chain and its conformation on the bilayer core. Four nanosecond trajectories were used for analyses. A fully saturated 1,2-dimyristoyl-PC (DMPC) bilayer was used as a reference system. In agreement with experimental data, this study shows that properties of the PEPC bilayer are more similar to those of the DMPC than to the POPC bilayer. The differences between POPC and PEPC bilayers may be attributed to the different ranges of angles covered by the torsion angles beta10 and beta12 of the single bonds next to the double bond in the oleoyl (O) and elaidoyl (E) chains. Broader distributions of beta10 and beta12 in the E chain than in the O chain make the E chain more flexible. In effect, the packing of chains in the PEPC bilayer is similar to that in the DMPC bilayer, whereas that in the POPC bilayer is looser than that in the DMPC bilayer. The effect of the cis-double bond on torsions at the beginning of the O chain (beta4 and beta5) is similar to that of cholesterol on these torsions in a myristoyl chain.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
45
|
Trevors JT. Fluorescent probes for bacterial cytoplasmic membrane research. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2003; 57:87-103. [PMID: 12915003 DOI: 10.1016/s0165-022x(03)00076-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluorescent methods in biological and medical research are extremely useful at the cellular and molecular levels. This is due to sensitive and affordable detection equipment and a variety of specific and more general fluorescent probes, and analytical procedures. In this article, I examine the use of fluorescence membrane probes to study the fluidity (membrane polarization) of the bacterial cytoplasmic membrane, central to energy transduction, ion and nutrient transport and diffusion of water and gases.
Collapse
Affiliation(s)
- J T Trevors
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
46
|
Groudieva T, Grote R, Antranikian G. Psychromonas arctica sp. nov., a novel psychrotolerant, biofilm-forming bacterium isolated from Spitzbergen. Int J Syst Evol Microbiol 2003; 53:539-545. [PMID: 12710624 DOI: 10.1099/ijs.0.02182-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using starch as a carbon source at a cultivation temperature of 4 degrees C, a number of Gram-negative, aerobic strains was isolated from sea-ice and sea-water samples collected at Spitzbergen in the Arctic. Analysis of the genetic diversity of the novel isolates by random amplification of polymorphic DNA (RAPD) and ERIC fingerprinting revealed a homogenic group of biofilm-forming bacteria that contained small extrachromosomal elements. As a representative of the group, strain Pull 5.3T, isolated from a sea-water sample, was used for detailed characterization. The results of phylogenetic analysis indicated that the newly isolated strain is a member of the gamma-subclass of the Proteobacteria and belongs to the genus Psychromonas. On the basis of DNA-DNA hybridization experiments, chemotaxonomic studies and phenotypic characterization, strain Pull 5.3T (=CECT 5674T =DSM 14288T) clearly represents a novel species, for which the name Psychromonas arctica sp. nov. is proposed.
Collapse
Affiliation(s)
- Tatiana Groudieva
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr. 12, 21073 Hamburg, Germany
| | - Ralf Grote
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr. 12, 21073 Hamburg, Germany
| | - Garabed Antranikian
- Institute of Technical Microbiology, Technical University Hamburg-Harburg, Kasernenstr. 12, 21073 Hamburg, Germany
| |
Collapse
|
47
|
Denich TJ, Beaudette LA, Lee H, Trevors JT. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 2003; 52:149-82. [PMID: 12459238 DOI: 10.1016/s0167-7012(02)00155-0] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Membranes lipids are one of the most adaptable molecules in response to perturbations. Even subtle changes of the composition of acyl chains or head groups can alter the packing arrangements of lipids within the bilayer. This changes the balance between bilayer and nonbilayer lipids, serving to affect bilayer stability and fluidity, as well as altering lipid-protein interactions. External factors can also change membrane fluidity and lipid composition; including temperature, chemicals, ions, pressure, nutrients and the growth phase of the microbial culture. Various biophysical techniques have been used to monitor fluidity changes within the bacterial membrane. In this review, bacterial cytoplasmic membrane changes and related functional effects will be examined as well as the use of fluorescence polarization methods and examples of data obtained from research with bacteria.
