1
|
Wu S, Lin C, Zhang T, Zhang B, Jin Y, Wang H, Li H, Wang Y, Wang X. Pentamidine Alleviates Inflammation and Lipopolysaccharide-Induced Sepsis by Inhibiting TLR4 Activation via Targeting MD2. Front Pharmacol 2022; 13:835081. [PMID: 35281916 PMCID: PMC8905599 DOI: 10.3389/fphar.2022.835081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 01/03/2023] Open
Abstract
Toll-like receptor 4 (TLR4) is a pattern-recognition receptor (PRR) that can recognize lipopolysaccharides (LPS) and initiate the immune response, to protect the body from infection. However, excessive activation of TLR4 induced by LPS leads to substantial release of pro-inflammatory factors, which may bring a cytokine storm in the body and cause severe sepsis. Existing molecules specialized in sepsis therapy are either in clinical trials or show mediocre effects. In this study, pentamidine, an approved drug used in the treatment of trypanosomiasis, was identified as a TLR4 antagonist. Saturation transferred difference (STD)-NMR spectra indicated that pentamidine directly interacted with TLR4's co-receptor myeloid differentiation protein 2 (MD2) in vitro. Cellular thermal shift assay (CETSA) showed that pentamidine binding decreased MD2 stability, which was supported by in silico simulations that pentamidine binding rendered most regions of MD2 more flexible. Pentamidine was found to inhibit the formation of the TLR4/MD2/MyD88 complex and the activation of the TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced TLR4 signaling downstream of the pro-inflammatory factors NO, TNF-α, and IL-1β. The bioisosteric replacement of the methylene group at the center 13' site of pentamidine by the ether oxygen group significantly decreased its interactions with MD2 and abolished its TLR4 antagonist activity. Furthermore, pentamidine enhanced the survival rate of septic mice and exerted an anti-inflammatory effect on organs. All these data provide strong evidence that pentamidine may be an effective drug in alleviating inflammation and sepsis.
Collapse
Affiliation(s)
- Siru Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Cong Lin
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Bo Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Yushan Jin
- Department of Immunology and Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.,Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
2
|
Abstract
Small molecule adjuvants that enhance the activity of established antibiotics represent promising agents in the battle against antibiotic resistance. Adjuvants generally act by inhibiting antibiotic resistance processes, and specifying the process acted on is a critical step in defining an adjuvant's mechanism of action. This step is typically carried out biochemically by identifying molecules that bind adjuvants and then inferring their roles in resistance. Here, we present a complementary genetic strategy based on identifying mutations that both sensitize cells to antibiotic and make them "adjuvant blind." We tested the approach in Acinetobacter baumannii AB5075 using two adjuvants: a well-characterized β-lactamase inhibitor (avibactam) and a compound enhancing outer membrane permeability (aryl 2-aminoimidazole AI-1). The avibactam studies showed that the adjuvant potentiated one β-lactam (ceftazidime) through action on a single β-lactamase (GES-14) and a second (meropenem) by targeting two different enzymes (GES-14 and OXA-23). Mutations impairing disulfide bond formation (DsbAB) also reduced potentiation, possibly by impairing β-lactamase folding. Mutations reducing AI-1 potentiation of canonical Gram-positive antibiotics (vancomycin and clarithromycin) blocked lipooligosaccharide (LOS/LPS) synthesis or its acyl modification. The results indicate that LOS-mediated outer membrane impermeability is targeted by the adjuvant and show the importance of acylation in the resistance. As part of the study, we employed Acinetobacter baylyi as a model to verify the generality of the A. baumannii results and identified the principal resistance genes for ceftazidime, meropenem, vancomycin, and clarithromycin in A. baumannii AB5075. Overall, the work provides a foundation for analyzing adjuvant action using a comprehensive genetic approach. IMPORTANCE One strategy to confront the antibiotic resistance crisis is through the development of adjuvant compounds that increase the efficacy of established drugs. A key step in the development of a natural product adjuvant as a drug is identifying the resistance process it undermines to enhance antibiotic activity. Previous procedures designed to accomplish this have relied on biochemical identification of cell components that bind adjuvant. Here, we present a complementary strategy based on identifying mutations that eliminate adjuvant activity.
Collapse
|
3
|
Abstract
Sepsis and septic shock are life-threating conditions, which form a continuum of the body's response to overwhelming infection. The current treatment consists of fluid and metabolic resuscitation, hemodynamic and end-organ support, and timely initiation of antibiotics. However, these measures may be ineffective and the sepsis-related mortality toll remains substantial; therefore, an urgent need exists for new therapies. Recently, several nanoparticle (NP) systems have shown excellent protective effects against sepsis in preclinical models, suggesting a potential utility in the management of sepsis and septic shock. These NPs serve as antibacterial agents, provide platforms to immobilize endotoxin adsorbents, interact with inflammatory cells to restore homeostasis and detect biomarkers of sepsis for timely diagnosis. This review discusses the recent developments in NP-based approaches for the treatment of sepsis.
Collapse
|
4
|
Adams FG, Stroeher UH, Hassan KA, Marri S, Brown MH. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978. PLoS One 2018; 13:e0197412. [PMID: 29750823 PMCID: PMC5947904 DOI: 10.1371/journal.pone.0197412] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.
