1
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter.
Collapse
|
2
|
Fowden L. Fluoroamino acids and protein synthesis. CIBA FOUNDATION SYMPOSIUM 2008; 2:141-59. [PMID: 5212149 DOI: 10.1002/9780470719855.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
Fowden L, Lewis D, Tristram H. Toxic amino acids: their action as antimetabolites. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 29:89-163. [PMID: 4881886 DOI: 10.1002/9780470122747.ch3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Abstract
The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
Collapse
Affiliation(s)
- Tamara L Hendrickson
- Department of Chemistry, 1Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA.
| | | | | |
Collapse
|
5
|
Whipp MJ, Pittard AJ. Regulation of aromatic amino acid transport systems in Escherichia coli K-12. J Bacteriol 1977; 132:453-61. [PMID: 334742 PMCID: PMC221884 DOI: 10.1128/jb.132.2.453-461.1977] [Citation(s) in RCA: 75] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The regulation of the aromatic amino acid transport systems was investigated. The common (general) aromatic transport system and the tyrosine-specific transport system were found to be subject to repression control, thus confirming earlier reports. In addition, tryosine- and tryptophan-specific transport were found to be enhanced by growth of cells with phenylalanine. The repression and enhancement of the transport systems was abolished in a strain carrying an amber mutation in the regulator gene tyrR. This indicates that the tyrR gene product, which was previously shown to be involved in regulation of aromatic biosynthetic enzymes, is also involved in the regulation of the aromatic amino acid transport systems.
Collapse
|
6
|
Brown BA, Lax SR, Liang L, Dabney BJ, Spremulli LL, Ravel JM. Repression of the tyrosine, lysine, and methionine biosynthetic pathways in a hisT mutant of Salmonella typhimurium. J Bacteriol 1977; 129:1168-70. [PMID: 14106 PMCID: PMC235064 DOI: 10.1128/jb.129.2.1168-1170.1977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A comparison was made of the repressibility of certain enzymes in the tyrosine, methionine, and lysine biosynthetic pathways in wild-type Salmonella typhimurium and a hisT mutant. The results show that (i) tyrosine represses the synthesis of the tyrosine-sensitive 3-deoxy-D-arabino-heptulsonic acid 7-phosphate synthetase and the tyrosine aminotransferase to the same extent in a hisT mutant as in wild type and (ii) there is no detectable alteration in the extent to which methionine represses O-succinylhomoserine synthetase or in the extent to which lysine represses the lysine-sensitive beta-aspartokinase as a result of the hisT mutation.
Collapse
|
7
|
Camakaris H, Pittard J. Regulation of tyrosine and phenylalanine biosynthesis in Escherichia coli K-12: properties of the tyrR gene product. J Bacteriol 1973; 115:1135-44. [PMID: 4580559 PMCID: PMC246363 DOI: 10.1128/jb.115.3.1135-1144.1973] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A spontaneous amber tyrR mutant has been isolated in which constitutive synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (tyr) and DAHP synthetase (phe) is suppressible by supC(-), supD(-), supF(-) and supU(-). This finding suggests the tyrR gene product is a protein. Derepression of DAHP synthetase (phe) in this and in seven other spontaneous tyrR mutants and in four Mu-1-induced tyrR mutants provides further evidence for the involvement of the tyrR gene product in phenylalanine biosynthesis. Evidence that the tyrR product is a component of repressor, rather than an enzyme involved in its synthesis or modification, comes from a study of a temperature-sensitive tyrR mutant. This mutant is of the thermolabile type, since derepression occurs rapidly and in the presence and absence of growth.
Collapse
|
8
|
Gollub EG, Liu KP, Sprinson DB. Regulatory gene of phenylalanine biosynthesis (pheR) in Salmonella typhimurium. J Bacteriol 1973; 115:121-8. [PMID: 4577738 PMCID: PMC246221 DOI: 10.1128/jb.115.1.121-128.1973] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
4-Fluorophenylalanine-resistant mutants of Salmonella typhimurium were isolated in which synthesis of chorismate mutase P-prephenate dehydratase (specified by pheA) was highly elevated. Transduction analysis showed that the mutation affecting pheA activity was not linked to pheA, and conjugation and merodiploid analysis indicated that it was in the 95- to 100-min region of the Salmonella chromosome. Evidence is presented for the hypothesis that the mutation responsible for constitutivity of chorismate mutase P-prephenate dehydratase occurred in pheR, a gene specifying a cytoplasmic product that affected pheA. pheR mutants were found to carry a second mutation, tyrO. The tyrO mutation acts cis to cause increased levels of the tyrosine biosynthetic enzymes 3-deoxy-d-arabinoheptulosonate 7-phosphate synthetase (tyr) and prephenate dehydrogenase, but it has no effect on regulation of pheA.
