1
|
Santabarbara S, Heathcote P, Evans MCW. Modelling of the electron transfer reactions in Photosystem I by electron tunnelling theory: The phylloquinones bound to the PsaA and the PsaB reaction centre subunits of PS I are almost isoenergetic to the iron–sulfur cluster FX. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1708:283-310. [PMID: 15975545 DOI: 10.1016/j.bbabio.2005.05.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 04/12/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
Photosystem I is a large macromolecular complex located in the thylakoid membranes of chloroplasts and in cyanobacteria that catalyses the light driven reduction of ferredoxin and oxidation of plastocyanin. Due to the very negative redox potential of the primary electron transfer cofactors accepting electrons, direct estimation by redox titration of the energetics of the system is hampered. However, the rates of electron transfer reactions are related to the thermodynamic properties of the system. Hence, several spectroscopic and biochemical techniques have been employed, in combination with the classical Marcus theory for electron transfer tunnelling, in order to access these parameters. Nevertheless, the values which have been presented are very variable. In particular, for the case of the tightly bound phylloquinone molecule A(1), the values of the redox potentials reported in the literature vary over a range of about 350 mV. Previous models of Photosystem I have assumed a unidirectional electron transfer model. In the present study, experimental evidence obtained by means of time resolved absorption, photovoltage, and electron paramagnetic resonance measurements are reviewed and analysed in terms of a bi-directional kinetic model for electron transfer reactions. This model takes into consideration the thermodynamic equilibrium between the iron-sulfur centre F(X) and the phylloquinone bound to either the PsaA (A(1A)) or the PsaB (A(1B)) subunit of the reaction centre and the equilibrium between the iron-sulfur centres F(A) and F(B). The experimentally determined decay lifetimes in the range of sub-picosecond to the microsecond time domains can be satisfactorily simulated, taking into consideration the edge-to-edge distances between redox cofactors and driving forces reported in the literature. The only exception to this general behaviour is the case of phylloquinone (A(1)) reoxidation. In order to describe the reported rates of the biphasic decay, of about 20 and 200 ns, associated with this electron transfer step, the redox potentials of the quinones are estimated to be almost isoenergetic with that of the iron sulfur centre F(X). A driving force in the range of 5 to 15 meV is estimated for these reactions, being slightly exergonic in the case of the A(1B) quinone and slightly endergonic, in the case of the A(1A) quinone. The simulation presented in this analysis not only describes the kinetic data obtained for the wild type samples at room temperature and is consistent with estimates of activation energy by the analysis of temperature dependence, but can also explain the effect of the mutations around the PsaB quinone binding pocket. A model of the overall energetics of the system is derived, which suggests that the only substantially irreversible electron transfer reactions are the reoxidation of A(0) on both electron transfer branches and the reduction of F(A) by F(X).
Collapse
Affiliation(s)
- Stefano Santabarbara
- School of Biological Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| | | | | |
Collapse
|
2
|
Golbeck JH. The binding of cofactors to photosystem I analyzed by spectroscopic and mutagenic methods. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2003; 32:237-56. [PMID: 12524325 DOI: 10.1146/annurev.biophys.32.110601.142356] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review focuses on cofactor-ligand and protein-protein interactions within the photosystem I reaction center. The topics include a description of the electron transfer cofactors, the mode of binding of the cofactors to protein-bound ligands, and a description of intraprotein contacts that ultimately allow photosystem I to be assembled (in cyanobacteria) from 96 chlorophylls, 22 carotenoids, 2 phylloquinones, 3 [4Fe-4S] clusters, and 12 polypeptides. During the 15 years that have elapsed from the first report of crystals to the atomic-resolution X-ray crystal structure, cofactor-ligand interactions and protein-protein interactions were systematically being explored by spectroscopic and genetic methods. This article charts the interplay between these disciplines and assesses how good the early insights were in light of the current structure of photosystem I.
