1
|
Teschke R. Microsomal Ethanol-Oxidizing System: Success Over 50 Years and an Encouraging Future. Alcohol Clin Exp Res 2019; 43:386-400. [PMID: 30667528 DOI: 10.1111/acer.13961] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/07/2023]
Abstract
Fifty years ago, in 1968, the pioneering scientists Charles S. Lieber and Leonore M. DeCarli discovered the capacity for liver microsomes to oxidize ethanol (EtOH) and named it the microsomal ethanol-oxidizing system (MEOS), which revolutionized clinical and experimental alcohol research. The last 50 years of MEOS are now reviewed and highlighted. Since its discovery and as outlined in a plethora of studies, significant insight was gained regarding the fascinating nature of MEOS: (i) MEOS is distinct from alcohol dehydrogenase and catalase, representing a multienzyme complex with cytochrome P450 (CYP) and its preferred isoenzyme CYP 2E1, NADPH-cytochrome P450 reductase, and phospholipids; (ii) it plays a significant role in alcohol metabolism at high alcohol concentrations and after induction due to prolonged alcohol use; (iii) hydroxyl radicals and superoxide radicals promote microsomal EtOH oxidation, assisted by phospholipid peroxides; (iv) new aspects focus on microsomal oxidative stress through generation of reactive oxygen species (ROS), with intermediates such as hydroxyethyl radical, ethoxy radical, acetyl radical, singlet radical, hydroxyl radical, alkoxyl radical, and peroxyl radical; (v) triggered by CYP 2E1, ROS are involved in the initiation and perpetuation of alcoholic liver injury, consequently shifting the previous nutrition-based concept to a clear molecular-based disease; (vi) intestinal CYP 2E1 induction and ROS are involved in endotoxemia, leaky gut, and intestinal microbiome modifications, together with hepatic CYP 2E1 and liver injury; (vii) circulating blood CYP 2E1 exosomes may be of diagnostic value; (viii) circadian rhythms provide high MEOS activities associated with significant alcohol metabolism and potential toxicity risks as a largely neglected topic; and (ix) a variety of genetic animal models are useful and have been applied elucidating mechanistic aspects of MEOS. In essence, MEOS along with its CYP 2E1 component currently explains several mechanistic steps leading to alcoholic liver injury and has a promising future in alcohol research.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology (RT), Department of Internal Medicine II, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| |
Collapse
|
2
|
|
3
|
Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2005; 36:511-29. [PMID: 15554233 DOI: 10.1081/dmr-200033441] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidation of ethanol via alcohol dehydrogenase (ADH) explains various metabolic effects of ethanol but does not account for the tolerance. This fact, as well as the discovery of the proliferation of the smooth endoplasmic reticulum (SER) after chronic alcohol consumption, suggested the existence of an additional pathway which was then described by Lieber and DeCarli, namely the microsomal ethanol oxidizing system (MEOS), involving cytochrome P450. The existence of this system was initially challenged but the effect of ethanol on liver microsomes was confirmed by Remmer and his group. After chronic ethanol consumption, the activity of the MEOS increases, with an associated rise in cytochrome P450, especially CYP2E1, most conclusively shown in alcohol dehydrogenase negative deer mice. There is also cross-induction of the metabolism of other drugs, resulting in drug tolerance. Furthermore, the conversion of hepatotoxic agents to toxic metabolites increases, which explains the enhanced susceptibility of alcoholics to the adverse effects of various xenobiotics, including industrial solvents. CYP2E1 also activates some commonly used drugs (such as acetaminophen) to their toxic metabolites, and promotes carcinogenesis. In addition, catabolism of retinol is accelerated resulting in its depletion. Contrasting with the stimulating effects of chronic consumption, acute ethanol intake inhibits the metabolism of other drugs. Moreover, metabolism by CYP2E1 results in a significant release of free radicals which, in turn, diminishes reduced glutathione (GSH) and other defense systems against oxidative stress which plays a major pathogenic role in alcoholic liver disease. CYP1A2 and CYP3A4, two other perivenular P450s, also sustain the metabolism of ethanol, thereby contributing to MEOS activity and possibly liver injury. CYP2E1 has also a physiologic role which comprises gluconeogenesis from ketones, oxidation of fatty acids, and detoxification of xenobiotics other than ethanol. Excess of these physiological substrates (such as seen in obesity and diabetes) also leads to CYP2E1 induction and nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH), with pathological