Collapse
Affiliation(s)
- T J Denich
- Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
48
|
Proell JM, Mosley EE, Powell GL, Jenkins TC. Isomerization of stable isotopically labeled elaidic acid to cis and trans monoenes by ruminal microbes. J Lipid Res 2002; 43:2072-6. [PMID: 12454268 DOI: 10.1194/jlr.m200284-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previous study showed that oleic acid was converted by mixed ruminal microbes to stearic acid and also converted to a multitude of trans octadecenoic acid isomers. This study traced the metabolism of one of these trans C18:1 isomers upon its incubation with mixed ruminal microbes. Unlabeled and labeled (18-[13C]trans-9 C18:1) elaidic acid were each added to four in vitro batch cultures with three cultures inoculated with mixed ruminal bacteria and one uninoculated culture. Samples were taken at 0, 12, 24, and 48 h and analyzed for 13C enrichment in component fatty acids by gas chromatography-mass spectrometry. At 0 h of incubation, enrichment was detected only in elaidic acid. By 48 h of incubation, 13C enrichment was 18% (P < 0.01) for stearic acid, 7% to 30% (P < 0.01) for all trans C18:1 isomers having double bonds between carbons six through 16, and 5% to 10% for cis-9 and cis-11 monoenes. After 48 h, 13C enrichment in the uninoculated cultures was only detected in the added elaidic acid. This study shows trans fatty acids exposed to active ruminal cultures are converted to stearic acid but also undergo enzymic isomerization yielding a multitude of positional and geometric isomers.
Collapse
Affiliation(s)
- Julie M Proell
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29424, USA
| | | | | | | |
Collapse
|
49
|
Ferreri C, Faraone Mennella MR, Formisano C, Landi L, Chatgilialoglu C. Arachidonate geometrical isomers generated by thiyl radicals: the relationship with trans lipids detected in biological samples. Free Radic Biol Med 2002; 33:1516-26. [PMID: 12446209 DOI: 10.1016/s0891-5849(02)01083-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The presence of trans fatty acids in mammalians is attributed to exogenous sources; nevertheless, trans isomers could be easily formed by free radical-catalyzed isomerization processes in vivo. The isomerization of methyl arachidonate (all-cis isomer) catalyzed by thiyl radical is proposed as a methodology applicable in biochemical laboratories, which produces mono- and di-trans isomers. Carbon-13 nuclear magnetic resonance spectroscopy shows that the carbon atom in position 15 is characteristic for each mono- and di-trans isomer. Antioxidants, such as alpha-tocopherol and all-trans-retinol acetate, inhibited the isomerization process. Trans phospholipids are formed in erythrocyte membranes by exposing blood to gamma-irradiation in the presence of thiols, which is in contradiction with the known role of these compounds as radioprotectors. Trans isomers are also analyzed in tissues harvested from breast cancer patients and compared to the adipose breast tissue taken a few centimeters from the edge of the tumor from the same patient. This work is generally aimed at contributing to the debate on trans fatty acids and stimulating a reconsideration of the current view on the exclusive presence of cis double bonds in cell membranes by studying radical processes that could affect or protect this natural configuration.
Collapse
Affiliation(s)
- Carla Ferreri
- ISOF, Consiglio Nazionale delle Ricerche, Bologna, Italy.
| | | | | | | | | |
Collapse
|
50
|
Murzyn K, Róg T, Jezierski G, Takaoka Y, Pasenkiewicz-Gierula M. Effects of phospholipid unsaturation on the membrane/water interface: a molecular simulation study. Biophys J 2001; 81:170-83. [PMID: 11423404 PMCID: PMC1301501 DOI: 10.1016/s0006-3495(01)75689-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Molecular dynamics (MD) simulations of fully hydrated bilayers in the liquid-crystalline state made of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) or 1-palmitoyl-2-elaidoyl-phosphatidylcholine (PEPC) were carried out to investigate the effect of the incorporation of a double bond in the phosphatidylcholine (PC) beta-chain (cis or trans) on the membrane/water interface. The bilayers reached thermal equilibrium after 3 and 1 ns of MD simulations, respectively, and productive runs were carried out for 3 ns for each bilayer. As reference systems, the 1,2-dimyristoyl-phosphatidylcholine (DMPC) bilayer (M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, and A. Kusumi, 1999, Biophys. J. 76:1228-1240) and DMPC-cholesterol (Chol) bilayer containing 22 mol % Chol (M. Pasenkiewicz-Gierula, T. Róg, K. Kitamura, A. and Kusumi, 2000, Biophys. J. 78:1376-1389) were used. The study shows that at the interface of POPC, PEPC, and DMPC-Chol bilayers, average numbers of PC-water and PC-PC interactions are similar and, respectively, greater and smaller than in the DMPC bilayer. The average area/PC in mono-unsaturated bilayers is approximately 4 A(2) larger than in the DMPC bilayer; nevertheless, a strong correlation was found between a single molecular area (SMA) of a PC and the number of interactions this PC makes; i.e., PCs (either saturated or unsaturated) with the same SMA form similar numbers of intermolecular links. The numbers and corresponding SMAs are distributed about averages pertinent to each bilayer. No significant difference between cis and trans bonds was found.
Collapse
Affiliation(s)
- K Murzyn
- Department of Biophysics, Institute of Molecular Biology, Jagiellonian University, Kraków 31-120, Poland
| | | | | | | | | |
Collapse
|