Collapse
Affiliation(s)
- Felise G. Adams
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Uwe H. Stroeher
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- * E-mail:
| |
Collapse
|
5
|
Zhao E, Ilyas G, Cingolani F, Choi JH, Ravenelle F, Tanaka KE, Czaja MJ. Pentamidine blocks hepatotoxic injury in mice. Hepatology 2017; 66:922-935. [PMID: 28470665 PMCID: PMC5570662 DOI: 10.1002/hep.29244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/13/2017] [Accepted: 04/26/2017] [Indexed: 01/15/2023]
Abstract
UNLABELLED Toxin-induced liver diseases lack effective therapies despite increased understanding of the role factors such as an overactive innate immune response play in the pathogenesis of this form of hepatic injury. Pentamidine is an effective antimicrobial agent against several human pathogens, but studies have also suggested that this drug inhibits inflammation. This potential anti-inflammatory mechanism of action, together with the development of a new oral form of pentamidine isethionate VLX103, led to investigations of the effectiveness of this drug in the prevention and treatment of hepatotoxic liver injury. Pretreatment with a single injection of VLX103 in the d-galactosamine (GalN) and lipopolysaccharide (LPS) model of acute, fulminant liver injury dramatically decreased serum alanine aminotransferase levels, histological injury, the number of terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells and mortality compared with vehicle-injected controls. VLX103 decreased GalN/LPS induction of tumor necrosis factor (TNF) but had no effect on other proinflammatory cytokines. VLX103 prevented the proinflammatory activation of cultured hepatic macrophages and partially blocked liver injury from GalN/TNF. In GalN/LPS-treated mice, VLX103 decreased activation of both the mitochondrial death pathway and downstream effector caspases 3 and 7, which resulted from reduced c-Jun N-terminal kinase activation and initiator caspase 8 cleavage. Delaying VLX103 treatment for up to 3 hours after GalN/LPS administration was still remarkably effective in blocking liver injury in this model. Oral administration of VLX103 also decreased hepatotoxic injury in a second more chronic model of alcohol-induced liver injury, as demonstrated by decreased serum alanine and aspartate aminotransferase levels and numbers of TUNEL-positive cells. CONCLUSION VLX103 effectively decreases toxin-induced liver injury in mice and may be an effective therapy for this and other forms of human liver disease. (Hepatology 2017;66:922-935).
Collapse
Affiliation(s)
- Enpeng Zhao
- Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY
| | - Ghulam Ilyas
- Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Francesca Cingolani
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Jae Ho Choi
- Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Kathryn E. Tanaka
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY
| | - Mark J. Czaja
- Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY,Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
6
|
David S, Mathan V, Balaram P. Interactions of linear dicationic molecules with lipid A: structural requisites for optimal binding affinity. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199500200503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structural determinants of the binding affinity of linear dicationic molecules toward lipid A have been examined with respect to the distance between the terminal cationic functions, the basicity, and the type of cationic moieties using a series of spermidine derivatives and pentamidine analogs by fluorescence spectroscopic methods. The presence of two terminal cationic groups corresponds to enhanced affinity. A distinct sigmoidal relationship between the intercationic distance and affinity was observed with a sharp increase at 11 Å, levelling off at about 13 Å. The basicity (pK) and nature of the cationic functions are poor correlates of binding potency, since molecules bearing primary amino, imidazolino, or guanido termini are equipotent. The interaction of pentamidine, a bisamidine drug, with lipid A, characterized in considerable detail employing the putative intermolecular excimerization of the drug, suggests a stoichiometry of 1:1 in the resultant complex. The binding is driven almost exclusively by electrostatic forces, and is dependent on the ionization states of both lipid A and the drug. Under conditions when lipid A is highly disaggregated, pentamidine binds specifically to bis-phosphoryl- but not to monophosphoryl-lipid A indicating that both phosphate groups of lipid A are necessary for electrostatic interactions by the terminal amidininium groups of the drug. Based on these data, a structural model is proposed for the pentamidine-lipid A complex, which may be of value in designing endotoxin antagonists from first principles.
Collapse
Affiliation(s)
- S.A. David
- The Wellcome Trust Research Laboratory and Department of Gastrointestinal Sciences, Christian Medical College Hospital, Vellore and Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - V.I. Mathan
- The Wellcome Trust Research Laboratory and Department of Gastrointestinal Sciences, Christian Medical College Hospital, Vellore and Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - P. Balaram
- The Wellcome Trust Research Laboratory and Department of Gastrointestinal Sciences, Christian Medical College Hospital, Vellore and Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
7
|
David SA, Awasthi SK, Balaram P. The role of polar and facial amphipathic character in determining lipopolysaccharide-binding properties in synthetic cationic peptides. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519000060030601] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two series of peptides, designated K and NK were synthesized and tested for lipid A binding and neutralizing properties. K2, which has an 11-residue amphiphilic core, and a branched N-terminus bearing two branched lysinyl residues does not bind lipid A, while NK2, also with an 11-residue amphiphilic core comprised entirely of non-ionizable residues, and a similarly branched, cationic N-terminus, binds lipid A very weakly. Both peptides do not inhibit lipopolysaccharide (LPS) activity in the Limulus assay, nor do they inhibit LPS-induced TNF-α and NO production in J774 cells. These results are entirely unlike a homologous peptide with an exclusively hydrophobic core whose LPS-binding and neutralizing properties are very similar to that of polymyxin B [David SA, Awasthi SK, Wiese A et al. Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of Salmonella minnesota . J Endotoxin Res 1996; 3: 369—379]. These data suggest that a clear segregation of charged and apolar domains is crucial in molecules designed for purposes of LPS sequestration and that head-tail (polar) orientation of the cationic/hydrophobic regions is preferable to molecules with mixed or facial cationic/amphipathic character.
