1
|
Wepy JA, Galligan JJ, Kingsley PJ, Xu S, Goodman MC, Tallman KA, Rouzer CA, Marnett LJ. Lysophospholipases cooperate to mediate lipid homeostasis and lysophospholipid signaling. J Lipid Res 2018; 60:360-374. [PMID: 30482805 DOI: 10.1194/jlr.m087890] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/05/2018] [Indexed: 12/20/2022] Open
Abstract
Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.
Collapse
Affiliation(s)
- James A Wepy
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - James J Galligan
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Philip J Kingsley
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Shu Xu
- Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Michael C Goodman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Keri A Tallman
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Carol A Rouzer
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| | - Lawrence J Marnett
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Departments of Chemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146 .,Departments of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Departments of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146.,Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232-0146
| |
Collapse
|
2
|
Baker RR, Chang HY. Lysophosphatidic acid, alkylglycerophosphate and alkylacetylglycerophosphate increase the neuronal nuclear acetylation of 1-acyl lysophosphatidyl choline by inhibition of lysophospholipase. Mol Cell Biochem 1999; 198:47-55. [PMID: 10497877 DOI: 10.1023/a:1006933625802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neuronal nuclei were isolated from rabbit cerebral cortex, and lipid acetylation reactions were studied because of the high nuclear concentration of acetyltransferases that generate platelet activating factor (PAF) and its acyl analogue AcylPAF. The neuronal nuclear acetylation of 1-palmitoyl lysophosphatidylcholine (lyso PC) was found to be increased more than twofold when low concentrations of lyso PC were incubated in acetylation assays in the presence of 1-palmitoyl lysophosphatidic acid (lyso PA) or 1-hexadecyl glycerophosphate (AGP). This effect was not found for a variety of other acidic and neutral 1-acyl lysoglycerophospholipids. At 4 microM concentrations, AGP was the more effective in increasing rates of lyso PC acetylation, while lyso PA was more effective at 25-35 microM. 1-Stearoyl, 1-alkenyl and 1-decanoyl analogues of lyso PA were all less effective than 1-palmitoyl lyso PA. Phosphatidic acid was considerably less effective than lyso PA, while the acetylated analogue of AGP, AAcGP (alkylacetylglycerophosphate), increased rates of lyso PC acetylation to maxima similar to those seen with lyso PA or AGP. In addition, AAcGP promoted these maxima at considerably lower concentrations (2-4 microM). A mechanism for these effects was suggested when nuclear envelopes (NE), isolated in the presence of PMSF, showed these maximal acetylation rates at low lyso PC concentrations, and these rates were not elevated by the presence of lyso PA. PMSF is a protease inhibitor but can also inhibit lysophospholipase activity. We found a nuclear lysophospholipase that degraded lyso PC at rates more than 13 times those of nuclear lyso PC acetylation. PMSF did inhibit this nuclear lysophospholipase, as did lyso PA, AGP and AAcGP. Kinetic analyses of the effects of lyso PA, AGP and AAcGP on lyso PC lysophospholipase indicated that these three lipids acted as competitive inhibitors for the lyso PC substrate. It is possible that low rates of lyso PC acetylation seen in neuronal nuclei at low lyso PC concentrations, are caused by lyso PC loss mediated by a very strong nuclear lysophospholipase. The effects of lyso PA, AGP and AAcGP in boosting rates of lyso PC acetylation likely come from the inhibition of nuclear lysophospholipase and a preservation of lyso PC concentrations. Competing neuronal nuclear reactions for low endogenous levels of lyso PC may regulate the formation of AcylPAF, and rising lyso PA, AGP or AAcGP concentrations can increase rates of nuclear AcylPAF synthesis.