Collapse
Affiliation(s)
- John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
3
|
Abstract
In plants and cyanobacteria, the primary step in oxygenic photosynthesis, the light induced charge separation, is driven by two large membrane intrinsic protein complexes, the photosystems I and II. Photosystem I catalyses the light driven electron transfer from plastocyanin/cytochrome c(6) on the lumenal side of the membrane to ferredoxin/flavodoxin at the stromal side by a chain of electron carriers. Photosystem I of Synechococcus elongatus consists of 12 protein subunits, 96 chlorophyll a molecules, 22 carotenoids, three [4Fe4S] clusters and two phylloquinones. Furthermore, it has been discovered that four lipids are intrinsic components of photosystem I. Photosystem I exists as a trimer in the native membrane with a molecular mass of 1068 kDa for the whole complex. The X-ray structure of photosystem I at a resolution of 2.5 A shows the location of the individual subunits and cofactors and provides new information on the protein-cofactor interactions. [P. Jordan, P. Fromme, H.T. Witt, O. Klukas, W. Saenger, N. Krauss, Nature 411 (2001) 909-917]. In this review, biochemical data and results of biophysical investigations are discussed with respect to the X-ray crystallographic structure in order to give an overview of the structure and function of this large membrane protein.
Collapse
Affiliation(s)
- P Fromme
- Max Volmer Laboratorium für Biophysikalische Chemie Institut für Chemie, Technische Universität Berlin, Germany.
| | | | | |
Collapse
|
4
|
Hoshina S, Sakurai R, Kunishima N, Wada K, Itoh S. Selective destruction of iron-sulfur centers by heat/ethylene glycol treatment and isolation of Photosystem I core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90216-q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
An interpretation of the peculiar magnetic properties of center X in Photosystem I in terms of a 2Fe-2S cluster. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90048-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Golbeck JH. Light-induced charge separation across the photosynthetic membrane: a proposed structure for the photosystem I reaction center. J Memb Sci 1987. [DOI: 10.1016/s0376-7388(00)80374-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Evidence for the existence of [2Fe-2S] as well as [4Fe-4S] clusters among FA, FB and FX. Implications for the structure of the Photosystem I reaction center. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90087-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Golbeck JH. Structure, function and organization of the Photosystem I reaction center complex. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 895:167-204. [PMID: 3333014 DOI: 10.1016/s0304-4173(87)80002-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- J H Golbeck
- Department of Chemistry, Portland State University, OR 97207
| |
Collapse
|
9
|
Høj PB, Møller BL. The 110-kDa reaction center protein of photosystem I, P700-chlorophyll a-protein 1, is an iron-sulfur protein. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67017-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Rutherford AW, Heathcote P. Primary photochemistry in photosystem-I. PHOTOSYNTHESIS RESEARCH 1985; 6:295-316. [PMID: 24442951 DOI: 10.1007/bf00054105] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/1984] [Accepted: 01/31/1985] [Indexed: 06/03/2023]
Abstract
In this review, the main research developments that have led to the current simplified picture of photosystem I are presented. This is followed by a discussion of some conflicting reports and unresolved questions in the literature. The following points are made: (1) the evidence is contradictory on whether P700, the primary donor, is a monomer or dimer of chlorophyll although at this time the balacnce of the evidence points towards a monomeric structure for P700 when in the triplet state; (2) there is little evidence that the iron sulfur centers FA and FB act in series as tertiary acceptors and it is as likely that they act in parallel under physiological conditions; (3) a role for FX, probably another iron sulfur centrer, as an obligatory electron carrier in forward electron transfer has not been proven. Some evidence indicates that its reduction could represent a pathway different to that involving FA and FB; (4) the decay of the acceptor 'A2 (-)' as defined by optical spectroscopy corresponds with 700(+) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOramaaBa% aaleaadaqdaaqaaiaadIfaaaaabeaaaaa!37D1!\[F_{\overline X } \] recombination under some circumstances but under other conditions it probably corresponds with P700(+) A1 (-) recombination; (5) P700(+) A1 (-) recombination as originally observed by optical spectroscopy is probably due to the decay of the P700 triplet state; (6) the acceptor A1 (-) as defined by EPR may be a special semiquinone molecule; (7) A0 is probably a chlorophyll a molecule which acts as the primary acceptor. Recombination of P700(+) A0 (-) gives rise to the P700 triplet state.A working model for electron transfer in photosystem I is presented, its general features are discussed and comparisons with other photosystems are made.