lesions similar to those observed in alcoholic steatohepatitis. Increases of CYP2E1 and its mRNA prevail in the perivenular zone, the area of maximal liver damage. CYP2E1 up-regulation was also demonstrated in obese patients as well as in rat models of obesity and NASH. Furthermore, NASH is increasingly recognized as a precursor to more severe liver disease, sometimes evolving into "cryptogenic" cirrhosis. The prevalence of NAFLD averages 20% and that of NASH 2% to 3% in the general population, making these conditions the most common liver diseases in the United States. Considering the pathogenic role that up-regulation of CYP2E1 also plays in alcoholic liver disease (vide supra), it is apparent that a major therapeutic challenge is now to find a way to control this toxic process. CYP2E1 inhibitors oppose alcohol-induced liver damage, but heretofore available compounds are too toxic for clinical use. Recently, however, polyenylphosphatidylcholine (PPC), an innocuous mixture of polyunsaturated phosphatidylcholines extracted from soybeans (and its active component dilinoleoylphosphatidylcholine), were discovered to decrease CYP2E1 activity. PPC also opposes hepatic oxidative stress and fibrosis. It is now being tested clinically.
Collapse
Affiliation(s)
- Charles S Lieber
- Mount Sinai School of Medicine, Section of Liver Disease and Nutrition and Alcohol Research Center, Bronx Veterans Affairs Medical Center, USA
| |
Collapse
|
4
|
Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004; 34:9-19. [PMID: 15670660 DOI: 10.1016/j.alcohol.2004.07.008] [Citation(s) in RCA: 431] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/16/2004] [Accepted: 07/20/2004] [Indexed: 02/06/2023]
Abstract
Liver disease in the alcoholic is due not only to malnutrition but also to ethanol's hepatotoxicity linked to its metabolism by means of the alcohol dehydrogenase and cytochrome P450 2E1 (CYP2E1) pathways and the resulting production of toxic acetaldehyde. In addition, alcohol dehydrogenase-mediated ethanol metabolism generates the reduced form of nicotinamide adenine dinucleotide (NADH), which promotes steatosis by stimulating the synthesis of fatty acids and opposing their oxidation. Steatosis is also promoted by excess dietary lipids and can be attenuated by their replacement with medium-chain triglycerides. Through reduction of pyruvate, elevated NADH also increases lactate, which stimulates collagen synthesis in myofibroblasts. Furthermore, CYP2E1 activity is inducible by its substrates, not only ethanol but also fatty acids. Their excess and metabolism by means of this pathway generate release of free radicals, which cause oxidative stress, with peroxidation of lipids and membrane damage, including altered enzyme activities. Products of lipid peroxidation such as 4-hydroxynonenal stimulate collagen generation and fibrosis, which are further increased through diminished feedback inhibition of collagen synthesis because acetaldehyde forms adducts with the carboxyl-terminal propeptide of procollagen in hepatic stellate cells. Acetaldehyde is also toxic to the mitochondria, and it aggravates their oxidative stress by binding to reduced glutathione and promoting its leakage. Oxidative stress and associated cellular injury promote inflammation, which is aggravated by increased production of the proinflammatory cytokine tumor necrosis factor-alpha in the Kupffer cells. These are activated by induction of their CYP2E1 as well as by endotoxin. The endotoxin-stimulated tumor necrosis factor-alpha release is decreased by dilinoleoylphosphatidylcholine, the active phosphatidylcholine (PC) species of polyenylphosphatidylcholine (PPC). Moreover, defense mechanisms provided by peroxisome proliferator-activated receptor alpha and omega fatty acid oxidation are readily overwhelmed, particularly in female rats and also in women who have low hepatic induction of fatty acid-binding protein (L-FABPc). Accordingly, the intracellular concentration of free fatty acids may become high enough to injure membranes, thereby contributing to necrosis, inflammation, and progression to fibrosis and cirrhosis. Eventually, hepatic S-adenosylmethionine and PCs become depleted in the alcoholic, with impairment of their multiple cellular functions, which can be restored by PC replenishment. Thus, prevention and therapy opposing the development of steatosis and its progression to more severe injury can be achieved by a multifactorial approach: control of alcohol consumption, avoidance of obesity and of excess dietary long-chain fatty acids, or their replacement with medium-chain fatty acids, and replenishment of S-adenosylmethionine and PCs by using PPC. Progress in the understanding of the pathogenesis of alcoholic fatty liver and its progression to inflammation and fibrosis has resulted in prospects for their better prevention and treatment.