Collapse
Affiliation(s)
- R R Baker
- Department of Biochemistry, University of Toronto, ON, Canada
| | | |
Collapse
|
3
|
Affiliation(s)
- A Wang
- Department of Chemistry and Biochemistry, Revelle College and School of Medicine, University of California at San Diego, La Jolla, CA 92093-0601, USA
| | | |
Collapse
|
4
|
Toyoda T, Sugimoto H, Yamashita S. Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1437:182-93. [PMID: 10064901 DOI: 10.1016/s1388-1981(99)00007-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Here we report the sequence, expression in Escherichia coli cells, and characterization of a new small-form lysophospholipase named lysophospholipase II from mouse embryo. The cDNA clone was found and identified among mouse expressed sequence tags in the database search for the homologue of lysophospholipase I previously cloned from rat liver (H. Sugimoto et al., J. Biol. Chem. 271 (1996) 7705-7711). The predicted amino acids sequence contained 231 residues with a calculated molecular weight of 24794, and showed 64% identity to that of lysophospholipase I with the Gly-X-Ser-X-Gly esterase/lipase consensus. The lacZ fusion protein expressed in E. coli cells exhibited lysophospholipase activity and reacted with antibody raised against previously purified pig gastric lysophospholipase II (H. Sunaga et al., Biochem. J. 308 (1995) 551-557), but not with antibody against rat liver lysophospholipase I. The expressed enzyme was purified to a specific activity of 0.15 micromol/min per mg by DEAE-Sepharose A-500 chromatography. The enzyme preferentially utilized zwitterionic lysophospholipids in the order of lysophosphatidylcholine>lysophosphatidylethanolamine, but poorly acidic lysophospholipids, such as lysophosphatidylserine, lysophosphatidylinositol, and lysophosphatidic acid. Not only the 1-acyl isomer, but also the 2-acyl isomer were deacylated. Northern blot analysis and reverse transcription-polymerase chain reaction revealed that lysophospholipase II transcript as well as lysophospholipase I transcript was widely distributed in mouse tissues.
Collapse
Affiliation(s)
- T Toyoda
- Department of Biochemistry, Gunma University School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan
| | | | | |
Collapse
|
5
|
Sugimoto H, Odani S, Yamashita S. Cloning and expression of cDNA encoding rat liver 60-kDa lysophospholipase containing an asparaginase-like region and ankyrin repeat. J Biol Chem 1998; 273:12536-42. [PMID: 9575212 DOI: 10.1074/jbc.273.20.12536] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian tissues contain small form and large form lysophospholipases. Here we report the cloning, sequence, and expression of cDNA encoding the latter form of lysophospholipase using antibody raised against the enzyme purified from rat liver supernatant (Sugimoto, H., and Yamashita, S. (1994) J. Biol. Chem. 269, 6252-6258). The 2,539-base pair cDNA encoded 564 amino acid residues with a calculated Mr of 60,794. The amino-terminal two-thirds of the deduced amino acid sequence significantly resembled Escherichia coli asparaginase I with the putative asparaginase catalytic triad Thr-Asp-Lys and was followed by leucine zipper motif. The carboxyl-terminal region carried ankyrin repeat. When the cDNA was transfected into HEK293 cells, not only lysophospholipase activity but also asparaginase and platelet-activating factor acetylhydrolase activities were expressed. Reverse transcription-polymerase chain reaction revealed that the transcript occurred at high levels in liver and kidney but was hardly detectable in lung and heart from which large form lysophospholipases had been purified, suggesting the presence of multiple forms of large form lysophospholipase in mammalian tissues.
Collapse
Affiliation(s)
- H Sugimoto
- Department of Biochemistry, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | |
Collapse
|
6
|
Wang A, Deems RA, Dennis EA. Cloning, expression, and catalytic mechanism of murine lysophospholipase I. J Biol Chem 1997; 272:12723-9. [PMID: 9139730 DOI: 10.1074/jbc.272.19.12723] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A lysophospholipase (LysoPLA I) has been purified and characterized from the mouse macrophage-like P388D1 cell line (Zhang, Y. Y, and Dennis, E. A. (1988) J. Biol. Chem. 263, 9965-9972). This enzyme has now been sequenced, cloned, and expressed in Escherichia coli cells. The enzyme contains 230 amino acid residues with a calculated molecular mass of 24.7 kDa. It has a high helical content in its predicated secondary structure, which is also indicated in its CD spectrum. The cloned LysoPLA I was purified to homogeneity from the transformed E. coli cells by a gel filtration column and an ion exchange column. The specific activity of the purified protein is 1. 47 micromol/min.mg toward 1-palmitoyl-sn-glycero-3-phosphorylcholine at pH 8.0 and 40 degrees C, corresponding to the reported value of 1.3-1.7 micromol/min.mg for the protein purified from the P388D1 cells. In addition, the cloned protein cross-reacted with an antibody raised against LysoPLA I also purified from the P388D1 cells. The deduced LysoPLA I sequence contains a well conserved GXSXG motif found in the active site of many serine enzymes, and the activity of the LysoPLA I was irreversibly inhibited by the classical serine protease inhibitor diisopropyl fluorophosphate. Furthermore, site-directed mutagenesis was employed to change Ser-119 in the GXSXG motif to an Ala. The resulting mutant protein lost all of its lysophospholipase activity, even though it had the same overall protein conformation as that of the wild-type LysoPLA I. Therefore, LysoPLA I has been demonstrated to be a serine enzyme with Ser-119 at the active site.