Collapse
Affiliation(s)
- A W Rutherford
- Service de Biophysique, Department de Biologie, CEN Saclay, BP2, 91190, Gif sur Yvette, France
| | | |
Collapse
|
11
|
Takahashi Y, Hirota K, Katoh S. Multiple forms of P700-chlorophyll a-protein complexes from Synechococcus sp.: The iron, quinone and carotenoid contents. PHOTOSYNTHESIS RESEARCH 1985; 6:183-192. [PMID: 24442877 DOI: 10.1007/bf00032792] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/1984] [Revised: 09/24/1984] [Indexed: 06/03/2023]
Abstract
The iron, quinone and carotenoid contents of five P700-chlorophyll a-protein complexes having different subunit structures (CP1-a,-b,-c,-d and-e) from the thermophilic cyanobacterium Synechococcus sp. were determined. CP1-a,-b,-c and-d that commonly have four polypeptides of 62,000, 60,000, 14,000 and 10,000 dalton contained 10-14 iron atoms per P700, whereas CP1-e that lacks the two small polypeptides was totally devoid of iron. All CP1 complexes contained vitamin K1 at the molar ratio of vitamin K1 to P700 of about 2 except CP1-e that had only 0.4 vitamin K1 per P700. No plastoquinone was detected in five CP1 complexes. Out of four major carotenoids, β-carotene, zeaxanthin, caloxanthin, and myxoxanthophyll, present in the thylakoid membranes, only β-carotene was found in isolated CP1 complexes; all CP1 complexes contained about 10 β-carotene molecules per P700. The flourescence excitation spectrum showed that β-carotene serves as an efficient antenna of photosystem I. It is concluded that all iron atoms and a larger fraction of vitamin K1 molecules present in the photosystem I reaction center complex are associated with the 14,000 and 10,000 dalton polypeptides, whereas β-carotene exclusively binds to the large polypeptides which carry the functional and antenna chlorophyll a. The possible functions of iron and vitamin K1 as electron carriers and of β-carotene as the accessary pigment and a photoprotectant in the photosystem I complexes are discussed.
Collapse
Affiliation(s)
- Y Takahashi
- Department of Pure and Applied Sciences, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, 153, Tokyo, Japan
| | | | | |
Collapse
|
12
|
Kennedy MC, Kent TA, Emptage M, Merkle H, Beinert H, Münck E. Evidence for the formation of a linear [3Fe-4S] cluster in partially unfolded aconitase. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42622-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Fauque G, Teixeira M, Moura I, Lespinat PA, Xavier AV, Der Vartanian DV, Peck HD, Le Gall J, Moura JG. Purification, characterization and redox properties of hydrogenase from Methanosarcina barkeri (DSM 800). EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 142:21-8. [PMID: 6086341 DOI: 10.1111/j.1432-1033.1984.tb08245.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A soluble hydrogenase from the methanogenic bacterium, Methanosarcina barkeri (DSM 800) has been purified to apparent electrophoretic homogeneity, with an overall 550-fold purification, a 45% yield and a final specific activity of 270 mumol H2 evolved min-1 (mg protein)-1. The hydrogenase has a high molecular mass of approximately equal to 800 kDa and subunits with molecular masses of approximately equal to 60 kDa. The enzyme is stable to heating at 65 degrees C and to exposure to air at 4 degrees C in the oxidized state for periods up to a week. The overall stability of this enzyme is compared with other hydrogenase isolated from strict anaerobic sulfate-reducing bacteria. Ms. barkeri hydrogenase shows an absorption spectrum typical of a non-heme iron protein with maxima at 275 nm, 380 nm and 405 nm. A flavin component, identified as FMN or riboflavin was extracted under acidic conditions and quantified to approximately one flavin molecule per subunit. In addition to this component, 8-10 iron atoms and 0.6-0.8 nickel atom were also detected per subunit. The electron paramagnetic resonance (EPR) spectrum of the native enzyme shows a rhombic signal with g values at 2.24, 2.20 and approximately equal to 2.0. probably due to nickel which is optimally measured at 40 K but still detectable at 77 K. In the reduced state, using dithionite or molecular hydrogen as reductants, at least two types of g = 1.94 EPR signals, due to iron-sulfur centers, could be detected and differentiated on the basis of power and temperature dependence. Center I has g values at 2.04, 1.90 and 1.86, while center II has g values at 2.08, 1.93 and 1.85. When the hydrogenase is reduced by hydrogen or dithionite the rhombic EPR species disappears and is replaced by other EPR-active species with g values at 2.33, 2.23, 2.12, 2.09, 2.04 and 2.00. These complex signals may represent different nickel species and are only observable at temperatures higher than 20 K. In the native preparation, at high temperatures (T greater than 35 K) or in partially reduced samples, a free radical due to the flavin moiety is observed. The EPR spectrum of reduced hydrogenase in 80% Me2SO presents an axial type of spectrum only detectable below 30 K.