Collapse
Affiliation(s)
- Sunil A. David
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA,
| | - Satish K. Awasthi
- Institute of Medical Biochemistry and Genetics, The Panum Institute, Copenhagen, Denmark
| | - P. Balaram
- Institute of Medical Biochemistry and Genetics, The Panum Institute, Copenhagen, Denmark
| |
Collapse
|
8
|
David S, Awasthi S, Wiese A, Ulmer A, Lindner B, Brandenburg K, Seydel U, Rietschel E, Sonesson A, Balaram P. Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of Salmonella minnesota. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/096805199600300501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose α- and E-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-1 and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.
Collapse
Affiliation(s)
- S.A. David
- Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College, Vellore, India, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India, 1000 Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS 66160-7382, USA
| | - S.K. Awasthi
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - A. Wiese
- Forschungszentrum Borstel, Borstel, Germany
| | - A.J. Ulmer
- Forschungszentrum Borstel, Borstel, Germany
| | - B. Lindner
- Forschungszentrum Borstel, Borstel, Germany
| | | | - U. Seydel
- Forschungszentrum Borstel, Borstel, Germany
| | | | - A. Sonesson
- Department of Bioanalytical Chemistry, Astra Draco AB, Lund, Sweden
| | - P. Balaram
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
9
|
Andrä J, Gutsmann T, Garidel P, Brandenburg K. Invited review: Mechanisms of endotoxin neutralization by synthetic cationic compounds. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120050201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A basic challenge in the treatment of septic patients in critical care units is the release of bacterial pathogenicity factors such as lipopolysaccharide (LPS, endotoxin) from the cell envelope of Gram-negative bacteria due to killing by antibiotics. LPS aggregates may interact with serum and membrane proteins such as LBP (lipopolysaccharide-binding protein) and CD14 leading to the observed strong reaction of the immune system. Thus, an effective treatment of patients infected by Gram-negative bacteria must comprise beside bacterial killing the neutralization of endotoxins. Here, data are summarized for synthetic compounds indicating the stepwise development to very effective LPS-neutralizing agents. These data include synthetic peptides, based on the endotoxin-binding domains of natural binding proteins such as lactoferrin, Limulus anti-LPS factor, NK-lysin, and cathelicidins or based on LPS sequestering polyamines. Many of these compounds could be shown to act not only in vitro, but also in vivo (e.g . in animal models of sepsis), and might be useful in future clinical trials and in sepsis therapy.
Collapse
Affiliation(s)
- Jörg Andrä
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Thomas Gutsmann
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany
| | - Patrick Garidel
- Institut für Physikalische Chemie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Klaus Brandenburg
- Forschungszentrum Borstel, Biophysics Division, Leibniz-Zentrum für Medizin und Biowissenschaften, Borstel, Germany,
| |
Collapse
|
10
|
Cho EJ, Doh KO, Park J, Hyun H, Wilson EM, Snyder PW, Tsifansky MD, Yeo Y. Zwitterionic chitosan for the systemic treatment of sepsis. Sci Rep 2016; 6:29739. [PMID: 27412050 PMCID: PMC4944199 DOI: 10.1038/srep29739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022] Open
Abstract
Severe sepsis and septic shock are life-threatening conditions, with Gram-negative organisms responsible for most sepsis mortality. Systemic administration of compounds that block the action of lipopolysaccharide (LPS), a constituent of the Gram-negative outer cell membrane, is hampered by their hydrophobicity and cationic charge, the very properties responsible for their interactions with LPS. We hypothesize that a chitosan derivative zwitterionic chitosan (ZWC), previously shown to suppress the production of pro-inflammatory cellular mediators in LPS-challenged macrophages, will have protective effects in an animal model of sepsis induced by systemic injection of LPS. In this study, we evaluate whether ZWC attenuates the fatal effect of LPS in C57BL/6 mice and investigate the mechanism by which ZWC counteracts the LPS effect using a PMJ2-PC peritoneal macrophage cell line. Unlike its parent compound with low water solubility, intraperitoneally administered ZWC is readily absorbed with no local residue or adverse tissue reaction at the injection site. Whether administered at or prior to the LPS challenge, ZWC more than doubles the animals' median survival time. ZWC appears to protect the LPS-challenged organisms by forming a complex with LPS and thus attenuating pro-inflammatory signaling pathways. These findings suggest that ZWC have utility as a systemic anti-LPS agent.