Collapse
Affiliation(s)
- A Wang
- Department of Chemistry and Biochemistry, School of Medicine and Revelle College, University of California at San Diego, La Jolla, California 92093-0601, USA
| | | | | |
Collapse
|
7
|
Dyer KD, Handen JS, Rosenberg HF. The genomic structure of the human Charcot-Leyden crystal protein gene is analogous to those of the galectin genes. Genomics 1997; 40:217-21. [PMID: 9119387 DOI: 10.1006/geno.1996.4590] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Charcot-Leyden crystal (CLC) protein, or eosinophil lysophospholipase, is a characteristic protein of human eosinophils and basophils; recent work has demonstrated that the CLC protein is both structurally and functionally related to the galectin family of beta-galactoside binding proteins. The galectins as a group share a number of features in common, including a linear ligand binding site encoded on a single exon. In this work, we demonstrate that the intron-exon structure of the gene encoding CLC is analogous to those encoding the galectins. The coding sequence of the CLC gene is divided into four exons, with the entire beta-galactoside binding site encoded by exon III. We have isolated CLC beta-galactoside binding sites from both orangutan (Pongo pygmaeus) and murine (Mus musculus) genomic DNAs, both encoded on single exons, and noted conservation of the amino acids shown to interact directly with the beta-galactoside ligand. The most likely interpretation of these results suggest the occurrence of one or more exon duplication and insertion events, resulting in the distribution of this lectin domain to CLC as well as to the multiple galectin genes.
Collapse
Affiliation(s)
- K D Dyer
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
8
|
Karpouza AP, Vakirtzi-Lemonias C. The platelet-activating factor acetylhydrolase of mouse platelets. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1323:12-22. [PMID: 9030208 DOI: 10.1016/s0005-2736(96)00178-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Platelet-activating factor (PAF) acetylhydrolases are a family of distinct enzymes with the common property of hydrolyzing and inactivating PAF. It has been shown that the structure and the biochemical behavior of these enzymes depend on their cellular origin. We studied the PAF acetylhydrolase activity in mouse platelets in order to investigate the unusual response of these platelets to PAF. We found that mouse platelets contain a PAF acetylhydrolase with an apparent Km value of 0.8 microM, suggesting a very high affinity for PAF. Contrary to other normal mammalian cells and tissues, mouse platelet PAF acetylhydrolase is almost equally distributed in the membranes and the cytosol and is characterized by an extreme sensitivity to heating. The enzyme requires the presence of dithioerythritol for maximal activity, it is affected by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide and it is strongly inhibited by phenylmethylsulfonylfluoride. We purified, to near homogeneity, the PAF acetylhydrolase from mouse platelet membranes and demonstrated that it is a protein relatively abundant in the membranes with an apparent molecular weight of 270 kDa. Electrophoretic analysis, under reducing conditions, revealed four bands and one duplet with molecular weights of 66, 55, 52, 49 and 62 kDa. respectively. Thus, PAF hydrolysis in mouse platelets is mediated by a PAF acetylhydrolase having biophysical and biochemical properties more intricate than those of the PAF acetylhydrolases found in other species.