Collapse
|
14
|
Golbeck JH, Warden JT. Electron spin resonance studies of the bound iron-sulfur centers in Photosystem I. Photoreduction of center A occurs in the absence of center B. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1982. [DOI: 10.1016/0005-2728(82)90280-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Siegel LM, Rueger DC, Barber MJ, Krueger RJ, Orme-Johnson NR, Orme-Johnson WH. Escherichia coli sulfite reductase hemoprotein subunit. Prosthetic groups, catalytic parameters, and ligand complexes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(20)65147-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Hagen WR, Albracht SP. Analysis of strain-induced EPR-line shapes and anisotropic spin-lattice relaxation in a [2Fe-2S] ferredoxin. BIOCHIMICA ET BIOPHYSICA ACTA 1982; 702:61-71. [PMID: 6279164 DOI: 10.1016/0167-4838(82)90027-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The electron paramagnetic resonance spectrum of the [2Fe-2S]1+(2+;1+) cluster in spinach-leaf ferredoxin has been measured at four microwave frequencies from 1 to 35 GHz. Using a modified g-strain formula, the asymmetrical spectrum has been simulated in detail without the assumption of signal multiplicity. In all but the lowest frequency bands the line width is dominated by an extremely anisotropic g-shift distribution, caused by a statistical distribution in dislocation strains. The crossover point of domination by unresolved proton splittings is around 2 GHz. The angle-dependent elasticity of the cluster can be related to an anisotropy in the spin-lattice relaxation rate. Intensity behaviour under continuous saturation, at temperatures in the two-phonon region, is in qualitative agreement with elementary theory. On the basis of these results it is argued that biochemists should be aware of the questionable nature of some ad hoc assumptions commonly made to interpret EPR of metalloproteins. Specifically, a physically meaningful determination of the number and stoicheiometry of distinguishable compounds, represented in a complex spectrum, may well require more advanced theoretical tools than the frequently employed deconvolution in symmetrical Gaussians with associated unique relaxation times.
Collapse
|
17
|
|
18
|
Evans EH, Dickson DP, Johnson CE, Rush JD, Evans MC. Mössbauer spectroscopic studies of the nature of centre X of photosystem I reaction centres from the cyanobacterium Chlorogloea fritschii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 118:81-4. [PMID: 6269849 DOI: 10.1111/j.1432-1033.1981.tb05488.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reduced photosystem I samples, which give the electron paramagnetic resonance (EPR) signals associated with A, A and B, and A, B and X centres, have been studied using Mössbauer spectroscopy. The Mössbauer spectra obtained from each type of sample is different, which indicates that iron is associated with all three centres. The spectra are similar to those obtained from ferredoxins with 4Fe-4S centres and were fitted with oxidized and reduced components, the relative proportions depending on the degree of reduction of the sample as monitored by EPR. The sample which gave only the A EPR signal showed about 26% of the reduced component, the sample which gave A and B EPR signals showed about 48% of the reduced component, while the sample which gave A, B and X EPR signals showed about 65% of the reduced component. The measurements are consistent with X being a 4Fe-S4 centre.
Collapse
|
19
|
Kerscher L, Oesterhelt D. Purification and properties of two 2-oxoacid:ferredoxin oxidoreductases from Halobacterium halobium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 116:587-94. [PMID: 6266826 DOI: 10.1111/j.1432-1033.1981.tb05376.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pyruvate:ferredoxin oxidoreductase and 2-oxoglutarate:ferredoxin oxidoreductase were obtained from cell-free extracts of Halobacterium halobium as homogeneous proteins after ammonium sulfate precipitation, salting-out chromatography with ammonium sulfate on unsubstituted agarose, gel filtration and chromatography on hydroxyapatite. The respective molecular weights are 256000 and 248000. Both enzymes consist of two sets of non-identical subunits of Mr 86000 and 42000 in the case of the pyruvate-degrading enzyme and of 88000 and 36000 in the case of the 20 -oxogluatarate-degrading enzyme. Analyses indicate that an intact enzyme molecule contains two [4 Fe-4S]2 + (2 + , 1+) clusters and two molecules of thiamin diphosphate. Flavin nucleotides, lipoic acid and pantetheine are absent. Thus the enzymes are very similar to the 2-oxoacid:ferredoxin oxidoreductases from fermentative and photosynthetic anaerobes described previously, but are clearly different from the 2-oxoacid dehydrogenase multienzyme complexes which commonly occur in anaerobic organisms.
