1
|
Dauden MI, Jaciuk M, Weis F, Lin TY, Kleindienst C, Abbassi NEH, Khatter H, Krutyhołowa R, Breunig KD, Kosinski J, Müller CW, Glatt S. Molecular basis of tRNA recognition by the Elongator complex. SCIENCE ADVANCES 2019; 5:eaaw2326. [PMID: 31309145 PMCID: PMC6620098 DOI: 10.1126/sciadv.aaw2326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/03/2019] [Indexed: 05/17/2023]
Abstract
The highly conserved Elongator complex modifies transfer RNAs (tRNAs) in their wobble base position, thereby regulating protein synthesis and ensuring proteome stability. The precise mechanisms of tRNA recognition and its modification reaction remain elusive. Here, we show cryo-electron microscopy structures of the catalytic subcomplex of Elongator and its tRNA-bound state at resolutions of 3.3 and 4.4 Å. The structures resolve details of the catalytic site, including the substrate tRNA, the iron-sulfur cluster, and a SAM molecule, which are all validated by mutational analyses in vitro and in vivo. tRNA binding induces conformational rearrangements, which precisely position the targeted anticodon base in the active site. Our results provide the molecular basis for substrate recognition of Elongator, essential to understand its cellular function and role in neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Maria I. Dauden
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Felix Weis
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Ting-Yu Lin
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Carolin Kleindienst
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Nour El Hana Abbassi
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Heena Khatter
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Rościsław Krutyhołowa
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karin D. Breunig
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Kosinski
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
- Centre for Structural Systems Biology (CSSB), DESY and European Molecular Biology Laboratory Hamburg, Hamburg, Germany
| | - Christoph W. Müller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Johansson MJO, Xu F, Byström AS. Elongator-a tRNA modifying complex that promotes efficient translational decoding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:401-408. [PMID: 29170010 DOI: 10.1016/j.bbagrm.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/19/2017] [Indexed: 12/22/2022]
Abstract
Naturally occurring modifications of the nucleosides in the anticodon region of tRNAs influence their translational decoding properties. Uridines present at the wobble position in eukaryotic cytoplasmic tRNAs often contain a 5-carbamoylmethyl (ncm(5)) or 5-methoxycarbonylmethyl (mcm(5)) side-chain and sometimes also a 2-thio or 2'-O-methyl group. The first step in the formation of the ncm(5) and mcm(5) side-chains requires the conserved six-subunit Elongator complex. Although Elongator has been implicated in several different cellular processes, accumulating evidence suggests that its primary, and possibly only, cellular function is to promote modification of tRNAs. In this review, we discuss the biosynthesis and function of modified wobble uridines in eukaryotic cytoplasmic tRNAs, focusing on the in vivo role of Elongator-dependent modifications in Saccharomyces cerevisiae. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
| | - Fu Xu
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Anders S Byström
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
3
|
Dauden MI, Jaciuk M, Müller CW, Glatt S. Structural asymmetry in the eukaryotic Elongator complex. FEBS Lett 2017; 592:502-515. [DOI: 10.1002/1873-3468.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/08/2017] [Accepted: 09/24/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Maria I. Dauden
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Marcin Jaciuk
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| | - Christoph W. Müller
- Structural and Computational Biology Unit European Molecular Biology Laboratory Heidelberg Germany
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology Jagiellonian University Krakow Poland
| |
Collapse
|
4
|
Karlsborn T, Tükenmez H, Mahmud AKMF, Xu F, Xu H, Byström AS. Elongator, a conserved complex required for wobble uridine modifications in eukaryotes. RNA Biol 2015; 11:1519-28. [PMID: 25607684 DOI: 10.4161/15476286.2014.992276] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Elongator is a 6 subunit protein complex highly conserved in eukaryotes. The role of this complex has been controversial as the pleiotropic phenotypes of Elongator mutants have implicated the complex in several cellular processes. However, in yeast there is convincing evidence that the primary and probably only role of this complex is in formation of the 5-methoxycarbonylmethyl (mcm(5)) and 5-carbamoylmethyl (ncm(5)) side chains on uridines at wobble position in tRNA. In this review we summarize the cellular processes that have been linked to the Elongator complex and discuss its role in tRNA modification and regulation of translation. We also describe additional gene products essential for formation of ncm(5) and mcm(5) side chains at U34 and their influence on Elongator activity.