Collapse
Affiliation(s)
- A P Karpouza
- National Centre for Scientific Research DEMOKRITOS, Athens, Greece
| | | |
Collapse
|
9
|
Pete MJ, Exton JH. Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J Biol Chem 1996; 271:18114-21. [PMID: 8663471 DOI: 10.1074/jbc.271.30.18114] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A high activity lysophospholipase A (lysoPLA) was purified from the soluble fraction of bovine brain. The separation included sequential DEAE-Sephacel, phenyl-Sepharose FF, heparin-Sepharose CL-6B, and Q-Sepharose FF column chromatography. Mono Q, Sephacryl S300HR, and hydroxylapatite column chromatography in the presence of the detergent CHAPS (3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate) and glycerol further purified the activity to 17,000-fold. The enzyme was purified to homogeneity by polyacrylamide gel electrophoresis using nondenaturing conditions. The pure enzyme migrated as a single polypeptide of 95 kDa mass by SDS-polyacrylamide gel electrophoresis and deacylated arachidonoyl-lysophosphatidylcholine (ara-lysoPC) at rate of 70 micromol/(min mg). The enzyme showed selectivity for arachidonoyl-substituted lysoPC, since palmitoyl-lysoPC was deacylated at a much lower rate (7 micromol/(min mg)). LysoPLA activity was maximal at pH 7.4-8.0 and was increased 1.3-fold by MgCl2 (5 mM). By including MgCl2, however, the range of optimal activity was expanded to pH values up to 9.0. The 95-kDa protein also deacylated arachidonoyl groups from 1-O-hexadecyl-2-arachidonoyl-PC (PLA2 activity) at a rate of 15 micromol/(min mg). Moreover, the deacylation of arachidonoyl groups from diacylPC was greatly increased by including purified bovine brain PLA1 in the reaction mixture. Thus, the same 95-kDa polypeptide catalyzed both lysoPLA and PLA2 activities, but the rate of arachidonoyl group deacylation was increased by prior sn-1 deacylation. Finally, the 95-kDa polypeptide cross-reacted with antibodies raised against a human recombinant cPLA2, implying that the 95-kDa protein is structurally similar to cPLA2. Additionally, these data suggest that the combined actions of PLA1 and the 95-kDa protein generate significant amounts of free arachidonic acid in the brain.
Collapse
Affiliation(s)
- M J Pete
- Howard Hughes Medical Institute and the Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | |
Collapse
|
10
|
Sugimoto H, Hayashi H, Yamashita S. Purification, cDNA cloning, and regulation of lysophospholipase from rat liver. J Biol Chem 1996; 271:7705-11. [PMID: 8631810 DOI: 10.1074/jbc.271.13.7705] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A lysophospholipase was purified 506-fold from rat liver supernatant. The preparation gave a single 24-kDa protein band on SDS-polyacrylamide gel electrophoresis. The enzyme hydrolyzed lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylinositol, lysophosphatidylserine, and 1-oleoyl-2-acetyl-sn-glycero-3-phosphocholine at pH 6-8. The purified enzyme was used for the preparation of antibody and peptide sequencing. A cDNA clone was isolated by screening a rat liver lambda gt11 cDNA library with the antibody, followed by the selection of further extended clones from a lambda gt10 library. The isolated cDNA was 2,362 base pairs in length and contained an open reading frame encoding 230 amino acids with a Mr of 24,708. The peptide sequences determined were found in the reading frame. When the cDNA was expressed in Escherichia coli cells as the beta-galactosidase fusion, lysophosphatidylcholine-hydrolyzing activity was markedly increased. The deduced amino acid sequence showed significant similarity to Pseudomonas fluorescence esterase A and Spirulina platensis esterase. The three sequences contained the GXSXG consensus at similar positions. The transcript was found in various tissues with the following order of abundance: spleen, heart, kidney, brain, lung, stomach, and testis = liver. In contrast, the enzyme protein was abundant in the following order: testis, liver, kidney, heart, stomach, lung, brain, and spleen. Thus the mRNA abundance disagreed with the level of the enzyme protein in liver, testis, and spleen. When HL-60 cells were induced to differentiate into granulocytes with dimethyl sulfoxide, the 24-kDa lysophospholipase protein increased significantly, but the mRNA abundance remained essentially unchanged. Thus a posttranscriptional control mechanism is present for the regulation of 24-kDa lysophospholipase.