Collapse
|
9
|
Heinonen J, Artz SW, Zalkin H. Regulation of the tyrosine biosynthetic enzymes in Salmonella typhimurium: analysis of the involvement of tyrosyl-transfer ribonucleic acid and tyrosyl-transfer ribonucleic acid synthetase. J Bacteriol 1972; 112:1254-63. [PMID: 4404819 PMCID: PMC251556 DOI: 10.1128/jb.112.3.1254-1263.1972] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mutants of Salmonella typhimurium were isolated that require tyrosine for growth because of an altered tyrosyl-transfer ribonucleic acid (tRNA) synthetase. Extracts of one strain (JK10) contain a labile enzyme with decreased ability to transfer tyrosine to tRNA(Tyr) and a higher K(m) for tyrosine than the wild-type enzyme. Strain JK10 maintains repressed levels of the tyrosine biosynthetic enzymes when the growth rate is restricted due to limitation of charged tRNA(Tyr). Several second-site revertants of strain JK10 exhibit temperature-sensitive growth due to partially repaired, heat-labile tyrosyl-tRNA synthetase. The tyrosine biosynthetic enzymes are not derepressed in thermosensitive strains grown at the restrictive temperature. A class of tyrosine regulatory mutants, designated tyrR, contains normal levels of tyrosyl-tRNA synthetase and tRNA(Tyr). These results suggest that charging of tRNA(Tyr) is not necessary for repression. This conclusion is substantiated by the finding that 4-aminophenylalanine, a tyrosine analogue which causes repression of the tyrosine biosynthetic enzymes, is not attached to tRNA(Tyr) in vivo, nor does it inhibit the attachment reaction in vitro. A combined regulatory effect due to the simultaneous presence of tyrS and tyrR mutations in the same strain was detected. The possibility of direct participation of tyrosyl-tRNA synthetase in tyrosine regulation is discussed.
Collapse
|
10
|
Faanes R, Rogers P. Repression of enzymes of arginine biosynthesis by L-canavanine in arginyl-transfer ribonucleic acid synthetase mutants of Escherichia coli. J Bacteriol 1972; 112:102-13. [PMID: 4562386 PMCID: PMC251385 DOI: 10.1128/jb.112.1.102-113.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We show that the arginine analogue, l-canavanine, repressed the accumulation of translatable messenger ribonucleic acid (RNA) for three arginine biosynthetic enzymes in Escherichia coli. The method used to determine the level of translatable messenger RNA depended upon measurement of a burst of enzyme synthesis as described previously. E. coli strains with defective arginyltransfer ribonucleic acid (tRNA) synthetase (argS mutants) were insensitive to canavanine repression. When deprived of leucine, a leu argS strain regained normal sensitivity to canavanine repression. The level of in vivo canavanyl-tRNA(arg) was determined for a normal strain and an argS mutant. After 20 min of growth with canavanine only 9% of tRNA(arg) from the argS strain was protected from periodate oxidation, while 42% of the tRNA(arg) from an argS(+) strain was charged. When deprived of leucine, leu argS or leu argS(+) strains grown with canavanine contained more than 60% charged tRNA(arg). Reverse phase column chromatography of periodate-oxidized tRNA from canavanine-grown argS and argS(+) strains showed no preferential charging of any isoaccepting species of tRNA(arg). Therefore, we failed to detect a specific arginyl-tRNA species that might be involved in repression by canavanine. However, the data suggest that canavanine repression of the arginine pathway occurs only when high levels of canavanyl-tRNA are present, and thus support the notion that arginyl-tRNA synthetase plays a role in generating a repression signal.