Collapse
Affiliation(s)
- Tony Karlsborn
- a Department of Molecular Biology ; Umeå University; Umeå , Sweden
| | | | | | | | | | | |
Collapse
|
5
|
Karlsborn T, Tükenmez H, Chen C, Byström AS. Familial dysautonomia (FD) patients have reduced levels of the modified wobble nucleoside mcm5s2U in tRNA. Biochem Biophys Res Commun 2014; 454:441-5. [DOI: 10.1016/j.bbrc.2014.10.116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
|
6
|
Chen C, Huang B, Anderson JT, Byström AS. Unexpected accumulation of ncm(5)U and ncm(5)S(2) (U) in a trm9 mutant suggests an additional step in the synthesis of mcm(5)U and mcm(5)S(2)U. PLoS One 2011; 6:e20783. [PMID: 21687733 PMCID: PMC3110198 DOI: 10.1371/journal.pone.0020783] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/09/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Transfer RNAs are synthesized as a primary transcript that is processed to produce a mature tRNA. As part of the maturation process, a subset of the nucleosides are modified. Modifications in the anticodon region often modulate the decoding ability of the tRNA. At position 34, the majority of yeast cytosolic tRNA species that have a uridine are modified to 5-carbamoylmethyluridine (ncm(5)U), 5-carbamoylmethyl-2'-O-methyluridine (ncm(5)Um), 5-methoxycarbonylmethyl-uridine (mcm(5)U) or 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U). The formation of mcm(5) and ncm(5) side chains involves a complex pathway, where the last step in formation of mcm(5) is a methyl esterification of cm(5) dependent on the Trm9 and Trm112 proteins. METHODOLOGY AND PRINCIPAL FINDINGS Both Trm9 and Trm112 are required for the last step in formation of mcm(5) side chains at wobble uridines. By co-expressing a histidine-tagged Trm9p together with a native Trm112p in E. coli, these two proteins purified as a complex. The presence of Trm112p dramatically improves the methyltransferase activity of Trm9p in vitro. Single tRNA species that normally contain mcm(5)U or mcm(5)s(2)U nucleosides were isolated from trm9Δ or trm112Δ mutants and the presence of modified nucleosides was analyzed by HPLC. In both mutants, mcm(5)U and mcm(5)s(2)U nucleosides are absent in tRNAs and the major intermediates accumulating were ncm(5)U and ncm(5)s(2)U, not the expected cm(5)U and cm(5)s(2)U. CONCLUSIONS Trm9p and Trm112p function together at the final step in formation of mcm(5)U in tRNA by using the intermediate cm(5)U as a substrate. In tRNA isolated from trm9Δ and trm112Δ strains, ncm(5)U and ncm(5)s(2)U nucleosides accumulate, questioning the order of nucleoside intermediate formation of the mcm(5) side chain. We propose two alternative explanations for this observation. One is that the intermediate cm(5)U is generated from ncm(5)U by a yet unknown mechanism and the other is that cm(5)U is formed before ncm(5)U and mcm(5)U.
