Nakamura I, Isobe N, Nakamura N, Kamihara T, Fukui S. Mechanism of thiamine-induced respiratory deficiency in Saccharomyces carlsbergensis.
J Bacteriol 1981;
147:954-61. [PMID:
7275938 PMCID:
PMC216134 DOI:
10.1128/jb.147.3.954-961.1981]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cells of Saccharomyces carlsbergensis 4228 grown aerobically with added thiamine (1 microgram . ml-1) in a vitamin B6-free medium contained no detectable heme precursors, such as delta-aminolevulinate, coproporphyrin III, or protoporphyrin IX. The deficiency in heme precursors in the thiamine-grown cells was accompanied by previously reported phenomena, i.e., growth depression, vitamin B6 deficiency, and respiratory deficiency due to a marked decrease in the activities of heme-containing enzymes and cytochrome level (I. Nakamura et al., FEBS Lett. 62: 354-358, 1976). It has been reported that all of the effects of thiamine are abolished by adding pyridoxine to the medium. delta-Aminolevulinate was found to have quite similar effects to those of pyridoxine, except that growth was partially improved by delta-aminolevulinate, whereas it was fully restored by pyridoxine. Incubation of the thiamine-grown cells with delta-aminolevulinate resulted in the appearance of the heme precursors and the heme-containing enzymes. Consistent with the lowered amount of vitamin B6, the thiamine-grown cells had a lowered activity of delta-aminolevulinate synthase, a pyridoxal phosphate-dependent enzyme. Not only the holoenzyme activity but also the apoenzyme activity was very low in these cells. These results indicate that the thiamine-induced vitamin B6 deficiency brings about the decrease in delta-aminolevulinate synthase activity, which leads to heme deficiency and therefore to respiratory deficiency.
Collapse