Collapse
|
20
|
Prince RC, Crowder MS, Bearden AJ. The orientation of the magnetic axes of the membrane-bound iron-sulfur clusters of spinach chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 592:323-37. [PMID: 6250590 DOI: 10.1016/0005-2728(80)90193-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spinach chloroplast membranes were oriented onto mylar sheets by partial dehydration, and the orientation of the magnetic axes of membrane-bound paramagnetic clusters determined by electron paramagnetic resonance (EPR) spectroscopy. Our results indicate that the reduced Rieske iron-sulfur cluster signal is of orthorhombic symmetry oriented with th gy = 1.90 axis orthogonal to the membrane plane and with the gz = 2.03 axis in the membrane plane; the gx-axis is undetectable, presumably due to its broadness. If the Rieske center is a two-iron iron-sulfur cluster, we conclude that the iron-iron axis lies in the plane of the membrane. Illumination reduces the two bound chloroplast iron-sulfur proteins known as Clusters A and B. Center A is oriented such that gx = 1.86 and gy = 1.94 lie at an angle of about 40, and gz = 2.05 is at approximately 25, to the membrane plane. There are two possible orientations of Cluster B depending on the set of g-values assigned to this cluster. For one set of g-values, gz = 2.04 and gx = 1.89 are oriented in the plane of the membrane while gy = 1.92 is orthogonal to the plane. Alternatively, gz = 2.07 and gy = 1.94 are oriented approximately 50 and 40 to the membrane plane respectively, and gx = 1.80 is in the plane of the membrane. An additional light-induced signal at g = 2.15 oriented orthogonal to the plane is currently unexplained, as are other membrane perpendicular signals seen at g = 2.3 and g = 1.73 in dark-adapted samples.
Collapse
|
21
|
[13] The P700-chloroophyl a-protein of higher plants. Methods Enzymol 1980. [DOI: 10.1016/s0076-6879(80)69015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Golbeck JH. [12] Subchloroplast particle enriched in P700 and iron-sulfur protein. Methods Enzymol 1980. [DOI: 10.1016/s0076-6879(80)69014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
23
|
Rupp H, de la Torre A, Hall DO. The electron spin relaxation of the electron acceptors of photosystem I reaction centre studied by microwave power saturation. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 548:552-64. [PMID: 228715 DOI: 10.1016/0005-2728(79)90064-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosystem I particles from spinach were reduced by illumination at 77 K. Under these conditions the one-electrom transfer from P-700 resulted in a reduction of only one acceptor molecule of the reaction centre. The EPR signals at g=2.05, 1.94 and 1.86 were attributed to reduced centre A and the smaller signals at g=2.07, 1.92 and 1.89 to reduced centre B. Reduction of both centres by dithionite in the dark lead to signals at g=2.05, 1.99, 1.96, 1.94, 1.92 and 1.89. Thus, the features at g=2.07 and 1.86 disappeared and new signals at g=1.99 and 1.96 were observed. From the spectral changes it followed that the iron-sulphur centres A and B interact magnetically. Temperature dependent EPR spectra demonstrated a faster electron spin relaxation of centre A than of centre B. These conclusions were corroborated using microwave power saturation of the respective EPR signals. The saturation data of the fully reduced centres A and B could not be fitted using the saturation equation for a one-electron spin system. The magnetic interaction between the (4Fe-4S) CENTRes of the electron acceptors A and B resulted in saturation properties which are simular to those of the 2(4Fe-4S) ferredoxin from Clostridium pasteurianum. For centre X a high proportion of homogeneous broadening of the EPR lines was inferred from the inhomogeneity parameter (b=1.83). It was, therefore, concluded that centre X is most probably an anion radical of chlorophyll. From the low temperature necessary for observing the EPR signal of centre X followed that the drastic relaxation enhancement has to be attributed to a magnetic interaction of the anion radical with iron.