Collapse
Affiliation(s)
- Changchun Chen
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
| | - Bo Huang
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- Division of Epidemiology, Department of
Medicine and Public Health, Vanderbilt University School of Medicine, Nashville,
Tennessee, United States of America
| | - James T. Anderson
- Department of Biological Sciences, Marquette
University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (ASB)
| | - Anders S. Byström
- Department of Molecular Biology, Umeå
University, Umeå, Sweden
- * E-mail: (JTA); (ASB)
| |
Collapse
|
7
|
Huang B, Johansson MJO, Byström AS. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA (NEW YORK, N.Y.) 2005; 11:424-36. [PMID: 15769872 PMCID: PMC1370732 DOI: 10.1261/rna.7247705] [Citation(s) in RCA: 351] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Accepted: 01/06/2005] [Indexed: 05/17/2023]
Abstract
Elongator has been reported to be a histone acetyltransferase complex involved in elongation of RNA polymerase II transcription. In Saccharomyces cerevisiae, mutations in any of the six Elongator protein subunit (ELP1-ELP6) genes or the three killer toxin insensitivity (KTI11-KTI13) genes cause similar pleiotropic phenotypes. By analyzing modified nucleosides in individual tRNA species, we show that the ELP1-ELP6 and KTI11-KTI13 genes are all required for an early step in synthesis of 5-methoxycarbonylmethyl (mcm5) and 5-carbamoylmethyl (ncm5) groups present on uridines at the wobble position in tRNA. Transfer RNA immunoprecipitation experiments showed that the Elp1 and Elp3 proteins specifically coprecipitate a tRNA susceptible to formation of an mcm5 side chain, indicating a direct role of Elongator in tRNA modification. The presence of mcm5U, ncm5U, or derivatives thereof at the wobble position is required for accurate and efficient translation, suggesting that the phenotypes of elp1-elp6 and kti11-kti13 mutants could be caused by a translational defect. Accordingly, a deletion of any ELP1-ELP6 or KTI11-KTI13 gene prevents an ochre suppressor tRNA that normally contains mcm5U from reading ochre stop codons.
Collapse
Affiliation(s)
- Bo Huang
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | |
Collapse
|
8
|
Johansson MJO, Byström AS. The Saccharomyces cerevisiae TAN1 gene is required for N4-acetylcytidine formation in tRNA. RNA (NEW YORK, N.Y.) 2004; 10:712-9. [PMID: 15037780 PMCID: PMC1370561 DOI: 10.1261/rna.5198204] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The biogenesis of transfer RNA is a process that requires many different factors. In this study, we describe a genetic screen aimed to identify gene products participating in this process. By screening for mutations lethal in combination with a sup61-T47:2C allele, coding for a mutant form of, the nonessential TAN1 gene was identified. We show that the TAN1 gene product is required for formation of the modified nucleoside N(4)-acetylcytidine (ac(4)C) in tRNA. In Saccharomyces cerevisiae, ac(4)C is present at position 12 in tRNAs specific for leucine and serine as well as in 18S ribosomal RNA. Analysis of RNA isolated from a tan1-null mutant revealed that ac(4)C was absent in tRNA, but not rRNA. Although no tRNA acetyltransferase activity by a GST-Tan1 fusion protein was detected, a gel-shift assay revealed that Tan1p binds tRNA, suggesting a direct role in synthesis of ac(4)C(12). The absence of the TAN1 gene in the sup61-T47:2C mutant caused a decreased level of mature, indicating that ac(4)C(12) and/or Tan1p is important for tRNA stability.
Collapse
|
9
|
Kaneko T, Suzuki T, Kapushoc ST, Rubio MA, Ghazvini J, Watanabe K, Simpson L, Suzuki T. Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J 2003; 22:657-67. [PMID: 12554666 PMCID: PMC140750 DOI: 10.1093/emboj/cdg066] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Leishmania tarentolae, all mitochondrial tRNAs are encoded in the nuclear genome and imported from the cytosol. It is known that tRNA(Glu)(UUC) and tRNA(Gln)(UUG) are localized in both cytosol and mitochondria. We investigated structural differences between affinity-isolated cytosolic (cy) and mitochondrial (mt) tRNAs for glutamate and glutamine by mass spectrometry. A unique modification difference in both tRNAs was identified at the anticodon wobble position: cy tRNAs have 5-methoxycarbonylmethyl-2- thiouridine (mcm(5)s(2)U), whereas mt tRNAs have 5- methoxycarbonylmethyl-2'-O-methyluridine (mcm(5)Um). In addition, a trace portion (4%) of cy tRNAs was found to have 5-methoxycarbonylmethyluridine (mcm(5)U) at its wobble position, which could represent a common modification intermediate for both modified uridines in cy and mt tRNAs. We also isolated a trace amount of mitochondria-specific tRNA(Lys)(UUU) from the cytosol and found mcm(5)U at its wobble position, while its mitochondrial counterpart has mcm(5)Um. Mt tRNA(Lys) and in vitro transcribed tRNA(Glu) were imported much more efficiently into isolated mitochondria than the native cy tRNA(Glu) in an in vitro importation experiment, indicating that cytosol-specific 2-thiolation could play an inhibitory role in tRNA import into mitochondria.