Collapse
|
11
|
Im SW, Davidson H, Pittard J. Phenylalanine and tyrosine biosynthesis in Escherichia coli K-12: mutants derepressed for 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthetase (phe), 3-deoxy-D-arabinoheptulosonic acid 7-phosphate synthetase (tyr), chorismate mutase T-prephenate dehydrogenase, and transaminase A. J Bacteriol 1971; 108:400-9. [PMID: 4399342 PMCID: PMC247078 DOI: 10.1128/jb.108.1.400-409.1971] [Citation(s) in RCA: 46] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mutant strains of Escherichia coli have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (phe) is derepressed, in addition to those enzymes of tyrosine biosynthesis previously shown to be controlled by the gene tyrR. The major enzyme of the terminal pathway of phenylalanine biosynthesis chorismate mutase-prephenate dehydratase is not derepressed in these strains. Genetic analysis of the mutants shows that the mutation or mutations causing derepression map close to previously reported tyrR mutations. A study of one of the mutations has shown it to be recessive to the wild-type allele in a diploid strain. It is proposed that the tyrR gene product is involved in the regulation of the synthesis of DAHP synthetase (phe) as well as the synthesis of DAHP synthetase (tyr), chorismate mutase-prephenate dehydrogenase, and transaminase A.
Collapse
|
12
|
Cherest H, Surdin-Kerjan Y, Robichon-Szulmajster H. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2. J Bacteriol 1971; 106:758-72. [PMID: 5557593 PMCID: PMC248690 DOI: 10.1128/jb.106.3.758-772.1971] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Detailed study of methionine-mediated repression of enzymes involved in methionine biosynthesis in Saccharomyces cerevisiae led to classification of these enzymes into two distinct regulatory groups. Group I comprises four enzymes specifically involved in different parts of methionine biosynthesis, namely, homoserine-O-transacetylase, homocysteine synthetase, adenosine triphosphate sulfurylase, and sulfite reductase. Repressibility of these enzymes is greatly decreased in strains carrying a genetically impaired methionyl-transfer ribonucleic acid (tRNA) synthetase (mutation ts(-) 296). Conditions leading to absence of repression in the mutant strain have been correlated with a sharp decrease in bulk tRNA(met) charging, whereas conditions which restore repressibility of group I enzymes also restore tRNA(met) charging. These findings implicate methionyl-tRNA in the regulatory process. However, the absence of a correlation in the wild type between methionyl-tRNA charging and the levels of methionine group I enzymes suggests that only a minor iso accepting species of tRNA(met) may be devoted with a regulatory function. Repressibility of the same four enzymes (group I) was also decreased in strains carrying the regulatory mutation eth2(r). Although structural genes coding for two of these enzymes, as well as mutations ts(-) 296 and eth2(r) segregate independently to each other, synthesis of group I enzymes is coordinated. The pleiotropic regulatory system involved seems then to comprise beside a "regulatory methionyl tRNA(met)," another element, product of gene eth2, which might correspond either to an aporepressor protein or to the "regulatory tRNA(met)" itself. Regulation of group II enzymes is defined by response to exogenous methionine, absence of response to either mutations ts(-) 296 and eth2(r), and absence of coordinacy with group I enzymes. However, the two enzymes which belong to this group and are both involved in threonine and methionine biosynthesis undergo distinct regulatory patterns. One, aspartokinase, is subject to a bivalent repression exerted by threonine and methionine, and the other, homoserine dehydrogenase, is subject only to methionine-mediated repression. Participation of at least another aporepressor and another corepressor, different from the ones involved in regulation of group I enzymes, is discussed.