Collapse
|
24
|
Electron spin polarization from the photosynthetic light reaction: Photosystem I. ACTA ACUST UNITED AC 1979. [DOI: 10.1007/bf03052281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Cammack R, Luijk LJ, Maguire JJ, Fry IV, Packer L. EPR spectra of photosystem I and other iron protein components in intact cells of cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 548:267-75. [PMID: 228708 DOI: 10.1016/0005-2728(79)90134-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electron paramagnetic resonance (EPR) spectra were recorded of whole filaments of the cyanobacteria Nostoc muscorum and Anabaena cylindrica. Signals due to manganese were removed by freezing and thawing the cells in EDTA. EPR spectra were assigned on the basis of their g values, linewidths, temperature dependence and response to dithionite and light treatments. The principal components identified were: (i) rhombic Fe3+ (signal at g = 4.3), probably a soluble storage form of iron; (ii) iron-sulfur centers A and B of Photosystem I; (iii) the photochemical electron acceptor 'X' of Photosystem I; this component was also observed for the first time in isolated heterocysts; (iv) soluble ferredoxin which was present at a concentration of 1 molecule per 140 +/- 20 chlorophyll molecules; (v) a membrane-bound iron-sulfur protein (g = 1.92). A signal g = 6 in the oxidized state was probably due to an unidentified heme compound. During deprivation of iron the rhombic Fe3+, centers A, B and X of Photosystem I, and soluble ferredoxin were all observed to decrease.
Collapse
|
26
|
Schneider K, Cammack R, Schlegel HG, Hall DO. The iron-sulphur centres of soluble hydrogenase from Alcaligenes eutrophus. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 578:445-61. [PMID: 226163 DOI: 10.1016/0005-2795(79)90175-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The soluble hydrogenase (hydrogen:NAD+ oxidoreductase (EC 1.12.1.2) from Alcaligenes eutrophus has been purified to homogeneity by an improved procedure, which includes preparative electrophoresis as final step. The specific activity of 57 mumol H2 oxidized/min per mg protein was achieved and the yield of pure enzyme from 200 g cells (wet weight) was about 16 mg/purification. After removal of non-functional iron, analysis of iron and acid-labile sulphur yielded average values of 11.5 and 12.9 atoms/molecule of enzyme, respectively. p-Chloromercuribenzoate was a strong inhibitor of hydrogenase and apparently competed with NAD not with H2. Chelating agents, CO and O2 failed to inhibit enzyme activity. The oxidized hydrogenase showed an EPR spectrum with a small signal at g = 2.02. On reduction the appearance of a high temperature (50--77 K) signal at g = 2.04, 1.95 and a more complex low temperature (less than 30 K) spectrum at g = 2.04, 2.0, 1.95, 1.93, 1.86 was observed. The pronounced temperature dependence and characteristic lineshape of the signals obtained with hydrogenase in 80--85% dimethylsulphoxide demonstrated that iron-sulphur centres of both the [2Fe-2S] and [4Fe-4S] types are present in the enzyme. Quantitation of the EPR signals indicated the existence of two identical centres each of the [4Fe-4S] and of the [2Fe-2S] type. The midpoint redox potentials of the [4Fe-4S] and the [2Fe-2S] centres were determined to be -445 mV and -325 mV, respectively. Spin coupling between two centres, indicated by the split feature of the low temperature spectrum of the native hydrogenase around g = 1.95, 1.93, has been established by power saturation studies. On reduction of the [Fe-4S] centres, the electron spin relaxation rate of the [2Fe-2S] centres was considerably increased. Treatment of hydrogenase with CO caused no change in EPR spectra.