Collapse
Affiliation(s)
- Eun Jung Cho
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Kyung-Oh Doh
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Department of Physiology, College of Medicine, Yeungnam University, 317-1 Daemyung-dong, Daegu, Korea
| | - Jinho Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Erin M. Wilson
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Paul W. Snyder
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| | - Michael D. Tsifansky
- Department of Pediatrics and the Congenital Heart Center, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
11
|
Lonez C, Vandenbranden M, Ruysschaert JM. Cationic lipids activate intracellular signaling pathways. Adv Drug Deliv Rev 2012; 64:1749-58. [PMID: 22634161 DOI: 10.1016/j.addr.2012.05.009] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/09/2012] [Indexed: 11/25/2022]
Abstract
Cationic liposomes are commonly used as a transfection reagent for DNA, RNA or proteins and as a co-adjuvant of antigens for vaccination trials. A high density of positive charges close to cell surface is likely to be recognized as a signal of danger by cells or contribute to trigger cascades that are classically activated by endogenous cationic compounds. The present review provides evidence that cationic liposomes activate several cellular pathways like pro-apoptotic and pro-inflammatory cascades. An improved knowledge of the relationship between the cationic lipid properties (nature of the lipid hydrophilic moieties, hydrocarbon tail, mode of organization) and the activation of these pathways opens the way to the use and design of cationic tailored for a specific application (e.g. for gene transport or as adjuvants).
Collapse
|
12
|
Abstract
Sepsis, otherwise referred to as "blood poisoning" is a serious clinical problem, the incidence of which continues to rise in the US and worldwide despite advances in antimicrobial chemotherapy. The primary trigger in Gram-negative sepsis is endotoxin, a lipopolysaccharide (LPS) constituent of the outer membrane of all Gram-negative bacteria. The structurally highly conserved glycolipid called lipid A is the active moiety of LPS. Lipid A is composed of a hydrophilic, bis-phosphorylated di-glucosamine backbone, and a hydrophobic polyacyl domain. The bis-anionic, amphiphilic nature of lipid A enables it to interact with a variety of cationic hydrophobic ligands, including polymyxin B, a toxic peptide antibiotic which binds to lipid A and neutralizes endotoxicity. Having determined the structural basis of the interaction of polymyxin B with lipid A, our long-term goal has been to rationally design non-peptidic, nontoxic, small-molecule LPS-sequestrants. Our efforts began with defining the central pharmacophore that determined LPS-recognition and -neutralization properties in small molecules, which led to the discovery of a novel lipopolyamine lead, DS-96. DS-96 is an effective LPS-neutralizer, rivaling polymyxin B in a panel of vitro assays, as well as in protecting animals against endotoxicosis. Structure-activity relationships in our effort to rationally design endotoxin sequestering agents, preclinical assessment of hits and leads, and approaches to overcoming issues with toxicity are described in this chapter.
Collapse
Affiliation(s)
- Sunil A David
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Room 320D, 2030 Becker Drive, Lawrence, KS 66047, USA.
| | | |
Collapse
|
13
|
Wu W, Sil D, Szostak ML, Malladi SS, Warshakoon HJ, Kimbrell MR, Cromer JR, David SA. Structure-activity relationships of lipopolysaccharide sequestration in guanylhydrazone-bearing lipopolyamines. Bioorg Med Chem 2009; 17:709-15. [PMID: 19064323 PMCID: PMC3702171 DOI: 10.1016/j.bmc.2008.11.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/15/2008] [Accepted: 11/18/2008] [Indexed: 11/17/2022]
Abstract
The toxicity of gram-negative bacterial endotoxin (lipopolysaccharide, LPS) resides in its structurally highly conserved glycolipid component called lipid A. Our major goal has been to develop small-molecules that would sequester LPS by binding to the lipid A moiety, so that it could be useful for the prophylaxis or adjunctive therapy of gram-negative sepsis. We had previously identified in rapid-throughput screens several guanylhydrazones as potent LPS binders. We were desirous of examining if the presence of the guanylhydrazone (rather than an amine) functionality would afford greater LPS sequestration potency. In evaluating a congeneric set of guanylhydrazone analogues, we find that C(16) alkyl substitution is optimal in the N-alkylguanylhydrazone series; a homospermine analogue with the terminal amine N-alkylated with a C(16) chain with the other terminus of the molecule bearing an unsubstituted guanylhydrazone moiety is marginally more active, suggesting very slight, if any, steric effects. Neither C(16) analogue is significantly more active than the N-C(16)-alkyl or N-C(16)-acyl compounds that we had characterized earlier, indicating that basicity of the phosphate-recognizing cationic group, is not a determinant of LPS sequestration activity.
Collapse
Affiliation(s)
- Wenyan Wu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Diptesh Sil
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Michal L. Szostak
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | | | | | | | - Jens R. Cromer
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| | - Sunil A. David
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
14
|
|
15
|
Nguyen TB, Adisechan AK, Suresh Kumar EVK, Balakrishna R, Kimbrell MR, Miller KA, Datta A, David SA. Protection from endotoxic shock by EVK-203, a novel alkylpolyamine sequestrant of lipopolysaccharide. Bioorg Med Chem 2007; 15:5694-709. [PMID: 17583517 PMCID: PMC2039869 DOI: 10.1016/j.bmc.2007.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/01/2007] [Accepted: 06/05/2007] [Indexed: 11/20/2022]
Abstract
Lipopolysaccharides (LPS) play a key role in the pathogenesis of septic shock, a major cause of mortality in the critically ill patient. The only therapeutic option aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide is Toraymyxin, an extracorporeal hemoperfusion device using solid phase-immobilized polymyxin B (PMB). While PMB is known to effectively sequester LPS, its severe systemic toxicity proscribes its parenteral use, and hemoperfusion may not be feasible in patients in shock. In our continuing efforts to develop small-molecule mimics which display the LPS-sequestering properties, but not the toxicity of PMB, a series of mono- and bis-substituted dialkylpolyamines were synthesized and evaluated. We show that EVK-203, an alkylpolyamine compound, specifically binds to and neutralizes the activity of LPS, and affords complete protection in a murine model of endotoxic shock. EVK-203 is without any apparent toxicity when administered to mice at multiples of therapeutic doses for several days. The specific endotoxin-sequestering property along with a very favorable therapeutic index renders this compound an ideal candidate for preclinical development.
