1
|
Duchatelet L, Coubris C, Pels C, Dupont ST, Mallefet J. Catecholamine Involvement in the Bioluminescence Control of Two Species of Anthozoans. Life (Basel) 2023; 13:1798. [PMID: 37763202 PMCID: PMC10533100 DOI: 10.3390/life13091798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Bioluminescence, the ability of living organisms to emit visible light, is an important ecological feature for many marine species. To fulfil the ecological role (defence, offence, or communication), bioluminescence needs to be finely controlled. While many benthic anthozoans are luminous, the physiological control of light emission has only been investigated in the sea pansy, Renilla koellikeri. Through pharmacological investigations, a nervous catecholaminergic bioluminescence control was demonstrated for the common sea pen, Pennatula phosphorea, and the tall sea pen, Funiculina quadrangularis. Results highlight the involvement of adrenaline as the main neuroeffector triggering clusters of luminescent flashes. While noradrenaline and octopamine elicit flashes in P. phosphorea, these two biogenic amines do not trigger significant light production in F. quadrangularis. All these neurotransmitters act on both the endodermal photocytes located at the base and crown of autozooids and specific chambers of water-pumping siphonozooids. Combined with previous data on R. koellikeri, our results suggest that a catecholaminergic control mechanisms of bioluminescence may be conserved in Anthozoans.
Collapse
Affiliation(s)
- Laurent Duchatelet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Constance Coubris
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Christopher Pels
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| | - Sam T. Dupont
- Department of Biological & Environmental Sciences, University of Gothenburg, 451 78 Fiskebäckskil, Sweden;
- Marine Environment Laboratories, International Atomic Energy Agency, MC-98000 Monaco, Monaco
| | - Jérôme Mallefet
- Marine Biology Laboratory, Earth and Life Institute, Université Catholique de Louvain, 1348 Ottignies-Louvain-la-Neuve, Belgium; (C.C.); (C.P.); (J.M.)
| |
Collapse
|
2
|
Griffiths TM, Oakley AJ, Yu H. Atomistic Insights into Photoprotein Formation: Computational Prediction of the Properties of Coelenterazine and Oxygen Binding in Obelin. J Comput Chem 2019; 41:587-603. [DOI: 10.1002/jcc.26125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas M. Griffiths
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| | - Aaron J. Oakley
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience University of Wollongong Wollongong New South Wales 2500 Australia
- Molecular Horizons University of Wollongong Wollongong New South Wales 2500 Australia
- Illawarra Health and Medical Research Institute, Northfields Ave Keiraville New South Wales 2500 Australia
| |
Collapse
|
3
|
Cnidarian Jellyfish: Ecological Aspects, Nematocyst Isolation, and Treatment Methods of Sting. Results Probl Cell Differ 2018; 65:477-513. [PMID: 30083932 DOI: 10.1007/978-3-319-92486-1_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cnidarians play an important role in ecosystem functioning, in the competition among species, and for possible utilization of several active compounds against cardiovascular, nervous, endocrine, immune, infective, and inflammatory disorders or having antitumoral properties, which have been extracted from these organisms. Nevertheless, notwithstanding these promising features, the main reason for which cnidarians are known is due to their venomousness as they have a serious impact on public health as well as in economy being able to affect some human activities. For this reason a preeminent subject of the research about cnidarians is the organization of proper systems and methods of care and treatment of stinging. This chapter aims to present the data about the morphological, ecological, toxicological, epidemiological, and therapeutic aspects regarding cnidarians with the purpose to summarize the existing knowledge and to stimulate future perspectives in the research on these organisms.
Collapse
|
4
|
Impens F, Rolhion N, Radoshevich L, Bécavin C, Duval M, Mellin J, García Del Portillo F, Pucciarelli MG, Williams AH, Cossart P. N-terminomics identifies Prli42 as a membrane miniprotein conserved in Firmicutes and critical for stressosome activation in Listeria monocytogenes. Nat Microbiol 2017; 2:17005. [PMID: 28191904 DOI: 10.1038/nmicrobiol.2017.5] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
To adapt to changing environments, bacteria have evolved numerous pathways that activate stress response genes. In Gram-positive bacteria, the stressosome, a cytoplasmic complex, relays external cues and activates the sigma B regulon. The stressosome is structurally well-characterized in Bacillus, but how it senses stress remains elusive. Here, we report a genome-wide N-terminomic approach in Listeria that strikingly led to the discovery of 19 internal translation initiation sites and 6 miniproteins, among which one, Prli42, is conserved in Firmicutes. Prli42 is membrane-anchored and interacts with orthologues of Bacillus stressosome components. We reconstituted the Listeria stressosome in vitro and visualized its supramolecular structure by electron microscopy. Analysis of a series of Prli42 mutants demonstrated that Prli42 is important for sigma B activation, bacterial growth following oxidative stress and for survival in macrophages. Taken together, our N-terminonic approach unveiled Prli42 as a long-sought link between stress and the stressosome.