Collapse
|
27
|
|
28
|
Lancaster J, Vega J, Kamin H, Orme-Johnson N, Orme-Johnson W, Krueger R, Siegel L. Identification of the iron-sulfur center of spinach ferredoxin-nitrite reductase as a tetranuclear center, and preliminary EPR studies of mechanism. J Biol Chem 1979. [DOI: 10.1016/s0021-9258(17)34197-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Dismukes GC, Sauer K. The orientation of membrane bound radicals: an EPR investigation of magnetically ordered spinach chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 504:431-45. [PMID: 214110 DOI: 10.1016/0005-2728(78)90065-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The orientation of membrane-bound radicals in spinach chloroplasts is examined by electron paramagnetic resonance (EPR) spectroscopy of chloroplasts oriented by magnetic fields. Several of the membrane-bound radicals which possess g-tensor anisotropy display EPR signals with a marked dependence on the orientation of the membranes relative to the applied EPR field. The fraction of oxidized and reduced plastocyanin, P-700, iron-sulfur proteins A and B, and the X center, an early acceptor of Photosystem I, can be controlled by the light intensity during steady-state illumination and can be trapped by cooling. The X center can be photoreduced and trapped in the absence of strong reductants and high pH, conditions previously found necessary for its detection. These results confirm its role as an early electron acceptor in P-700 photo-oxidation. X is oriented with its smallest principal g-tensor axis (gx) predominantly parallel to the normal to the thylakoid membrane, the same orientation as was found for an early electron acceptor based on time-resolved electron spin polarization studies. We propose that the X center is the first example of a high potential iron-sulfur protein which functions in electron transfer in its 'superreduced' state. We present evidence which suggests that iron-sulfur proteins A and B are 4Fe-4S clusters in an 8Fe-8S protein. Center B is oriented with gy predominantly normal to the membrane plane. The spectra of center A and plastocyanin do not show significant changes with sample orientation. In the case of plastocyanin, this may indicate a lack of molecular orientation. The absence of an orientation effect for reduced center A is reconcilable with a 4Fe-4S geometry, provided that the electron obtained upon reduction can be shared between any pair of Fe atoms in the center. Orientation of the 'Rieske' iron-sulfur protein is also observed. It has axial symmetry with g parallel close to the plane of the membrane. A model is proposed for the organization of these proteins in the thylakoid membrane. A new EPR signal was observed in oriented chloroplasts. This broad unresolved resonance displays a g value of 3.2 when the membrane normal is parallel to the field. It shifts to g = 1.9 when the membrane normal is perpendicular to the field. The signal is sensitive to illumination and to washing of the thylakoid membranes of broken chloroplasts. We suggest that there is a relation between this signal and the water-oxidizing enzyme system.
Collapse
|
30
|
Malkin R, Bearden AJ. Membrane-bound iron-sulfur centers in photosynthetic systems. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 505:147-81. [PMID: 214111 DOI: 10.1016/0304-4173(78)90011-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Heathcote P, Williams-Smith DL, Sihra CK, Evans MC. The role of the membrane-bound iron-sulphur centres A and B in the photosystem I reaction centre of spinach chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 503:333-42. [PMID: 210803 DOI: 10.1016/0005-2728(78)90192-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photosystem I particles prepared from spinach chloroplast using Triton X-100 were frozen in the dark with the bound iron-sulphur Centre A reduced. Illumination at cryogenic temperatures of such samples demonstrated the photoreduction of the second bound iron-sulphur Centre B. Due to electron spin-electron spin interaction between these two bound iron-sulphur centres, it was not possible to quantify amounts of Centre B relative to the other components of the Photosystem I reaction centre by simulating the line-shape of its EPR spectrum. However, by deleting the free radical signal I from the EPR spectra of reduced Centre A alone or both Centres A plus B reduced, it was possible to double integrate these spectra to demonstrate that Centre B is present in the Photosystem I reaction centre in amounts comparable to those of Centre A and thus also signal I (P-700) and X. Oxidation-reduction potential titrations confirmed that Centre A had Em congruent to -550 mV, Centre B had Em congruent to -585 mV. These results, and those presented for the photoreduction of Centre B, place Centre B before Centre A in the sequence of electron transport in Photosystem I particles at cryogenic temperatures. When both A and B are reduced, P-700 photooxidation is reversible at low temperature and coupled to the reduction of the component X. The change from irreversible to reversible P-700 photooxidation and the photoreduction of X showed the same potential dependence as the reduction of Centre B with Em congruent to -585 mV, substantiating the identification of X as the primary electron acceptor of Photosystem I.
