Hutchison JS, Moldave K. The effect of cessation of growth on protein synthesis in a mutant of Chinese hamster ovary cells with a temperature-sensitive leucyl-tRNA synthetase.
BIOCHIMICA ET BIOPHYSICA ACTA 1982;
696:94-101. [PMID:
7082671 DOI:
10.1016/0167-4781(82)90014-8]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A temperature-sensitive mutant of Chinese hamster ovary cells with an altered leucyl-tRNA synthetase fails to grow and to incorporate amino acids into protein properly at or near the non-permissive temperature. This mutant was used to determine whether cessation of growth at the elevated temperature affected elongation factor EF-1, since the activity of EF-1 is markedly lower in non-growing cells in stationary phase than in rapidly-growing cells in exponential phase. Cell-free extracts prepared from cells maintained at 39 degrees C for 24 h showed a marked decrease in the ability to translate natural mRNAs, compared to cells incubated at 34 degrees C. However, the ability to translate poly(U), which requires elongation factor EF-1 (and EF-2), was not affected. Analyses of activities involved in the initiation of protein synthesis and in the activation of amino acids revealed that, with the exception of leucyl-tRNA synthetase, the rest of the components required for translation also appeared to be relatively stable even after 24 h at the elevated temperature. The effects of elevated temperature on cell-free extracts were also investigated. The results were similar to those obtained with intact cells; that is, except for leucyl-tRNA synthetase which was rapidly inactivated in vitro at 39 degrees C, other aminoacyl-tRNA synthetases and translational components involved in chain initiation and elongation were relatively stable. Thus, no change in EF-1 activity was detected as a result of arrested cell growth, an inherent lability of the elongation factor, or metabolic degradation as a consequence of a rapid turnover rate in the absence of protein synthesis.
Collapse