Collapse
|
13
|
|
14
|
The Regulation of Biosynthesis of Aromatic Amino Acids and Vitamins. ACTA ACUST UNITED AC 1970. [DOI: 10.1016/b978-0-12-152802-7.50008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
15
|
Schlesinger S, Nester EW. Mutants of Escherichia coli with an altered tyrosyl-transfer ribonucleic acid synthetase. J Bacteriol 1969; 100:167-75. [PMID: 4898984 PMCID: PMC315373 DOI: 10.1128/jb.100.1.167-175.1969] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have isolated several mutants defective in the gene for tyrosyl-transfer ribonucleic acid (tRNA) synthetase (tyrS). One of these mutants is described in detail. It was isolated as a tyrosine auxotroph with defects both in the tyrosyl-tRNA synthetase and in the tyrosine biosynthetic enzyme, prephenate dehydrogenase. It also had derepressed levels of the tyrosine-specific 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase. The latter finding suggested that a wild-type tyrS gene was required for repression of the tyrosine biosynthetic enzymes. The following results demonstrated that this hypothesis was not correct. (i) When the defective tyrS gene was transferred to another strain, the tyrosine-specific DAHP synthetase in that strain was not derepressed, and (ii) two other mutants with defective tyrosyl-tRNA synthetases had repressed levels of the tyrosine biosynthetic enzymes. The tyrS gene was located near minute 32 on the Escherichia coli chromosome by interrupted mating experiments.
Collapse
|
16
|
|
17
|
Control of isoleucine, valine and leucine biosynthesis VII. Role of valine transfer RNA in repression. ACTA ACUST UNITED AC 1969. [DOI: 10.1016/0005-2787(69)90008-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Gross TS, Rowbury RJ. Methionyl transfer RNA synthetase mutants of Salmonella typhimurium which have normal control of the methionine biosynthetic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1969; 184:233-6. [PMID: 4892972 DOI: 10.1016/0304-4165(69)90126-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
|
20
|
Wallace BJ, Pittard J. Regulator gene controlling enzymes concerned in tyrosine biosynthesis in Escherichia coli. J Bacteriol 1969; 97:1234-41. [PMID: 4887504 PMCID: PMC249840 DOI: 10.1128/jb.97.3.1234-1241.1969] [Citation(s) in RCA: 79] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mutants of Escherichia coli K-12 have been isolated in which several enzymes concerned with tyrosine biosynthesis are derepressed. These mutants were obtained from a parent strain possessing only a single 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase isoenzyme, DAHP synthetase (tyr), by selecting for resistance to the tyrosine analogue, 4-aminophenylalanine. The mutation responsible for this derepression has been mapped and the gene, which is not closely linked to aroF and tyrA, has been designated tyrR.
Collapse
|
21
|
Norton SJ, Chen YT. Beta-aspartylhydroxamic acid: its action as a feedback inhibitor and a repressor of asparagine synthetase in Lactobacillus arabinosus. Arch Biochem Biophys 1969; 129:560-6. [PMID: 4304212 DOI: 10.1016/0003-9861(69)90215-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Hirshfield IN, Horn PC, Hopwood DA, Maas WK, DeDeken R. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. 3. Repression of enzymes of arginine biosynthesis in arginyl-tRNA synthetase mutants. J Mol Biol 1968; 35:83-93. [PMID: 4939781 DOI: 10.1016/s0022-2836(68)80038-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Szentirmai A, Umbarger HE. Isoleucine and valine metabolism of Escherichia coli. XIV. Effect of thiaisoleucine. J Bacteriol 1968; 95:1666-71. [PMID: 4870281 PMCID: PMC252193 DOI: 10.1128/jb.95.5.1666-1671.1968] [Citation(s) in RCA: 45] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Thiaisoleucine (2-amino-3-methylthiobutyrate) completely inhibited the growth of strain K-12 of Escherichia coli at a concentration of 5 x 10(-3)m. The inhibition was antagonized by growth-factor amounts of l-isoleucine. Thiaisoleucine inhibited the deamination of threonine and the transfer of (14)C-isoleucine to soluble ribonucleic acid and underwent transamination with alpha-ketoglutarate as the amino acceptor. In each case, the analogue appeared to be less effective than isoleucine as either an inhibitor or substrate.
Collapse
|
24
|
Nazario M. The accumulation of argininosuccinate in Neurospora crassa. II. Inhibition of arginyl-tRNA synthesis by argininosuccinate. BIOCHIMICA ET BIOPHYSICA ACTA 1967; 145:146-52. [PMID: 6053229 DOI: 10.1016/0005-2787(67)90663-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Neidhardt FC. Roles of amino acid activating enzymes in cellular physiology. BACTERIOLOGICAL REVIEWS 1966; 30:701-19. [PMID: 5342516 PMCID: PMC441010 DOI: 10.1128/br.30.4.701-719.1966] [Citation(s) in RCA: 139] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|