Collapse
|
32
|
Golbeck JH, Kok B. Further studies of the membrane--bound iron--sulfur proteins and P700 in a photosystem I subchloroplast particle. Arch Biochem Biophys 1978; 188:233-42. [PMID: 209749 DOI: 10.1016/s0003-9861(78)80005-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Huisman JG, Stapel S, Muijsers AO. Two different plant-type ferredoxins in each of two petunia species. FEBS Lett 1978; 85:198-202. [PMID: 202499 DOI: 10.1016/0014-5793(78)80454-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
|
35
|
Cammack R, Rao KK, Hall DO, Moura JJ, Xavier AV, Bruschi M, Le Gall J, Deville A, Gayda JP. Spectroscopic studies of the oxidation-reduction properties of three forms of ferredoxin from Desulphovibrio gigas. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 490:311-21. [PMID: 189829 DOI: 10.1016/0005-2795(77)90006-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electron paramagnetic resonance spectra were recorded of three forms of Desulphovibrio gigas ferredoxin, FdI, FdI' and FdII. The g = 1.94 signal seen in dithionite-reduced samples is strong in FdI, weaker in FdI' and very small in FdII. The g = 2.02 signal in the oxidized proteins is weak in FdI and strongest in FdII. It is concluded that most of the 4Fe-4S centres in FdI change between states C- and C2-; FdI' contain both types of centre. There is no evidence that any particular centre can change reversibly between all three oxidation states. Circular dichroism spectra show differences between FdI and FdII even in the diamagnetic C2- state. The redox potentials of the iron-sulphur centres of the three oligomers (forms) are different. After formation of the apo-protein of FdII and reconstitution with iron and sulphide, the protein behaves more like FdI, showing a strong g = 1.94 signal in the reduced states.
Collapse
|
36
|
Golbeck JH, Lien S, San Pietro A. Isolation and characterization of a subchloroplast particle enriched in iron-sulfur protein and P700. Arch Biochem Biophys 1977; 178:140-50. [PMID: 189690 DOI: 10.1016/0003-9861(77)90178-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Böhme H. On the role of ferredoxin and ferredoxin-NADP+ reductase in cyclic electron transport of spinach chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1977; 72:283-9. [PMID: 837920 DOI: 10.1111/j.1432-1033.1977.tb11251.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antibodies prepared against purified spinach ferredoxin and ferredoxin-NADP+ reductase were used as specific inhibitors of electron-transfer reactions dependent on either ferredoxin or ferredoxin-NADP+ reductase; The possible role of both electron carriers in cyclic electron transport was checked using cytochrome b6 photoreactions as indicator. It could be demonstrated that the ferredoxin antibody inhibits cytochrome b6 photoreduction. Ferredoxin-NADP+ reductase, however, appears not to be involved in this pathway: reductase antibody in concentrations sufficient to completely inhibit electron transport to NADP+ had no effect on cytochrome b6 photoreduction. Quantitative treatment of the immunoassay data showed that osmotically shocked chloroplasts contain both bound ferredoxin and ferredoxin-NADP+ reductase in concentration approximately equal to that of cytochrome b6.
Collapse
|
38
|
Kerscher L, Oesterhelt D, Cammack R, Hall DO. A new plant-type ferredoxin from halobacteria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 71:101-7. [PMID: 188650 DOI: 10.1111/j.1432-1033.1976.tb11094.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A stable, 2Fe-type ferredoxin has been prepared from Halobacterium halobium and purified by chromatography. A similar ferredoxin was also found in three other Halobacteria. The ferredoxin is present in large amounts-about 1 percent of the total soluble protein. From amino acid composition a molecular weight of 14800 +/- 200 was calculated. The ferredoxin was found to contain two atoms each of iron and sulphide. The midpoint redox potential of the protein is about -345 mV. The electron paramagnetic resonance spectrum of the reduced form shows much similarity to plant and algal ferredoxins with gx = 1.90, gy = 1.97 and gz = 2.07. The same similarity is observed in the optical absorption, optical rotatory dispersion and circular dichroism spectra. However it does not seem to mediate electron transport in the NADP-photoreduction system of chloroplasts. Extracts of the bacterial cells catalyze the reduction of the ferredoxin by NADH.
Collapse
|
39
|
Moura JJ, Xavier AV, Bruschi M, Le Gall J, Hall DO, Cammack R. A molybdenum-containing iron-sulphur protein from Desulphovibrio gigas. Biochem Biophys Res Commun 1976; 72:782-9. [PMID: 186061 DOI: 10.1016/s0006-291x(76)80201-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Golbeck JH, Lien S, San Pietro A. Quantitation of labile sulfide content and P700 photochemistry in spinach photosystem I particles. Biochem Biophys Res Commun 1976; 71:452-8. [PMID: 962935 DOI: 10.1016/0006-291x(76)90808-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Evans EH, Cammack R. Properties of the primary electron acceptor complex of photosystem I in the blue green alga Chlorogloea fritschii. Biochem Biophys Res Commun 1976; 68:1212-8. [PMID: 178303 DOI: 10.1016/0006-291x(76)90326-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|