Collapse
Affiliation(s)
- Francis Impens
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Nathalie Rolhion
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Lilliana Radoshevich
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Christophe Bécavin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France.,Institut Pasteur, Bioinformatics and Biostatistics Hub, C3BI, USR 3756 IP CNRS, Paris, France
| | - Mélodie Duval
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | - Jeffrey Mellin
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| | | | - M Graciela Pucciarelli
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Madrid, Spain.,Departamento de Biología Molecular, Universidad Autónoma de Madrid, Centro de Biología Molecular 'Severo Ochoa' (CBMSO-CSIC), Madrid, Spain
| | - Allison H Williams
- Département de Microbiologie, Institut Pasteur, Unité des Biologie et génétique de la paroi bactérienne, F-75015 Paris, France.,INSERM, Groupe Avenir, F-75015 Paris, France
| | - Pascale Cossart
- Département de Biologie Cellulaire et Infection, Institut Pasteur, Unité des Interactions Bactéries-Cellules, F-75015 Paris, France.,Inserm, U604, F-75015 Paris, France.,INRA, Unité sous-contrat 2020, F-75015 Paris, France
| |
Collapse
|
5
|
Natashin PV, Markova SV, Lee J, Vysotski ES, Liu ZJ. Crystal structures of the F88Y obelin mutant before and after bioluminescence provide molecular insight into spectral tuning among hydromedusan photoproteins. FEBS J 2014; 281:1432-1445. [DOI: 10.1111/febs.12715] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/15/2013] [Accepted: 01/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel V. Natashin
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Svetlana V. Markova
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - John Lee
- Department of Biochemistry and Molecular Biology; University of Georgia; Athens GA USA
| | - Eugene S. Vysotski
- Photobiology Laboratory; Institute of Biophysics; Russian Academy of Sciences, Siberian Branch; Krasnoyarsk Russia
- Laboratory of Bioluminescence Biotechnology; Institute of Fundamental Biology and Biotechnology; Siberian Federal University; Russia
| | - Zhi-Jie Liu
- National Laboratory of Biomacromolecules; Institute of Biophysics; Chinese Academy of Sciences; Beijing China
- iHuman Institute; ShanghaiTech University; Shanghai China
| |
Collapse
|
6
|
Stepanyuk GA, Liu ZJ, Burakova LP, Lee J, Rose J, Vysotski ES, Wang BC. Spatial structure of the novel light-sensitive photoprotein berovin from the ctenophore Beroe abyssicola in the Ca2+-loaded apoprotein conformation state. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2139-46. [DOI: 10.1016/j.bbapap.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022]
|
7
|
Eremeeva EV, Markova SV, Frank LA, Visser AJWG, van Berkel WJH, Vysotski ES. Bioluminescent and spectroscopic properties of His-Trp-Tyr triad mutants of obelin and aequorin. Photochem Photobiol Sci 2013; 12:1016-24. [PMID: 23525241 DOI: 10.1039/c3pp00002h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ca(2+)-regulated photoproteins are responsible for the bioluminescence of a variety of marine organisms, mostly coelenterates. The photoproteins consist of a single polypeptide chain to which an imidazopyrazinone derivative (2-hydroperoxycoelenterazine) is tightly bound. According to photoprotein spatial structures the side chains of His175, Trp179, and Tyr190 in obelin and His169, Trp173, Tyr184 in aequorin are at distances that allow hydrogen bonding with the peroxide and carbonyl groups of the 2-hydroperoxycoelenterazine ligand. We replaced these amino acids in both photoproteins by residues with different hydrogen bond donor-acceptor capacity. All mutants exhibited luciferase-like bioluminescence activity, hardly present in the wild-type photoproteins, and showed low or no photoprotein activity, except for aeqH169Q (24% of wild-type activity), obeW179Y (23%), obeW179F (67%), obeY190F (14%), and aeqY184F (22%). The results clearly support the supposition made from photoprotein spatial structures that the hydrogen bond network formed by His-Trp-Tyr triad participates in stabilizing the 2-hydroperoxy adduct of coelenterazine. These residues are also essential for the positioning of the 2-hydroperoxycoelenterazine intermediate, light emitting reaction, and for the formation of active photoprotein. In addition, we demonstrate that although the positions of His-Trp-Tyr residues in aequorin and obelin spatial structures are almost identical the substitution effects might be noticeably different.