Collapse
|
5
|
Lieber CS. The unexpected outcomes of medical research: serendipity and the microsomal ethanol oxidizing system. J Hepatol 2004; 40:198-202. [PMID: 14739088 DOI: 10.1016/j.jhep.2003.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Charles S Lieber
- Section of Liver Disease and Nutrition, Alcohol Research, Bronx Veterans Affairs Medical Center (151-2) and Mt Sinai School of Medicine, 130 West Kingsbridge Road, Bronx, NY 10468-3922, USA.
| |
Collapse
|
6
|
Lieber CS. Microsomal Ethanol-Oxidizing System (MEOS): The First 30 Years (1968-1998)-A Review. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04217.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Abstract
The abnormalities in acatalasemia at the gene level as well as properties of the residual catalase in Japanese acatalasemia are historically reviewed. The replacement of the fifth nucleic acid, guanine, in the fourth intron by adenine in the acatalasemic gene causes a splicing mutation and hence a deficiency of mRNA. The guanine-to-adenine substitution was detected in two Japanese acatalasemic cases from different families. The properties of the residual catalase are similar to those of normal catalase; the exons are identical. The properties of the residual catalase and the molecular defect in the catalase gene are compared among Japanese, Swiss, and mouse acatalasemias. The physiological role of catalase, as judged from human acatalasemic blood and acatalasemic mice, is also described.
Collapse
Affiliation(s)
- M Ogata
- Department of Public Health, Okayama University Medical School, Japan
| |
Collapse
|
8
|
Lieber CS. Microsomal ethanol oxidizing system (MEOS): interaction with ethanol, drugs and carcinogens. Pharmacol Biochem Behav 1983; 18 Suppl 1:181-7. [PMID: 6415669 DOI: 10.1016/0091-3057(83)90169-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Several studies in our unit showed that in men, baboons, rats and deermice, blood ethanol clearance is significantly accelerated at ethanol concentrations higher than the levels needed to effectively saturate the low Km forms of ADH present in animals, thereby incriminating a high Km non-ADH system such as microsomal ethanol oxidizing system (MEOS). Furthermore, kinetics of blood ethanol clearance were consistent with the Km of MEOS. After chronic ethanol consumption, there was an increase in rates of ethanol elimination and in the activity of MEOS. There was an associated rise in microsomal cytochrome P-450, including a form (different from that of a non-ADH pathway of ethanol metabolism and its increase after chronic ethanol consumption was most conclusively shown in ADH-negative deermice. Microsomal induction was also associated with enhanced metabolism of other drugs, resulting in metabolic drug tolerance. In addition, there was increased activation of known hepatotoxic agents (such as CCl4 and acetaminophen) which may explain the enhanced susceptibility of alcoholics to the toxicity of solvents and commonly used drugs. There was enhanced activation of procarcinogens, sometimes at concentrations much lower than those required for other microsomal inducers. Moreover, catabolism of retinoic acid was accelerated possibly contributing to hepatic vitamin A depletion. In conclusion, after chronic ethanol consumption, enhanced MEOS activity and concomitant cytochrome P-450 changes may contribute to accelerated ethanol and drug metabolism and associated activation of hepatotoxic agents and carcinogens.