Collapse
Affiliation(s)
- Tomonori Kaneko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Takeo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Stephen T. Kapushoc
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Mary Anne Rubio
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Jafar Ghazvini
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Kimitsuna Watanabe
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Larry Simpson
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| | - Tsutomu Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Building FSB-301, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, Department of Microbiology, Immunology and Molecular Genetics and Howard Hughes Medical Institute, University of California, Los Angeles, 675 Circle Drive South, Los Angeles, CA 90095, USA Corresponding author e-mail:
| |
Collapse
|
10
|
Abstract
A comprehensive listing is made of posttranscriptionally modified nucleosides from RNA reported in the literature through mid-1994. Included are chemical structures, common names, symbols, Chemical Abstracts registry numbers (for ribonucleoside and corresponding base), Chemical Abstracts Index Name, phylogenetic sources, and initial literature citations for structural characterization or occurrence, and for chemical synthesis. The listing is categorized by type of RNA: tRNA, rRNA, mRNA, snRNA, and other RNAs. A total of 93 different modified nucleosides have been reported in RNA, with the largest number and greatest structural diversity in tRNA, 79; and 28 in rRNA, 12 in mRNA, 11 in snRNA and 3 in other small RNAs.
Collapse
Affiliation(s)
- P A Limbach
- Department of Medicinal Chemistry, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
11
|
Tworek HA, Bolanowska W, Bhargava AK, Rachlin EM, Chheda GB. Isolation and Characterization of a Novel Nucleoside from Human Cancer Urine. ACTA ACUST UNITED AC 1986. [DOI: 10.1080/07328318608069976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Lipnick RL, Fissekis JD. Carbon-13 nmr spectra of the tRNA “wobble” nucleosides 5-carboxymethyl-, 5-carbomethoxymethyl-, and 5-carbamoylmethyluridine. J Heterocycl Chem 1980. [DOI: 10.1002/jhet.5570170139] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Hillen W, Egert E, Lindner HJ, Gassen HG. Restriction or amplification of wobble recognition: the structure of 2-thio-5-methylaminomethyluridine and the interaction of odd uridines with the anticodon loop backbone. FEBS Lett 1978; 94:361-4. [PMID: 700157 DOI: 10.1016/0014-5793(78)80977-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Weissenbach J, Dirheimer G. Pairing properties of the methylester of 5-carboxymethyl uridine in the wobble position of yeast tRNA3Arg. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 518:530-4. [PMID: 350282 DOI: 10.1016/0005-2787(78)90171-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At optimum magnesium concentration (10 mM) both yeast tRNA1Arg and tRNA3Arg are able to bind to poly (A,G) and A-G-A in presence of Escherichia coli robisomes. With A-G-G only tRNA1Arg ginds, wherea tRNA3Arg (anticodon mcm5 U-C-U) is not bound. This result means that the methylcarboxymethyl substituant in position 5 of U prevents its wobble with G.