Collapse
Affiliation(s)
- Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Titushin MS, Feng Y, Lee J, Vysotski ES, Liu ZJ. Protein-protein complexation in bioluminescence. Protein Cell 2012; 2:957-72. [PMID: 22231355 DOI: 10.1007/s13238-011-1118-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 11/07/2011] [Indexed: 12/01/2022] Open
Abstract
In this review we summarize the progress made towards understanding the role of protein-protein interactions in the function of various bioluminescence systems of marine organisms, including bacteria, jellyfish and soft corals, with particular focus on methodology used to detect and characterize these interactions. In some bioluminescence systems, protein-protein interactions involve an "accessory protein" whereby a stored substrate is efficiently delivered to the bioluminescent enzyme luciferase. Other types of complexation mediate energy transfer to an "antenna protein" altering the color and quantum yield of a bioluminescence reaction. Spatial structures of the complexes reveal an important role of electrostatic forces in governing the corresponding weak interactions and define the nature of the interaction surfaces. The most reliable structural model is available for the protein-protein complex of the Ca(2+)-regulated photoprotein clytin and green-fluorescent protein (GFP) from the jellyfish Clytia gregaria, solved by means of Xray crystallography, NMR mapping and molecular docking. This provides an example of the potential strategies in studying the transient complexes involved in bioluminescence. It is emphasized that structural studies such as these can provide valuable insight into the detailed mechanism of bioluminescence.
Collapse
Affiliation(s)
- Maxim S Titushin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | |
Collapse
|
9
|
Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol 2010; 76:3625-36. [PMID: 20363781 DOI: 10.1128/aem.02612-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen which invades different cell types, including nonphagocytic cells, where it is able to replicate and survive. The different steps of the cellular infectious process have been well described and consist of bacterial entry, lysis of the endocytic vacuole, intracellular replication, and spreading to neighboring cells. To study the listerial infectious process, gentamicin survival assays, plaque formation, and direct microscopy observations are typically used; however, there are some caveats with each of these techniques. In this study we describe new single-cell techniques based on use of an array of integrative fluorescent plasmids (green, cyan, and yellow fluorescent proteins) to easily, rapidly, and quantitatively detect L. monocytogenes in vitro and in vivo. We describe construction of 13 integrative and multicopy plasmids which can be used for detecting intracellular bacteria, for measuring invasion, cell-to-cell spreading, and intracellular replication, for monitoring in vivo infections, and for generating transcriptional or translational reporters. Furthermore, we tested these plasmids in a variety of epifluorescence- and flow cytometry-based assays. We showed that we could (i) determine the expression of a particular promoter during the cell cycle, (ii) establish in one rapid experiment at which step in the cell cycle a particular mutant is defective, and (iii) easily measure the number of infected cells in vitro and in mouse organs. The plasmids that are described and the methods to detect them are new powerful tools to study host-Listeria interactions in a fast, robust, and high-throughput manner.
Collapse
|
10
|
Abstract
The biological transformation of chemical to photic energy involves an enzyme-mediated chemiluminescent reaction, in which one of the products exists in an electronically excited state, emitting a photon as it returns to the ground state. The colour of bioluminescence differs in different organisms, ranging from the deep blue (460 nm) of certain crustacea, through the bluish green (490 nm) of some bacteria, the green (530 nm) of mushrooms to the red (about 600 nm) of the railroad worm. In one case, energy transfer has been demonstrated from the enzyme system to material that emits light with a longer wavelength. The energies involved range from about 165 to 250 kJ/einstein (40 to 60 kcal/einstein). Boyle first showed that air was involved in bioluminescence in 1668 in his experiments with an air pump. Over the past 100 years, it has become clear that most if not all bioluminescent systems require molecular oxygen. The recent isolation and characterization of an oxygen-containing (peroxide) enzyme intermediate from the bacterial system is described and a reaction mechanism is postulated. This scheme is compared with other hypothetical mechanisms, in particular those involving a four-membered ring intermediate, a dioxetane, in which the simultaneous cleavage of two bonds leaves one product in an excited state. I shall discuss the special role of luciferases in bioluminescence, especially in flashing mechanisms involving 'precharged' intermediates.
Collapse
|
11
|
Malikova NP, Stepanyuk GA, Frank LA, Markova SV, Vysotski ES, Lee J. Spectral tuning of obelin bioluminescence by mutations of Trp92. FEBS Lett 2003; 554:184-8. [PMID: 14596937 DOI: 10.1016/s0014-5793(03)01166-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ca(2+)-regulated photoprotein obelin was substituted at Trp92 by His, Lys, Glu, and Arg. All mutants fold into stable conformations and produce bimodal bioluminescence spectra with enhanced contribution from a violet emission. The W92R mutant has an almost monomodal bioluminescence (lambdamax=390 nm) and monomodal fluorescence (lambdamax=425 nm) of the product. Results are interpreted by an excited state proton transfer mechanism involving the substituent side group and His22 in the binding cavity.