Collapse
Affiliation(s)
- H Sugimoto
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan
| | | | | |
Collapse
|
11
|
Leonidas DD, Elbert BL, Zhou Z, Leffler H, Ackerman SJ, Acharya KR. Crystal structure of human Charcot-Leyden crystal protein, an eosinophil lysophospholipase, identifies it as a new member of the carbohydrate-binding family of galectins. Structure 1995; 3:1379-93. [PMID: 8747464 DOI: 10.1016/s0969-2126(01)00275-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The Charcot-Leyden crystal (CLC) protein is a major autocrystallizing constituent of human eosinophils and basophils, comprising approximately 10% of the total cellular protein in these granulocytes. Identification of the distinctive hexagonal bipyramidal crystals of CLC protein in body fluids and secretions has long been considered a hallmark of eosinophil-associated allergic inflammation. Although CLC protein possesses lysophospholipase activity, its role(s) in eosinophil or basophil function or associated inflammatory responses has remained speculative. RESULTS The crystal structure of the CLC protein has been determined at 1.8 A resolution using X-ray crystallography. The overall structural fold of CLC protein is highly similar to that of galectins -1 and -2, members of an animal lectin family formerly classified as S-type or S-Lac (soluble lactose-binding) lectins. This is the first structure of an eosinophil protein to be determined and the highest resolution structure so far determined for any member of the galectin family. CONCLUSIONS The CLC protein structure possesses a carbohydrate-recognition domain comprising most, but not all, of the carbohydrate-binding residues that are conserved among the galectins. The protein exhibits specific (albeit weak) carbohydrate-binding activity for simple saccharides including N-acetyl-D-glucosamine and lactose. Despite CLC protein having no significant sequence or structural similarities to other lysophospholipase catalytic triad has also been identified within the CLC structure, making it a unique dual-function polypeptide. These structural findings suggest a potential intracellular and/or extracellular role(s) for the galectin-associated activities of CLC protein in eosinophil and basophil function in allergic diseases and inflammation.
Collapse
Affiliation(s)
- D D Leonidas
- School of Biology and Biochemistry, University of Bath, Claverton Down, UK
| | | | | | | | | | | |
Collapse
|
12
|
de Carvalho MG, Garritano J, Leslie CC. Regulation of lysophospholipase activity of the 85-kDa phospholipase A2 and activation in mouse peritoneal macrophages. J Biol Chem 1995; 270:20439-46. [PMID: 7657619 DOI: 10.1074/jbc.270.35.20439] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulation of the lysophospholipase activity of the 85-kDa cytosolic phospholipase A2 (PLA2) was studied in vitro and in stimulated macrophages. Bovine serum albumin was found to inhibit lysophospholipase activity of the recombinant 85-kDa PLA2 when assayed at a relatively low substrate concentration. Inhibition could be reversed if the substrate concentration was increased or if Ca2+ was present in the assay. Incubation of recombinant enzyme with macrophage membranes and lipid extracts from macrophage membranes resulted in the release of arachidonic acid, as well as, stearic acid, which is enriched at the sn-1 position of macrophage phospholipids. This suggests that with a bilayer substrate the PLA2 can sequentially deacylate the sn-2 then sn-1 acyl groups. This was verified by demonstrating that the phospholipids, phosphatidylcholine and phosphatidylinositol, were hydrolyzed to glycerophosphocholine and glycerophosphoinositol by incubation with recombinant 85-kDa PLA2. The 85-kDa enzyme was identified as the main lysophospholipase activity in mouse peritoneal macrophage cytosols. Addition of Ca2+ to the assay enhanced activity, but this effect decreased as the substrate concentration was increased. Incubation of macrophages with zymosan increased the lysophospholipase activity of the 85-kDa PLA2 in cytosols. Phosphorylation of recombinant PLA2 with mitogen-activated protein kinase resulted in an increase in lysophospholipase, as well as, PLA2 activity. In macrophages stimulated with zymosan release of stearic acid (18:0) and palmitic acid (16:0) was observed in addition to arachidonic acid (20:4). These results are consistent with a role of the 85-kDa PLA2 in regulating lysophospholipid levels in macrophages during zymosan stimulation.