Collapse
|
15
|
Berman HM, Marcu D, Narayanan P. Modified bases in tRNA: the structures of 5-carbamoylmethyl- and 5-carboxymethyl uridine. Nucleic Acids Res 1978; 5:893-903. [PMID: 643621 PMCID: PMC342031 DOI: 10.1093/nar/5.3.893] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The crystal structures of two nucleosides, 5-carbamoylmethyluridine (1) and 5-carboxymethyluridine (2), were determined from three-dimensional x-ray diffraction data, and refined to R = 0.036 and R = 0.047, respectively. Compound 1 is in the C3'-endo conformation with chi +5.2 degrees (anti), psiinfinity = +63.4 degrees and psialpha = +180.0 degrees (tt); 2 is in the C2'endo conformation with chi +49.4 degrees (anti), psiinfinity -60.5 degrees and psialpha +60.0 degrees (gg). For each derivative, the plane of the side chain substituent is skewed with respect to the plane of the nucleobase; for 1, the carboxamide group is on the same side of the uracil plane vis a vis the ribose ring; for 2, the carboxyl group is on the opposite side of this plane. No base pairing is observed for either structure. Incorporation of structure 1 into a 3'-stacked tRNA anticodon appears to place 08 within hydrogen bonding distance of the 02' hydroxyl of ribose 33, which may limit the ability of such a molecule of tRNA to "wobble".
Collapse
|
16
|
Kuntzel B, Weissenbach J, Wolff RE, Tumaitis-Kennedy TD, Lane BG, Dirheimer G. Presence of the methylester of 5-carboxymethyl uridine in the wobble position of the anticodon of tRNAIII Arg from brewer's yeast. Biochimie 1975; 57:61-70. [PMID: 167871 DOI: 10.1016/s0300-9084(75)80110-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The methylester of 5-carboxymethyluridine (mcm5U), its degradation product 5-carboxymethyluridine (cm5U) and the corresponding nucleotide (cm5Up) were isolated from brewer's yeast tRNAIII Arg or from the dodecanucleotide containing the anticodon. Their chromatographic and electrophoretic properties and their UV absorbing spectra were identical to that of the corresponding synthetic compounds. The gas chromatographic behavior and the mass spectrum of mcm5U obtained from tRNAIII Arg and of a synthetic sample were also identical ; the rare occurence of a thermal reciprocal bimolecular methyl-hydrogen transfer in the mass spectrometer ion source was observed. A mild alkaline treatment of tRNAIII Arg leads to the saponification of mcm5U into cm5U (within the tRNA), which can be again esterified in the presence of a yeast homogenate and (methyl-14C) S adenosylmethionine. The radioactivity was found in the mcm5U located in the wobble position of the anticodon of tRNAIII Arg. The presence of this odd nucleotide in that position could possibly restrict the codon-anticodon interaction of tRNAIII Arg.
Collapse
|
17
|
Gray MW. A method for the quantitative analysis and preparative isolation of N-(N-methyl-N-(9-beta-D-ribofuranosylpurin-6-yl)carbamoyl) threonine--a modified nucleoside present in transfer RNA. Anal Biochem 1974; 62:91-101. [PMID: 4611275 DOI: 10.1016/0003-2697(74)90370-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Bronskill P, Kennedy TD, Lane BG. Cell-free enzymic esterification of 5-carboxymethyluridine residues in bulk yeast transfer RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1972; 262:275-82. [PMID: 4556829 DOI: 10.1016/0005-2787(72)90264-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Powers DM, Peterkofsky A. Biosynthesis and specific labeling of N-(purin-6-ylcarbamoyl)threonine of Escherichia coli transfer RNA. Biochem Biophys Res Commun 1972; 46:831-8. [PMID: 4550699 DOI: 10.1016/s0006-291x(72)80216-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Kwong TC, Lane BG. Differential labelling of the thio, carboxymethyl and methyl substituents of 2-thio-5-carboxymethyluridine methyl ester, a trace nucleoside constituent of yeast transfer RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1970; 224:405-12. [PMID: 5498073 DOI: 10.1016/0005-2787(70)90573-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|