Collapse
Affiliation(s)
- Thuan B Nguyen
- Department of Medicinal Chemistry, University of Kansas, Multidisciplinary Research Building, Lawrence, KS 66047, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Khownium K, Wood SJ, Miller KA, Balakrishna R, Nguyen TB, Kimbrell MR, Georg GI, David SA. Novel endotoxin-sequestering compounds with terephthalaldehyde-bis-guanylhydrazone scaffolds. Bioorg Med Chem Lett 2006; 16:1305-8. [PMID: 16377188 DOI: 10.1016/j.bmcl.2005.11.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/16/2005] [Accepted: 11/17/2005] [Indexed: 11/18/2022]
Abstract
We have shown that lipopolyamines bind to the lipid A moiety of lipopolysaccharide, a constituent of Gram-negative bacterial membranes, and neutralize its toxicity in animal models of endotoxic shock. In an effort to identify non-polyamine scaffolds with similar endotoxin-recognizing features, we had observed an unusually high frequency of hits containing guanylhydrazone scaffolds in high-throughput screens. We now describe the syntheses and preliminary structure-activity relationships in a homologous series of bis-guanylhydrazone compounds decorated with hydrophobic functionalities. These first-generation compounds bind and neutralize lipopolysaccharide with a potency comparable to that of polymyxin B, a peptide antibiotic known to sequester LPS.
Collapse
Affiliation(s)
- Kriangsak Khownium
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence KS 66045-7582, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Guo JX, Wood SJ, David SA, Lushington GH. Molecular modeling analysis of the interaction of novel bis-cationic ligands with the lipid A moiety of lipopolysaccharide. Bioorg Med Chem Lett 2006; 16:714-7. [PMID: 16266804 DOI: 10.1016/j.bmcl.2005.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Revised: 09/30/2005] [Accepted: 10/06/2005] [Indexed: 11/23/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed "endotoxins", are outer-membrane constituents of Gram-negative bacteria and play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. We have shown that the pharmacophore necessary for optimal recognition and neutralization of LPS by small molecules requires an interaction between two protonatable positive charges separated by a distance of approximately 14A, which corresponds to the distance between two anionic phosphates on the glycolipid component of LPS called lipid A. The in silico binding of a diverse set of compounds with bis-amino, -amidino, -guanidino, and -aminoguanidino functionalities, identified as potential lead scaffolds in a high-throughput screen, with lipid A was explored using molecular docking simulations. A weighted expression for binding affinity was trained relative to experimental ED(50) measurements, attaining a correlation of R(2)=0.66. Our docking results showed that the electrostatic interaction between ligands and lipid A phosphates dominates the expression and varies little across the series, and other ligand-receptor interactions seem to play a secondary role in governing the observed variations in the relative ligand binding affinity. Further, it appears that the ligand internal energy plays the primary role in differentiating between compound binding affinities which also correlated well with experimental ED(50) data (R=0.77). Application of this strategy would be useful in the de novo design of highly active endotoxin-sequestering agents.
Collapse
Affiliation(s)
- Jian-Xin Guo
- Molecular Graphics and Modeling Laboratory, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
18
|
Yermak IM, Davidova VN, Gorbach VI, Luk'yanov PA, Solov'eva TF, Ulmer AJ, Buwitt-Beckmann U, Rietschel ET, Ovodov YS. Forming and immunological properties of some lipopolysaccharide–chitosan complexes. Biochimie 2006; 88:23-30. [PMID: 16181724 DOI: 10.1016/j.biochi.2005.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 07/18/2005] [Accepted: 07/21/2005] [Indexed: 11/20/2022]
Abstract
The complex formation of lipopolysaccharide (LPS) with chitosan (Ch) was demonstrated using sedimentation velocity analysis in the analytical ultracentrifuge, centrifugation in glycerol gradient and isopicnic centrifugation in cesium chloride. An addition of Ch to the Escherichia coli and Yersinia pseudotuberculosis LPS solutions was found to result in formation of the stable LPS-Ch complexes. The interaction is a complicated process and depends on time and reaction temperature, as well as on the molecular weight of chitosan. A stable LPS-Ch complex could be formed only after preliminary incubation of the initial components at an elevated temperature (37 degrees C). It should be noted that process of LPS complexation with Ch is accompanied by additional dissociating of LPS. The complex formation was shown to be a result not only of ionic binding, but also of other types of interactions. The interaction of Ch with LPS was shown to modulate significantly the biological activity of LPS. The LPS-Ch complex (1:5 w/w) was shown to possess much lower toxicity in a comparison with the parent LPS at injection to mice in the similar concentration. The LPS-Ch complex was shown to maintain an ability to induce of IL-8 and TNF, but induction of IL-8 and TNF biosynthesis by the LPS-Ch complex was lower than that by the parent LPS. The complex LPS-Ch, similarly to the parent LPS, was found stimulated the formation of the IL-8 in the dose-dependent manner in the human embryonal kidney cells (HEK 293 cells) transfected with TLR4 in combination with MD2.