Collapse
Affiliation(s)
- Natalia P Malikova
- Photobiology Lab, Institute of Biophysics, Russian Academy of Sciences Siberian Branch, Krasnoyarsk 660036, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Illarionov BA, Frank LA, Illarionova VA, Bondar VS, Vysotski ES, Blinks JR. Recombinant obelin: cloning and expression of cDNA purification, and characterization as a calcium indicator. Methods Enzymol 2000; 305:223-49. [PMID: 10812604 DOI: 10.1016/s0076-6879(00)05491-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- B A Illarionov
- Photobiology Laboratory, Russian Academy of Sciences, Krasnoyarsk, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Many different organisms, ranging from bacteria and fungi to fireflies and fish, are endowed with the ability to emit light, but the bioluminescent systems are not evolutionarily conserved: genes coding for the luciferase proteins (Lase) are not homologous, and the luciferins are also different, falling into many unrelated chemical classes. Biochemically, all known Lase are oxygenases that utilize molecular oxygen to oxidize a substrate (a luciferin; literally the "light-bearing' molecule), with formation of a product molecule in an electronically excited state. The color of the light may differ, even though the same luciferin/Lase system underlies the reaction. Filters or differences in Lase structure are responsible in some cases; in others a secondary emitter associated with a second protein is involved. In the coelenterates a green fluorescent protein, whose chromophore is derived from the primary amino-acid sequence, results in a red shift of the emission. In the bacteria accessory proteins causing either blue- or red-shifts have been isolated from different species; the chromophores are noncovalently bound. Although radiationless energy transfer has been implicated in the excitation of such accessory emitters, this may not be so in all cases.
Collapse
Affiliation(s)
- J W Hastings
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138-2020, USA.
| |
Collapse
|
14
|
Hastings JW. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol 1983; 19:309-21. [PMID: 6358519 DOI: 10.1007/bf02101634] [Citation(s) in RCA: 197] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A diversity of organisms are endowed with the ability to emit light, and to display and control it in a variety of ways. Most of the luciferins (substrates) of the various phylogenetically distant systems fall into unrelated chemical classes, and, based on still limited data, the luciferases (enzymes) and reaction mechanisms are distinctly different. Based on its diversity and phylogenetic distribution, it is estimated that bioluminescence may have arisen independently as many as 30 times in the course of evolution. However, there are several examples of cross-phyletic similarities among the substrates; some of these may be accounted for nutritionally, but in other cases they may have evolved independently.
Collapse
|
15
|
Charbonneau H, Cormier M. Ca2+-induced bioluminescence in Renilla reniformis. Purification and characterization of a calcium-triggered luciferin-binding protein. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)37872-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
16
|
Johnson FH, Shimomura O. [30] Introduction to the bioluminescence of medusae, with special reference to the photoprotein aequorin. Methods Enzymol 1978. [DOI: 10.1016/0076-6879(78)57032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
|
18
|
Abstract
A strain of Photobacterium fischeri that emits yellow light has been isolated from seawater. The bimodal spectrum, which is unique among the luminous bacteria, consists of a major band with a maximum at 545 nanometers and a minor band with a maximum at 500 nanometers. The former represents a heretofore unreported range of emission for luminous bacteria, while the latter coincides with the emission spectrum of typical blue-greeen-emitting strains of P. fischeri. The relative contributions of these two bands to the total in vivo luminescence changes as a function of ambient temperature. When luciferase is extracted and luminescence observed in vitro, the emission is entirely blue-green, identical with that of luciferase isolated from other strains of P. fischeri.
Collapse
|
19
|
|
20
|
Cormier MJ, Hori K, Anderson JM. Bioluminescence in coelenterates. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 346:137-64. [PMID: 4154104 DOI: 10.1016/0304-4173(74)90007-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Anderson JM, Charbonneau H, Cormier MJ. Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 1974; 13:1195-200. [PMID: 4149963 DOI: 10.1021/bi00703a602] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
|
23
|
Cormier MJ, Hori K, Karkhanis YD, Anderson JM, Wampler JE, Morin JG, Hastings JW. Evidence for similar biochemical requirements for bioluminescence among the coelenterates. J Cell Physiol 1973; 81:291-7. [PMID: 4144397 DOI: 10.1002/jcp.1040810218] [Citation(s) in RCA: 69] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Morin JG, Hastings JW. Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol 1971; 77:305-12. [PMID: 4397527 DOI: 10.1002/jcp.1040770304] [Citation(s) in RCA: 90] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Cormier MJ, Karkhanis YD, Hori K. Evidence that Renilla luciferase is not a calcium-triggered photoprotein. Biochem Biophys Res Commun 1970; 38:962-4. [PMID: 4392361 DOI: 10.1016/0006-291x(70)90815-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|