Collapse
Affiliation(s)
- M G de Carvalho
- Department of Pediatrics, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206, USA
| | | | | |
Collapse
|
13
|
Holtsberg FW, Ozgur LE, Garsetti DE, Myers J, Egan RW, Clark MA. Presence in human eosinophils of a lysophospholipase similar to that found in the pancreas. Biochem J 1995; 309 ( Pt 1):141-4. [PMID: 7619049 PMCID: PMC1135811 DOI: 10.1042/bj3090141] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The supernatant fraction from lysed human eosinophils, when separated by gel-filtration chromatography, contains a protein with lysophospholipase activity of approximate molecular mass 74 kDa. This mass differs substantially from the 17 kDa of a previously cloned eosinophil lysophospholipase (Charcot-Leyden crystal protein), but is similar to that reported for a pancreatic enzyme. We have therefore further characterized this pancreatic-like lysophospholipase in human eosinophils. A rabbit polyclonal antibody was produced against a synthetic peptide consisting of amino acids 325-349 from the 74 kDa rat pancreatic lysophospholipase. Western-blot analysis of eosinophil extracts indicate that this antibody recognizes a single 74 kDa band in these preparations. Incubation of the supernatant fraction from sonified eosinophils with this antibody, followed by precipitation of antibody-antigen complexes with Protein A, removes the majority of the lysophospholipase activity. Indirect immunofluorescence examination with this antibody indicates this protein to be localized to granules of eosinophils and not in other leucocytes. Moreover, reverse transcriptase PCR of polyadenylated RNA from eosinophils and from rat pancreatic tissue with primers to rat pancreatic lysophospholipase resulted in readily detectable 1 kb DNA products in both samples. Sequencing revealed this DNA fragment to be identical with the human pancreatic lysophospholipase cDNA sequence. Taken together, these data indicate that eosinophils contain a lysophospholipase that is similar to the human pancreatic enzyme.
Collapse
Affiliation(s)
- F W Holtsberg
- Schering Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
14
|
Sunaga H, Sugimoto H, Nagamachi Y, Yamashita S. Purification and properties of lysophospholipase isoenzymes from pig gastric mucosa. Biochem J 1995; 308 ( Pt 2):551-7. [PMID: 7772041 PMCID: PMC1136961 DOI: 10.1042/bj3080551] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two lysophospholipases, named gastric lysophospholipases I and II (enzymes I and II), were purified 3730- and 2680-fold from pig gastric mucosa. The preparations showed 22 and 23 kDa single protein bands on SDS/PAGE respectively. Both enzymes lacked transacylase activity and appeared to exist as monomers. Their activities were not affected by Ca2+, Mg2+ or EDTA. Enzyme I was most active at pH 8.5 and hydrolysed a variety of lysophospholipids including acidic lysophospholipids and the acyl analogue of platelet-activating factor, whereas enzyme II was most active at pH 8 and its activity was confined to lysophosphatidylcholine and lysophosphatidylethanolamine. When 1-palmitoylglycerophosphocholine was used as substrate, enzymes I and II showed half-maximal activities at 11 and 12 microM respectively. The enzymes exhibited no phospholipase B, lipase or general esterase activity. Enzyme II was significantly inhibited by lysophosphatidic acid whereas enzyme I was only moderately inhibited. Peptide mapping with V8 protease and papain revealed structural dissimilarity between the two enzymes. Antiserum raised against enzyme I did not recognize enzyme II, but did recognize the small-sized lysophospholipase purified from rat liver. Anti-(enzyme II) consistently did not cross-react with enzyme I or the liver enzyme. These antisera specifically recognized neither the 60 kDa lysophospholipase transacylase purified from liver nor any peritoneal macrophage protein. Thus gastric mucosa contains two different small-sized lysophospholipases: one is closely related to the small-sized lysophospholipase of liver, but the other appears to be a novel isoform.
Collapse
Affiliation(s)
- H Sunaga
- Department of Biochemistry, Gunma University School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
15
|
Thompson FJ, Clark MA. Purification of a lysophosphatidic acid-hydrolysing lysophospholipase from rat brain. Biochem J 1994; 300 ( Pt 2):457-61. [PMID: 8002951 PMCID: PMC1138184 DOI: 10.1042/bj3000457] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A lysophosphatidic acid (LPA)-hydrolysing lysophospholipase was purified from rat brain and characterized. This membrane-bound lysophospholipase was solubilized by using n-octyl glucoside and purified by sequential cation, hydrophobic and gel-filtration chromatography. The purified protein has a mass of 80 kDa as assayed by SDS/PAGE. This lysophospholipase catalysed the hydrolysis of a variety of lysophosphatidic acids, but with different rates, depending on the length and degree of saturation of the sn-1 acyl group (1-oleoyl-LPA approximately 1-stearoyl-LPA > 1-palmitoyl-LPA > 1-myristoyl-LPA). This enzyme had no-measurable catalytic activity when other lysophospholipids, monoacylglycerol or phosphatidic acid were used as substrates. On the basis of its chromatographic properties, substrate specificity and cellular localization, we conclude that this lysophospholipase differs from those previously purified and speculate that it has an important function in terminating biological responses to LPA.