Collapse
Affiliation(s)
- Irina M Yermak
- Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, 159, Pr. 100-letiya, 690022 Vladivostok, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Burns MR, Wood SJ, Miller KA, Nguyen T, Cromer JR, David SA. Lysine-spermine conjugates: hydrophobic polyamine amides as potent lipopolysaccharide sequestrants. Bioorg Med Chem 2005; 13:2523-36. [PMID: 15755654 DOI: 10.1016/j.bmc.2005.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/21/2005] [Accepted: 01/21/2005] [Indexed: 11/26/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a focused library of lysine-spermine conjugates with lipopolysaccharide (LPS) have been characterized. Lysine-spermine conjugates with the epsilon-amino terminus of the lysinyl moiety derivatized with long-chain aliphatic hydrophobic substituents in acyl or alkyl linkage bind and neutralize bacterial lipopolysaccharides, and may be of use in the prevention or treatment of endotoxic shock states.
Collapse
Affiliation(s)
- Mark R Burns
- MediQuest, Inc., 4101 Stone Way North, Suite 220, Seattle, WA 98103, USA
| | | | | | | | | | | |
Collapse
|
20
|
Zorko M, Majerle A, Sarlah D, Keber MM, Mohar B, Jerala R. Combination of antimicrobial and endotoxin-neutralizing activities of novel oleoylamines. Antimicrob Agents Chemother 2005; 49:2307-13. [PMID: 15917526 PMCID: PMC1140490 DOI: 10.1128/aac.49.6.2307-2313.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combination of antimicrobial and endotoxin-neutralizing activities is desired in order to prevent progression from infection to sepsis due to the release of lipopolysaccharide from dying gram-negative bacteria. Lipopolyamines have emerged as a new type of endotoxin-neutralizing compound, but their antimicrobial activity has not been investigated. We synthesized a series of 10 oleoylamines differing in the polyamino head group, particularly in the number and separation between nitrogen atoms and the position of the oleoyl moiety. Compounds showed activity against both gram-negative and gram-positive bacteria in the micromolar range. Compounds were able to provide penetration of ethidium bromide into bacteria, indicating effects on the bacterial membrane. Oleoylamines neutralized endotoxin in Limulus amoebocyte lysate assays and by neutralization of tumor necrosis factor alpha release in human blood. Comparison of biological activities of compounds identified structural properties responsible for antimicrobial activity, and quantitative structure-property relationship analysis provided a quantitative model for prediction of activity of oleoylamines.
Collapse
Affiliation(s)
- Mateja Zorko
- Laboratory of Biotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
21
|
Cromer JR, Wood SJ, Miller KA, Nguyen T, David SA. Functionalized dendrimers as endotoxin sponges. Bioorg Med Chem Lett 2005; 15:1295-8. [PMID: 15713373 DOI: 10.1016/j.bmcl.2005.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 01/10/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed 'endotoxins', are outer-membrane constituents of Gram-negative bacteria, and play a key role in the pathogenesis of 'Septic Shock', a major cause of mortality in the critically ill patient. We had previously defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. Polyamidoamine dendrimers, with the surface amines substoichiometrically derivatized with alkyl groups bind LPS with high affinity, neutralize LPS-induced inflammatory responses in vitro, and afford protection in a murine model of endotoxic shock. Dendrimers represent a new class of potentially useful compounds for the therapy of Gram-negative sepsis.
Collapse
Affiliation(s)
- Jens R Cromer
- Department of Medicinal Chemistry, University of Kansas, Life Sciences Research Laboratories, 1501 Wakarusa Drive, Lawrence, KS 66049, USA
| | | | | | | | | |
Collapse
|
22
|
Miller KA, Suresh Kumar EVK, Wood SJ, Cromer JR, Datta A, David SA. Lipopolysaccharide sequestrants: structural correlates of activity and toxicity in novel acylhomospermines. J Med Chem 2005; 48:2589-99. [PMID: 15801849 PMCID: PMC1360202 DOI: 10.1021/jm049449j] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lipopolysaccharides (LPS), otherwise termed "endotoxins", are outer membrane constituents of Gram-negative bacteria. Lipopolysaccharides play a key role in the pathogenesis of "septic shock", a major cause of mortality in the critically ill patient. Therapeutic options aimed at limiting downstream systemic inflammatory processes by targeting lipopolysaccharide do not exist at the present time. We have defined the pharmacophore necessary for small molecules to specifically bind and neutralize LPS and, using animal models of sepsis, have shown that the sequestration of circulatory LPS by small molecules is a therapeutically viable strategy. In this paper, the interactions of a series of acylated homologated spermine compounds with LPS have been characterized. The optimal acyl chain length for effective sequestration of LPS was identified to be C(16) for the monoacyl compounds. The most promising of these compounds, 4e, binds LPS with an ED(50) of 1.37 muM. Nitric oxide production in murine J774A.1 cells, as well as TNF-alpha in human blood, is inhibited in a dose-dependent manner by 4e at concentrations orders of magnitude lower than toxic doses. Administration of 4e to d-galactosamine-sensitized mice challenged with supralethal doses of LPS provided significant protection against lethality. Potent antiendotoxic activity, low toxicity, and ease of synthesis render this class of compounds candidate endotoxin-sequestering agents of potential significant therapeutic value.