Collapse
|
9
|
Fabry TL, Lieber CS. The photochemical action spectrum of the microsomal ethanol oxidizing system. Alcohol Clin Exp Res 1979; 3:219-22. [PMID: 384830 DOI: 10.1111/j.1530-0277.1979.tb05303.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inhibition of the microsomal ethanol oxidizing system (MEOS) by carbon monoxide (CO) can be reversed by illumination with lights of differing wavelengths. The authors determined the efficiency of this reversal as a function of the illuminating light. Maximum efficiency was obtained in the wavelength band around 440-450 nm, which is near the absorption of the reduced cytochrome-P-450-carbon monoxide complex. When the experiment was repeated with microsomes prepared from ethanol-fed rats, the wavelength for maximum efficiency shifted towards higher values.
Collapse
|
10
|
Ferko AP, Bobyock E. Physical dependence on ethanol: rate of ethanol clearance from the blood and effect of ethanol on body temperature in rats. Toxicol Appl Pharmacol 1978; 46:235-48. [PMID: 569377 DOI: 10.1016/0041-008x(78)90154-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Khanna JM, Kalant H. In vivo significance of the microsomal ethanol oxidizing system (MEOS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1977; 85A:281-302. [PMID: 200118 DOI: 10.1007/978-1-4899-5181-6_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Teschke R, Matsuzaki S, Ohnishi K, Hasumura Y, Lieber CS. Metabolism of alcohol at high concentrations: role and biochemical nature of the hepatic microsomal ethanol oxidizing system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1977; 85A:257-80. [PMID: 562604 DOI: 10.1007/978-1-4899-5181-6_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
At intermediate and higher alcohol concentrations, ethanol metabolism proceeds via alcohol dehydrogenase (ADH) and the microsomal ethanol oxidizing system (MEOS), whereas catalase plays no significant role. Following prolonged ethanol consumption, an enhancement of both MEOS activity as well as the rates of ethanol metabolism occurs; the latter persisted despite inhibition of ADH by pyrazole and catalase by sodium axide, suggesting the involvement of MEOS in the adaptive increase. MEOS exhibits characteristics similar to those of other microsomal drug metabolizing enzymes and can be differentiated and isolated from both ADH and catalase activities. Reconstitution of MEOS activity was achieved with partially purified cytochrome P-450 and NADPH-cytochrome c reductase in the presence of synthetic phospholipid.
Collapse
|
13
|
Vatsis KP, Schulman MP. Pathways of ethanol oxidation in hepatic microsomes of acatalasemic (Csb) mice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1977; 85A:303-17. [PMID: 21533 DOI: 10.1007/978-1-4899-5181-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
|
15
|
Corrall RJ, Yu LC, Rosner BA, Margolis JM, Rodman HM, Kam W, Landau BR. Stereospecificity of the microsomal ethanol-oxidizing system. Biochem Pharmacol 1975; 24:1825-7. [PMID: 9946 DOI: 10.1016/0006-2952(75)90467-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
|
17
|
Vatsis KP, Schulman MP. Dissociation of microsomal ethanol oxidation from cytochrome P-450 catalyzed drug metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1975; 58:369-82. [PMID: 239541 DOI: 10.1007/978-1-4615-9026-2_26] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Lieber CS, DeCarli LM, Feinman L, Hasumura Y, Korsten M, Matsuzaki S, Teschke R. Effect of chronic alcohol consumption on ethanol and acetaldehyde metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1975; 59:185-227. [PMID: 241214 DOI: 10.1007/978-1-4757-0632-1_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatic metabolism of ethanol to acetaldehyde by the alcohol dehydrogenase (ADH) pathway is associated with the generation of reducing equivalents as NADH. Conversely, reducing equivalents are consumed when ethanol oxidation is catalyzed by the NADPH dependent microsomal ethanol oxidizing system (MEOS). Since the major fraction of ethanol metabolism proceeds via ADH and since the oxidation of acetaldehyde also generates NADH, an excess of reducing equivalents is produced. This explains a variety of effects following acute ethanol administration, including hyperlactacidemia, hyperuricemia, enhanced lipogenesis and depressed lipid oxidation. To the extent that ethanol is oxidized by the alternate MEOS pathway, it slows the metabolism of other microsomal substrates. Following chronic ethanol consumption, adaptive microsomal changes prevail, which include enhanced ethanol and drug metabolism, and increased lipoprotein production. Eventually, injury develops with alterations of the rough endoplasmic reticulum and structural and functional abnormalities of the mitochondria.