Collapse
Affiliation(s)
- F J Thompson
- Schering-Plough Research Institute, Kenilworth, NJ 07033
| | | |
Collapse
|
16
|
She HS, Garsetti DE, Steiner MR, Egan RW, Clark MA. The substrate specificities of four different lysophospholipases as determined by a novel fluorescence assay. Biochem J 1994; 298 ( Pt 1):23-9. [PMID: 8129724 PMCID: PMC1137978 DOI: 10.1042/bj2980023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A novel fluorescence assay for quantifying lysophospholipase activity is described which utilizes a commercially available acrylodated intestinal fatty-acid-binding protein (ADIFAB) and non-radiolabelled substrate. Quantification of enzyme activity is based on the decrease in ADIFAB fluorescence at 432 nm in the presence of nanomolar concentrations of non-esterified ('free') fatty acids. Lysophospholipase activity measured by the ADIFAB assay and a conventional radiometric assay yield comparable results and have comparable levels of sensitivity (approximately 10 pmol/min per ml). The ADIFAB assay has the advantageous features of continuous monitoring of enzyme activity and the availability of a broad range of potential substrates, because non-radiolabelled lysophospholipids can be employed in the assay. The hydrolytic activities of four lysophospholipases were determined, including a bacterial secreted phospholipase A2/lysophospholipase, the human-eosinophil-secreted lysophospholipase, a human intracellular lysophospholipase (peak 3) isolated from HL-60 cells and a high-molecular-mass cytosolic phospholipase A2/lysophospholipase from a mouse mammary carcinoma. Each of these enzymes was found to have a distinctive hydrolytic profile as determined by an array of lysophospholipids differing in their polar headgroups and sn-1 fatty-acyl substituents.
Collapse
Affiliation(s)
- H S She
- Schering Plough Research Institute, Kenilworth, NJ 07033
| | | | | | | | | |
Collapse
|
17
|
Sugimoto H, Yamashita S. Purification, characterization, and inhibition by phosphatidic acid of lysophospholipase transacylase from rat liver. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37595-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
18
|
Fujimori Y, Kudo I, Fujita K, Inoue K. Characteristics of lysophospholipase activity expressed by cytosolic phospholipase A2. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 218:629-35. [PMID: 8269953 DOI: 10.1111/j.1432-1033.1993.tb18416.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Evidence has accumulated to suggest that a wide variety of mammalian cells and tissues express a cytosolic phospholipase A2 with arachidonoyl preference (cPLA2). Purified rabbit platelet-derived cPLA2, as well as the human recombinant enzyme originally identified in the monocytic leukemic cell line U937, exhibit significant lysophospholipase activity. Several series of experiments indicated that a single protein mediated both activities. Treatment of the purified enzyme with p-bromophenacylbromide or an anti-(rabbit platelet cPLA2) monoclonal antibody, RHY-5, suppressed the activity of phospholipase A2 without any appreciable effect on lysophospholipase activity, suggesting that the domain(s) required for phospholipase A2 activity may be located separately from that for lysophospholipase activity. Lysophospholipase activity was appreciably detected above the critical micellar concentration of the substrate. Lysophosphatidylcholine was also hydrolyzed efficiently when it was incorporated into liposomes made of dialkylphosphatidylcholine. The hydrolysis of lysophospholipid was dependent on the fatty acid bound at the sn1 position; the relative rates of hydrolysis of 1-oleoyllysophosphatidylcholine, 1-palmitoyllysophosphatidylcholine, and 1-stearoyllysophosphatidylcholine were 23, 8, and 1, respectively. A similar order of reactivity was observed with lysophospholipid incorporated into dialkylphosphatidylcholine liposomes. cPLA2 may function not only as an arachidonate liberation enzyme but also as an enzyme responsible for degradation of certain molecular species of lysophospholipids formed in membranes.
Collapse
Affiliation(s)
- Y Fujimori
- Faculty of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|