Collapse
Affiliation(s)
- Kelly A Miller
- Department of Medicinal Chemistry, Life Sciences Research Laboratories, 1501 Wakarusa Drive, University of Kansas, Lawrence, Kansas 66049, USA.
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
David SA. Towards a rational development of anti-endotoxin agents: novel approaches to sequestration of bacterial endotoxins with small molecules. J Mol Recognit 2001; 14:370-87. [PMID: 11757070 DOI: 10.1002/jmr.549] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endotoxins, or lipopolysaccharides (LPS), present on the surface of Gram-negative bacteria, play a key role in the pathogenesis of septic shock, a common clinical problem and a leading cause of mortality in critically ill patients, for which no specific therapeutic modalities are available at the present time. The toxic moiety of LPS is a glycolipid called 'lipid A', which is composed of a bisphosphorylated diglucosamine backbone bearing up to seven acyl chains in ester and amide linkages. Lipid A is structurally highly conserved in Gram-negative bacteria, and is therefore an attractive target for developing anti-endotoxin molecules designed to sequester, and thereby neutralize, the deleterious effects of endotoxins. The anionic and amphipathic nature of lipid A enables the interaction of a wide variety of cationic amphiphiles with the toxin. This review describes the systematic evaluation of several structural classes of cationic amphiphiles, both peptides and non-peptidic small molecules, in the broader context of recent efforts aimed at developing novel anti-endotoxin strategies. The derivation of a pharmacophore for LPS recognition has led to the identification of novel, nontoxic, structurally simple small molecules, the lipopolyamines. The lipopolyamines bind and neutralize LPS in in vitro experiments as well as in animal models of endotoxicity, and thus present novel and exciting leads for rational, structure-based development of LPS-sequestering agents of potential clinical value.
Collapse
Affiliation(s)
- S A David
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
25
|
Blagbrough IS, Geall AJ, David SA. Lipopolyamines incorporating the tetraamine spermine, bound to an alkyl chain, sequester bacterial lipopolysaccharide. Bioorg Med Chem Lett 2000; 10:1959-62. [PMID: 10987426 DOI: 10.1016/s0960-894x(00)00380-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipopolyamines, with high affinity for calf thymus DNA in an ethidium bromide displacement assay, bind with high affinity to bacterial lipopolysaccharide and neutralise in vitro endotoxic activity as determined by Griess nitric oxide and TNF-alpha ELISA assays.
Collapse
Affiliation(s)
- I S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath, UK.
| | | | | |
Collapse
|
26
|
Frecer V, Ho B, Ding JL. Molecular dynamics study on lipid A from Escherichia coli: insights into its mechanism of biological action. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:87-104. [PMID: 10825434 DOI: 10.1016/s0005-2736(00)00174-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Structural properties of the Escherichia coli lipid A moiety were analysed by means of molecular mechanics and molecular dynamics simulations and compared to synthetic monophospho and dephospho analogues with different biological activities in the Limulus assay. The conformation of glucosamine disaccharide headgroup, order and packing of fatty acid chains, solvation of phosphate groups, coordination by water molecules, sodium counterions and models of cationic amino acid side chains were described in terms of mean values, mean residence times, radial distribution functions, coordination numbers, solvation and interaction energies. Solvation and polar interactions of the phosphate groups were correlated to known biological activities the lipid A variants. The observed relationship between the biological effect and the number and position of the phosphate groups were explained with the help of simple mechanistic models of lipid A action. The possible mechanism of action involving specific binding of lipid A disaccharide headgroup to cationic residues of a receptor model was compared with an alternative mechanism, which assumes a relationship between the ability to adopt non-lamellar supramolecular structures and the biological activity. Conclusions are drawn about the probable mode of lipid A action. Implications for rational drug design of endotoxin-neutralising agents are discussed.