Collapse
|
19
|
Thurman RG, Oshino N, Chance B. The role of hydrogen peroxide production and catalase in hepatic ethanol metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1975; 59:163-83. [PMID: 170803 DOI: 10.1007/978-1-4757-0632-1_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Roach MK. Microsomal ethanol oxidation: activity in vitro and in vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1975; 56:33-55. [PMID: 238369 DOI: 10.1007/978-1-4684-7529-6_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies by several investigators have confirmed that the microsomal fraction of mammalian liver oxidizes ethanol to acetaldehyde in a reaction that requires NADPH and oxygen. Efforts to identify the enzymes involved have produced conflicting opinions of the reaction mechanism, however. Initially, the microsomal mixed function oxidase system was assumed to be capable of oxidizing ethanol in a mechanism that did not involve either alcohol dehydrogenase or catalase. Later evidence suggested that the oxidative enzyme was, in fact, catalase, a contaminant of microsomal preparations and that the mixed function oxidase system merely furnished hydrogen peroxide to the reaction. Much current research supports the latter interpretation. Other workers provide evidence that favors a system in which catalase does not participate. Attempts to define the reaction process have involved studies with catalase inhibitors, kinetic studies of the different reaction systems, and physical separation of catalase from the microsomal components. Questions of the mechanism of microsomal ethanol oxidation may prove to be purely academic, however. Efforts to prove that the system has significant in vivo activity generally have not been successful.
Collapse
|
21
|
Ruebner BH, Krieger RI, Miller JL, Tsao M, Rorvik M. Hepatic and metabolic effects of ethanol on rhesus monkeys. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1975; 59:395-405. [PMID: 810005 DOI: 10.1007/978-1-4757-0632-1_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rhesus monkeys were tube-fed 100 calories per kg of a liquid diet based on casein in which 41% of the calories were derived from grain alcohol. The alcohol intake was 5.8 g per kg per day. Control diets contained isocaloric amounts of glucose. The protein content of the diet was 15% and fat supplied 21% of the calories. After 28 days the animals which had been fed ethanol developed hepatic fatty change and serum L.D.H. levels were elevated. The most striking electron microscopic changes in the alcohol animals were mitochondrial swelling, focal cytoplasmic degradation, and dilatation of the rough endoplasmic reticulum. In the monkeys which had received ethanol the metabolism of alcohol increased from 17.4 mg per 100 ml per hour to 26.6 mg and antipyrene half-life decreased from 61.0 minutes to 49.9 minutes. The carbohydrate animals showed no significant change in alcohol metabolism or antipyrene half life. The ethanol animals lost weight significantly while the carbohydrate animals gained significantly. The metabolic effects of alcohol thus were not reproduced by glucose. Administration of phenobarbital at 30 mg per kg for 5 days increased alcohol metabolism from 16.5 mg per hour to 22.5 mg per hour and shortened antipyrene half life from 76.5 minutes to 33.6 minutes. Alcohol and phenobarbital both induced enhanced drug metabolism but alcohol was a more powerful inducer of its own metabolism than phenobarbital. Phenobarbital on the other hand was a better inducer of antipyrene metabolism than alcohol.
Collapse
|
22
|
Vatsis KP, Kowalchyk JA, Schulman MP. Ethanol and drug metabolism in mouse liver microsomes subsequent to lipid peroxidation-induced destruction of cytochrome P-450. Biochem Biophys Res Commun 1974; 61:258-64. [PMID: 4155297 DOI: 10.1016/0006-291x(74)90561-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Lieber CS, DeCarli LM. Oxidation of ethanol by hepatic microsomes of acatalasemic mice. Biochem Biophys Res Commun 1974; 60:1187-92. [PMID: 4153619 DOI: 10.1016/0006-291x(74)90324-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|