Collapse
Affiliation(s)
- V Frecer
- Departmnt of Biological Sciences, Faculty of Science, Naitonal University of Singapore, Singapore
| | | | | |
Collapse
|
27
|
Frecer V, Ho B, Ding JL. Interpretation of biological activity data of bacterial endotoxins by simple molecular models of mechanism of action. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:837-52. [PMID: 10651822 DOI: 10.1046/j.1432-1327.2000.01069.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lipid A moiety has been identified as the bioactive component of bacterial endotoxins (lipopolysaccharides). However, the molecular mechanism of biological activity of lipid A is still not fully understood. This paper contributes to understanding of the molecular mechanism of action of bacterial endotoxins by comparing molecular modelling results for two possible mechanisms with the underlying experimental data. Mechanisms of action involving specific binding of lipid A to a protein receptor as well as nonspecific intercalation into phospholipid membrane of a host cell were modelled and analysed. As the cellular receptor for endotoxin has not been identified, a model of a peptidic pseudoreceptor was proposed, based on molecular structure, symmetry of the lipid A moiety and the observed character of endotoxin-binding sites in proteins. We have studied the monomeric form of lipid A from Escherichia coli and its seven synthetic analogues with varying numbers of phosphate groups and correlated them with known biological activities determined by the Limulus assay. Gibbs free energies associated with the interaction of lipid A with the pseudoreceptor model and intercalation into phospholipid membrane calculated by molecular mechanics and molecular dynamics methods were used to compare the two possible mechanisms of action. The results suggest that specific binding of lipid A analogues to the peptidic pseudoreceptor carrying an amphipathic cationic binding pattern BHPHB (B, basic; H, hydrophobic; P, polar residue, respectively) is energetically more favourable than intercalation into the phospholipid membrane. In addition, binding affinities of lipid A analogues to the best minimum binding sequence KFSFK of the pseudoreceptor correlated with the experimental Limulus activity parameter. This correlation enabled us to rationalize the observed relationship between the number and position of the phosphate groups in the lipid A moiety and its biological activity in terms of specific ligand-receptor interactions. If lipid A-receptor interaction involves formation of phosphate-ammonium ion-pair(s) with cationic amino-acid residues, the specific mechanism of action was fully consistent with the underlying experimental data. As a consequence, recognition of lipid A variants by an amphipathic binding sequence BHPHB of a host-cell protein receptor might represent the initial and/or rate-determining molecular event of the mechanism of action of lipid A (or endotoxin). The insight into the molecular mechanism of action and the structure of the lipid A-binding pattern have potential implications for rational drug design strategies of endotoxin-neutralizing agents or binding factors.
Collapse
Affiliation(s)
- V Frecer
- Department of Biological Sciences, Science Faculty, National University of Singapore, Singapore
| | | | | |
Collapse
|
28
|
David SA, Silverstein R, Amura CR, Kielian T, Morrison DC. Lipopolyamines: novel antiendotoxin compounds that reduce mortality in experimental sepsis caused by gram-negative bacteria. Antimicrob Agents Chemother 1999; 43:912-9. [PMID: 10103199 PMCID: PMC89225 DOI: 10.1128/aac.43.4.912] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/1998] [Accepted: 12/17/1998] [Indexed: 11/20/2022] Open
Abstract
The interactions of lipopolyamines, a class of structurally unique compounds currently being used as transfection (lipofection) agents, with lipopolysaccharide (LPS) have been characterized. Our studies have demonstrated that 1,3-di-oleoyloxy-2-(6-carboxyspermyl)-propylamide), available commercially as DOSPER, binds to purified LPS with an affinity of about 1/10 that of polymyxin B. This essentially nontoxic compound inhibits, in a dose-dependent manner, LPS-induced activation of the Limulus clotting cascade and the production of tumor necrosis factor alpha (TNF-alpha) interleukin-6 (IL-6), and nitric oxide from LPS-stimulated J774.A1 cells, a murine macrophage-like cell line. Cytokine inhibition is paralleled by decreased steady-state levels of TNF-alpha and IL-6 mRNA and inhibits the nuclear translocation of nuclear factor kappa B. These findings suggest that the lipopolyamine compound sequesters LPS, thereby blocking downstream cellular activation events that lead to the production of proinflammatory mediators. Administration of DOSPER to D-galactosamine-sensitized mice challenged either with LPS or with Escherichia coli organisms provided significant protection against lethality both with and without antibiotic chemotherapy. Partial protection is evident in LPS-challenged mice treated with DOSPER as late as 2 to 4 h following the endotoxin challenge. A greater degree of protection is observed in E. coli-challenged animals receiving ceftazidime than in those receiving imipenem, which is probably attributable to the higher levels of LPS released in vivo by the former antibiotic. Potent antiendotoxic activity, low toxicity, and ease of synthesis render the lipopolyamines candidate endotoxin-sequestering agents of potential significant therapeutic value.
Collapse
Affiliation(s)
- S A David
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA.
| | | | | | | | | |
Collapse
|
29
|
Cotten M, Saltik M. Intracellular delivery of lipopolysaccharide during DNA transfection activates a lipid A-dependent cell death response that can be prevented by polymyxin B. Hum Gene Ther 1997; 8:555-61. [PMID: 9095407 DOI: 10.1089/hum.1997.8.5-555] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The presence of lipopolysaccharide (LPS) as a contaminant in plasmid DNA prepared from Escherichia coli is well documented, and we have previously demonstrated that LPS internalization during adenovirus-mediated gene transfer can generate a toxicity in some primary cell types. We demonstrate here that in addition to adenoviral systems, several commonly used nonviral methods of gene transfer also activate this cell death response in the presence of LPS. Subcomponents of LPS were analyzed and the toxicity was found to be due to the lipid A component of LPS. The LPS-chelating antibiotic polymyxin B, when present at concentration of 10-30 micrograms/ml, can block this toxicity.
Collapse
Affiliation(s)
- M Cotten
- Institute for Molecular Pathology, Vienna, Austria
| | | |
Collapse
|
30
|
Polymyxin B nonapeptide: Conformations in water and in the lipopolysaccharide-bound state determined by two-dimensional NMR and molecular dynamics. Biopolymers 1997. [DOI: 10.1002/(sici)1097-0282(199703)41:3<251::aid-bip2>3.0.co;2-r] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
|